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The sixth Painlevé equation for special values of classical parameters (α = β = γ =
0, δ = 1/2) was discovered by E.Picard in [10] as an exemple of order two non-linear
equation without movable singularities. The usual form of this equation is called in this
paper PP6:
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Among all the P6 equations this one has the property to be solved by a formula :

(1) y(x) = ℘ (aω1(x) + bω2(x);ω1(x), ω2(x))

with a and b two constants, ω1,2 a basis of periods of t2 = y(y−1)(y−x) and ℘( · ;ω1, ω2)
the corresponding Weierstass function. For rational a and b, the solution is algebraic but
for other values the solution is not even a classical function in the sense of H.Umemura [12]
despite the formula to express it as it is proved by H. Watanabe in [15]. For a complete
study of this equation, see the article of M.Mazzocco [8].

This is a common belief that this kind of property must be explained by a non-linear
Galois theory. Two essentially equivalent very general differential Galoisian theories have
been proposed in the last ten years by H.Umemura [13, 14] and B.Malgrange [6]. Because of
its geometric flavor, we will focus on Malgrange’s Galois groupoid to explain the existence
of a formula to solve PP6. The computation of the Galois groupoid of PP6 can be reduced
to computation already done by P.Painlevé in ([9] pp 501–517). Painlevé remarked that
PP6 is irreducible in his sense (which is very close to Nishioka-Umemura definition [11]) but
it admits a system of first integrals in a Picard-Vessiot extension of the partial differential
field (C(x, y, y′); ∂/∂x, ∂/∂y, ∂/∂y′). The aim of this article is to integrate this remark
from Painlevé in the framework of Malgrange’s Galois groupoid. Solutions of Painlevé
equations describe isomonodromy deformations of rank two Fuchsian systems with four
singularities on CP1. Algebraic properties of the monodromy data are related to the
transcendence nature of the corresponding Painlevé solution [4]. In the Picard-Painlevé
case, the monodromy data are not special but the space of monodromy data and the
non-linear monodromy are special [8]
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1 The Galois groupoid of a vector field in C3

Let X be a rational vector field in C3. In general it is not complete and its flows are only
defined on open set small enough. All the dynamic of this vector field is contained in the
pseudogroup of transformations of C3 generated by these local flows. By keeping only the
germs of diffeomorphisms from this pseudogroup one gets a groupoid, TanX, acting on
C3.

The Galois groupoid of X is the Zariski closure of TanX for a (nearly) obvious em-
bedding of TanX in an infinite dimensional algebraic variety.

This variety is the space J ∗ of formal diffeomorphisms of C3, i.e. the set of formal

invertible maps ϕ : Ĉ3, a → Ĉ3, b and the embedding is the Taylor expansion of elements
of TanX. The space J∗ can be presented as the projective limit of the spaces J ∗q of order
q jets of diffeomorphisms. These ones are isomorphic to

C3 × C3 × Gl(C3) × α∈N3

|α|≤q

C3|α|

and their coordinates rings

O(J∗q ) = C

[

x, y, y′, xα, yα, y′
α
,

1

det(xεi , yεi , y′
εi)

∣

∣

∣

∣

α ∈ N3; |α| ≤ q

]

are the rings of partial differential equations of order q in three functions of three arguments
with non vanishing jacobian. Futhermore these varieties get natural groupoid structures
given by the computation rules for the Taylor expansion of the composition of formal
diffeomorphisms. An algebraic subgroupoid of J ∗q is an algebraic subvariety whose ideal
satisfies some stability conditions under inversion and composition.

The space J∗ is lim
←

J∗q and its ring O(J∗) = lim
→

O(J∗q ) is the commutative differ-

ential ring of non-linear partial differential equations on germs of diffeomorphisms. The
derivations are given by the natural actions of ∂/∂x, ∂/∂y, ∂/∂y ′ on partial differential
equations.

Definition 1.1 (Malgrange [6]) Let G be a subvariety of J ∗ described by a differential

ideal. It is an algebraic D-groupoid on C3 if there is a subvariety Z ⊂ C3 such that the

projections of G on the finite order jet spaces defined algebraic subgroupoids on C3 − Z.

Definition 1.2 (Malgrange [6]) The Galois groupoid of X is the smallest algebraic D-

groupoid on C3 containing TanX.

Roughly speaking, the Galois groupoid of X is the set of all the germs of diffeomor-
phisms of C3 solutions of all the PDE’s vanishing on TanX. Because LXX = 0, the Galois
groupoid is a subgroupoid of the groupoid of transformations preserving X i.e. germs ϕ
such that ϕ∗X = X. When the vector field is divergence free, one can add the equations
given by the coordinates of ϕ∗(dx ∧ dy ∧ dy′) = dx ∧ dy ∧ dy′.

Near a regular point of X one can choose a flowbox given by two transversal coordinates
t1, t2 and a tangent one z. A germ of diffeomorphism preserving X can be written

ϕ :







t1(t1, t2)
t2(t1, t2)
z(z, t1, t2).
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By looking at the PDE’s of the Galois groupoid in these coordinates, two type of PDE can
be distinguished. The PDE’s vanishing on the germs such that z = z are called tangential
equations. The others are the transversal ones. For example, the transversal equations of
the set of PDE : LXX = 0 are given by LXX ∧ X = 0.

Using Lie-Cartan local classification of pseudogroups acting on C2 established in [1],
one has the following proposition

Proposition 1.3 ([3]) If X is divergence free and γ is the closed 2-form vanishing on X,

i.e. ιXγ = 0, then one of the following situations occurs:

• Gal(X) is imprimitive in codimension one: there exists an algebraic 1-form θ such that

θ ∧ dθ = 0 and θ(X) = 0,

• Gal(X) is transversally affine: there exists two algebraic independent 1-forms θ1,2

vanishing on X and a traceless matrix of 1-form (θ1,2
1,2) such that dθi =

∑

j θj
i ∧ θj

and dθj
i =

∑

k θk
i ∧ θj

k,

• the only transversal equations of Gal(X) are those of invariance of γ.

The result presented in this paper is the following.

Theorem 1.4 (Painlevé [9]) The Galois groupoid of PP6 is transversally affine.

Transversally affine vector fields admit very special first integrals given by the a ffine
structure out of a codimension one subvariety. These are described in the next section.
The vector field over C(x, y, y′) of PP6 is not divergence free for the usual ‘volume’ form
dx ∧ dy ∧ dy′ but for the canonical one. All the Painlevé equation can be express as time
dependent Hamiltonians [7]. For PP6, the Hamiltonian is :























dq
dx

= ∂K
∂p

dp
dx

= −∂K
∂q

K = 1
x(x−1) [q(q − 1)(q − x)p2 − pq(q − 1) + 1

4(q − x)]

q = y and p =
(

x(x−1)
2y(y−1)(y−x)

)

y′ + 1
2(y−x) .

Let θ1 and θ2 be the forms dq−(∂K/∂p)dx and dp+(∂K/∂q)dx, θ1∧θ2 = dq∧dp+dH∧dx
is a closed 2-form vanishing on PP6.

2 Classical first integrals and Galois groupoid

The classical functions over C were introduced in [12] by H.Umemura. A function of one
variable is said to be classical if one can find it in an ordinary differential fied extension
of the rational functions field C(x) built by successive strongly normal extensions [5] or
algebraic extensions. In general two successive strongly normal extensions fail to be a
strongly normal one. Umemura’s definition of classical functions of n variables is the
following.

Definition 2.1 (Umemura [12]) Let C(x1, . . . , xn) be the partial differential field of ra-

tional functions of n arguments with derivations ∂x1
. . . ∂xn and K be a differential ex-

tension of C(x1, . . . , xn). It is said to be classical if one can find a tower of differential

extensions

C(x1, . . . , xn) = K0 ⊂ K1 . . . ⊂ Kp = K
such that Ki ⊂ Ki+1 is one of the following

3



• algebraic,

• Picard-Vessiot: Ki+1 = Ki(H
q
p) where the H’s are entries of a fundamental solution

of linear equations ∂x`
Hq

p = Am
`,pH

q
m with A’s matrices with entries in Ki,

• ‘Abelian’: There exists an Abelian function A of m arguments and f1, . . . , fm ∈ Ki,

Ki+1 = Ki < A(f1, . . . , fm) >.

Most of the studies of Painlevé equations focus on their classical solutions (n = 1 in
the definition) but it fails to explain the ‘solvability’ of the Picard-Painlevé equations.
Nevertheless it is well known that this equation has classical first integrals (n = 3 in the
definition) ([9]).

One of the basics properties of this type of extension is to have a finite transcendence
degree. From the lemmas 4.4.5 and 4.4.6 of [2] and proposition 1.3 of this article, one
deduces the particular form of the Galois groupoid of a vector field with classical first
integrals.

Proposition 2.2 Let X be a divergence free vector field on C3 with two independent

classical first integrals. Then its Galois groupoid is transversally affine or imprimitive in

codimension one.

In fact all the imprimitive in codimension one cases cannot occur. It is possible to give a
more precise statement for this proposition but it is not needed in this paper.

Conversely any transversally affine vector field has classical first integrals. They are
built by solving the following linear system:

dLj
i =

∑

k

Lk
i θ

j
k dHi =

∑

j

Lj
iθj.

These functions are more than classical, they are in a Picard-Vessot extension of the field
of rationnal functions of C3.

3 The first integrals of PP6

In this section, computation of special first integrals of PP6 is done to prove theorem 1.4.
This computation follows P.Painlevé [9].

The PP6 equations was discovered by E.Picard as the pull-back of a linear order two
equation by a transcendantal function. For this reason it is solvable by the formula 1.
This formula and the pull-back are given by a integral with x as parameter

∫ y(x)

0

dξ
√

ξ(ξ − 1)(ξ − x)
= aω1(x) + bω2(x),

ω1,2 form a basis of periods of t2 = y(y−1)(y−x) i.e. the right hand side of the equality is
the general solution of the Picard-Fuchs (PF ) equation 4x(x−1)w ′′−4(2x−1)w′−w = 0.
Let XPP and XPF be the vector fields corresponding to the PP6 and PF equations on
their phase spaces. XPP is the pull-back of XPF by the following map:























x = x

w =

∫ y

0

dξ
√

ξ(ξ − 1)(ξ − x)

w′ = y′√
y(y−1)(y−x)

+

∫ y

0

dξ

2(ξ − x)
√

ξ(ξ − 1)(ξ − x)
.
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To get two first integrals for PP6, one pull-backs two first integrals of PF . Because it is a
linear equation, it has first integrals linear on the ‘fibers’ i.e. H = α(x)w + β(x)w ′ where
(α, β) is a solution of the PF ’s adjoint equation :

{

α′ = β −1
4x(x−1)

β′ = β 1−2x
x(x−1) − α.

Let Hα,β be the function

y′β
√

y(y − 1)(y − x)
+

∫ y

0
(α +

β

2(ξ − x)
)

dξ
√

ξ(ξ − 1)(ξ − x)
.

It turns out that this function is a primitive of a closed 1-form with coefficients in the field
C(x, α, β, y, y′

√

y(y − 1)(y − x)) :

Hα,β =
y′β

√

y(y − 1)(y − x)

+

∫

(α +
β

2(y − x)
)

dy
√

y(y − 1)(y − x)
− βy(y − 1)

2x(1 − x)(y − x)

dx
√

y(y − 1)(y − x)
.

The transversally affine structure is given by a sequence of 1-forms. It is derived from two
first integrals H1 = Hα1,β1

and H2 = Hα2,β2
with α1,2 and β1,2 the entries of a fundamental

solution F of the PF ’s adjoint equation. The derivatives give

dHi = L1
i θ1 + L2

i θ2

where the θ’s are the 1-forms given by the Hamiltonian form of PP6. By construction, H1

and H2 are linear in α1,2 and β1,2 and the matrix L equals (
√

y(y − 1)(y − x))−1MF for
a matrix M with entries in C(x, y, y′).

The matrix F satisfies a linear equation dF = FΩ, Ω a matrix of 1-forms with co-
efficients in C(x, y, y′). This implies that dL = LΩ with Ω = −(1/2)(1/y + 1/(y − 1) +
1/(y − x))dyId+ dMM−1 + MΩM−1, Id is the identity matrix. Because dΩ = 0, one gets
dΩ = Ω ∧ Ω. The 1-forms θ1,2 and the coefficients θ1,2

1,2 of Ω give the transversally affine
structure.
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