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In this talk two problems of reducibility/irreduciblitity of ordinary dif-
ferential equations will be presented from a ‘galoisian’ point of view. The
problem is to determine when an ordinary differential equation can be
solved by means of classical functions as defined by H. Umemura in [7].

Definition 0.1 (Painlevé, Umemura [7]) The field of classical functions
over C(x) is a differential field which is the union of all the differential fields
obtained by a tower of strongly normal extensions and algebraic extensions.
Strongly normal extensions are :

• extensions by the entries of a fundamental solution of a linear ODE,

• extensions by an abelian function with classical functions as argu-
ments.

A common belief is that an answer to this kind of question should be given
by a general nonlinear differential Galois theory. In [8, 4], general defini-
tions of what should be a nonlinear Galois group (or groupoid) are given.
Because of its geometric flavour we will focus on the Malgrange’s Galois

1 The first part of this work was done when the author was supported by Marie-Curie EIF Fellowship
(MEIF-CT-2005-025116). The second part was done during the PEM program of the Newton Institute,
Cambridge, UK. The author is partially supported by the ANR project no. JC05 41465 and by GIFT
NEST-Adventure Project no. 5006.
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groupoid and use it to solve the two following problems.

Irreducibility of P1: prove that no solution of the first Painlevé equation
y′′ = 6y2 + x is a classical function.

Reducibility of PP6: explain why the Picard-Painlevé sixth equation

y′′ =
3y2 − 2y(x− 1) + x

2y(y − 1)(y − x)
(y′)2+

(
1

x− y
+

1

1− x
− 1

x

)
y′+

y(y − 1)

2x(x− 1)(y − x)

can be solved by a formula though most of its solutions are non classical.
The formula to solve PP6 looks pretty classical :

y = ℘(aω1(x) + bω2(x); ω1(x), ω2(x))

with a and b two constants and ω1,2 two periods of z2 = y(y − 1)(y − x).

1 The Galois groupoid of a vector field in C3

Let X be a vector field in C3. In general it is not complete and its flows
are only defined on open sets small enough. All the dynamic of this vector
field is contained in the pseudogroup of transformations of C3 generated
by these local flows. By keeping only the germs of diffeomorphisms from
this pseudogroup one gets a groupoid, TanX, acting on C3.

The Galois groupoid of X is the Zariski closure of TanX for a (nearly)
obvious embedding of TanX in a infinite dimensional algebraic variety.
This variety is the space J∗ of formal diffeomorphisms of C3 with its
groupoid structure and its projections on the spaces J∗

q of order q jets of dif-
feomorphisms. The ring OJ∗ of this variety is the commutative differential
ring of nonlinear partial differential equations on germs of diffeomorphisms.
The embedding is the Taylor expansion of elements of TanX.

Definition 1.1 (Malgrange [4]) The Galois groupoid of X is defined by the
ideal of OJ∗ of all the PDEs satisfied by the flows of X.
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Using Lie-Cartan local classification of pseudogroups acting on C2 [1], one
has the following proposition.

Proposition 1.2 ([2]) If X is divergence free and γ is the closed 2-form
vanishing on X then one of the following situations occurs:

• Gal(X) is imprimitive: there exists an algebraic 1-form θ s.t. θ∧dθ =
0 and θ(X) = 0,

• Gal(X) is transversally affine: there exists two algebraic 1-forms θ1,
θ2 vanishing on X and a traceless matrix of 1-forms (θj

i ), i, j =1 or
2, s.t. dθi = θj

i ∧ θj and dθj
i = θk

i ∧ θj
k,

• the only transversal equations of Gal(X) are those of the invariance
of γ.

2 Irreducibility of P1

The discussion about the irreducibility to classical functions of the solutions
of the first Painlevé equation depends on the transcendance degree of the
differential field generated by these solutions over C(x).

This is a classical result of Painlevé that such a solution cannot be al-
gebraic, and by the Kolchin-Kovacic lemma its transcendance degree must
be two. Such a solution gives an inclusion of the field C(x, y, y′) in a field
C(x, hi, . . . , kp, . . .). Let’s take C3 and CN as model for these fields and let
π be the dominante projection induced by the inclusion. The differential
structure of the first field is given by the vector field

X1 =
∂

∂x
+ y′

∂

∂y
+ (6y2 + x)

∂

∂y′

on C3 and because of its special construction the vector field on CN has
the following shape

Xc =
∂

∂x
+

∑
aj

i (x)hj
∂

∂hi
+

∑
bq
p(x, h)kq

∂

∂kp
+ . . .
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The projection of Xc by π gives X1. The main tool to prove that this
projection cannot exist is the following theorem.

Theorem 2.1 The only transversal equations of Gal(X1) are those of the
invariance of γ.

Computations on the structural equation of the Galois groupoid of Xc show
that

• a quotient of Gal(Xc) is included in Gal(X1).

• such a quotient must be strictly smaller than Gal(X1).

On an other side, this quotient must contain TanX1, this yields a contra-
diction.

3 Reducibility of PP6

This equation is also divergence free in canonical coordinates but in this
case one has the following theorem. Let XPP be the vector field of this
equation on C3.

Theorem 3.1 Gal(XPP ) is transversally affine.

To prove this we construct two first integrals in a Picard-Vessiot extension

of the differential field
(
C(x, y, y′); ∂

∂x , ∂
∂y ,

∂
∂y′

)
following P. Painlevé [5].

If y(x) is a solution of PP6 the integral
∫ y(x)

0
dξ√

ξ(ξ−1)(ξ−x)
is a period of

z2 = y(y − 1)(y − x). By pulling-back linear first integral of the linear
order two equation of the periods (Picard-Fuchs) one gets:

for each solution of v′′ +
(

1
x2 + 1

(x−1)2 −
1

x(x−1)

)
v = 0, the function

y′v

√
x(x− 1)

y(y − 1)(y − x)

+

∫ √
x(x− 1)

y(y − 1)(y − x)

{[
v

2

(
1

x
+

1

x− 1
+

1

y − x

)
− v′

]
dy + v

y(1− y)

2x(y − x)(x− 1)
dx

}
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is a first integral of XPP . The theorem follows easily.
The Galois groupoid shows that this equation is special even if its non

algebraic solutions are non classical. In fact the first integrals are classical
functions of three variables.
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[5] Painlevé, P. - Leçons de Stockholm (1895), Oeuvres complètes Tome 1, éditions
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