Drach conjectures
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is special if and only if
A is a solution of F.
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is special if and only if
A is a solution of P; or Ps.




D-Lie groupoid over a differential field

(L, 01, ...,0,) a differential field and const = C.
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is a “Hopt algebroid” over L

o Ji = spec O T
is a groupoid acting on spec £

o J* = limJ;

is the groupoid of transformations of spec £ /¢

L4 O]* = limOJg

is a differential ring with derivations
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Definition : A D-Lie groupoid over L is a subgroupoid of
J* defined by a pertect differential ideal.




The D-Lie algebra of a D-Lie groupoid

o =L0 +...+ L9, and T*1its dual over £

¢ Oy =ST*[af;1 <i<n,aeN',1< |a| <K
the ring of order k£ p.d.e. on vector fields a,0, + ...+ a,0,

o A(Jy) = spec Oar)

Fondamental isomorphism

T3, | ~ ALT)
D-Lie groupoid ¢ —  linear subspace A(G)

Definition : The Galois groupoid of a vector field X over £

(or an equation over KC) is the smallest D-Lie groupoid over
L, G, such that

FX € AG), VY.

e Gal(E/K) C Aut(E/K)

e An equation E is special if Gal(E/K) # Aut(E/K)



The Galois groupoid
of an order 1 equation

y =Aly) € K(y); C(x) CK

Theorem : E/K is special if and only if there is w, a, 8 with
coefficients in K(y) such that

-w(X)=0

-dw =aANw

-da=pFANw (sly-triplet for E/K)
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if and only if one can find R € K(y) such that

OPA  OR OR 0A
A—+2—R=
oy3 i ox i oy i oy =0

(Drach’s resolvant equation)



Isomonodromic deformation

Equations satisfied by the special first integral
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and the 2 x 2 system
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Garnier counter-example

(B) equation g—i = %y_% over C(z, A\, N, ...)

Set R=>Y " _sa,(y—A)"
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A\ / 1 as\’
4 (7) = 6@3)\/ — 2@4 — 5 (K)

a5 = Cp
with { a4 = bes N + ¢y
as = 10cs\? + degh — 30533 + c3

Garnier : This equation has some movable branching points

= (B) conjecture is false.

Problem : Find a counter-example for (A) using a irregular
singularity at oo.
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g = (380 - 1) B, + 220,
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o "D (S aB, +28) = (A= 1) (X Bu+ B)



The (A’) conjecture

The Galois groupoid of
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is special and regular
(= its “R” has order 2 poles)
if and only if A is a solution of F.
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b = (300 - 1) B+ 220,
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® ) af,+ \G = const



