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The purpose of these notes is to give a another Galoisian proof of

Theorem [A. Khovanskii, J. Dyn. and Con. Systems 1 99–132 (1995)]
Let f : Cn → C be a Liouvillian function then its closed monodromy group is almost solvable

in the sense that it admits a normal tower with finite or commutative quotients.

Actually Khovanskii’s proof has a Galoisian nature quoting Khovanskii it is proved using “one dimensional
topological Galois theory”. We want to give a more algebraic proof using the so called Godbillon-Vey sequences
for codimension q foliations. This is a “technology free” way to speak about the Galois pseudogroup of a
foliation. After some preparation, the problem is to prove that subgroup of solvable pseudogroups are solvable.
Using usual definition of solvability for pseudogroup this is wrong. The first part of this notes is devoted
to definitions of solvability and infinitesimal solvability for pseudogroups, examples, counterexamples and
comparaison of definitions. The second one deals with Liouvillian first integrals and Liouvillian solutions of
ordinary differential equations. As an application, we give the proof of Khovanskii’s theorem for the monodromy
itself which was the original motivation.

1 Solvability of algebraic pseudogroups

Roughly speaking an algebraic pseudogroup is a pseudogroup of transformations of an smooth algebraic variety
X over C defined by algebraic partial differential equations. But the reader can easily find three different
definitions of pseudogroup of transformation in the litterature. The difference is about how you can glue
transformations when domains are not connexe.

Example 1 Let’s have a look at the pseudogroup of transformations of the affine line generated by translations
without restriction on the gluing property. Because restriction and gluing of elements of a pseudogroup must
belong to the pseudogroup, one gets to much elements in this pseudogroup. For any permutation σ of Z one
gets a transformation ϕ : U → U from a neighborhood of Z to itself realising σ. This pseudogroup contains a
group that can not be said to be commutative.

Here is a more natural example. This kind of situation can not be prevent by any “honest” definition and
justifies the need of almost commutativity instead of commutativity.

Example 2 Let π : Y → X be a covering of a Riemann surface, ω a meromorphic 1-form on X and % its
pull back on Y . Locally, the pseudogroup of transformation of Y preserving % look like the previous example.
Even if one does not use the gluing property, it contains all the group of deck transformations of the covering.
In general, it is not a commutative group.

Usually this problem is eliminated by changing definition of commutativity in an infinitesimal way. In this
part we want to distinguish the first (artificial) example from the second (natural) one. To avoid problems, we
will work in the C-analytic category and take the following definitions.

Definition 1 The determinations at b ∈ X of a germ of transformation of X ϕ at a ∈ X are the transforma-
tions obtained by analytic continuations of ϕ along any pathes from a to b. This set is denoted by D(ϕ, b), it
can be empty.

Two germs of transformations ϕ at a and ψ at b are said to be compatible if ψ ∈ D(ϕ, b). A transformation
ϕ is said to be compatible (with itself) if every couples of germs ϕa, ϕb obtained from ϕ are compatible.
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Definition 2 A pseudogroup of transformation of X is a set PG of local transformation ϕ : U = d(ϕ) → V =
r(ϕ) such that

– the restriction of a transformation ϕ of PG to a open subset of its domain d(ϕ) is in PG;
– if φ ∈ PG and ϕ ∈ PG and r(ϕ) = d(ψ) then ψ ◦ ϕ is in PG;
– if φ ∈ PG then ϕ is invertible and ϕ◦−1 is in PG;
– every ϕ in PG is compatible;
– every ϕ with a determination in PG is in PG.

Definition 3 A subgroup G of a transformation pseudogroup PG is a group of composable transformations or
composable germs of transformations.

Remark 4 All subgroups of the first example are commutative but the second example has noncommutative
subgroups.

An algebraic pseudogroup is a pseudogroup defined by partial differential equations like the second exam-
ple. For a rigourous definition the reader may have a look to [B.Malgrange, monog. 38 vol 2 de L’enseignement

mathématique 465–501 (2001)].

Definition 5 An algebraic pseudogroup PG on X is a set of local diffeomorphisms ϕ defined by some algebraic
partial differential equations Ei ∈ C(x,ϕ)[ϕα] = C(x1, . . . , xn, ϕ1, . . . ,ϕn)

[
ϕα

i | 1 ≤ i ≤ n, α ∈ Nn
]
:

{ϕ : U → V
∣∣ Ei(x,ϕ(x), ϕα(x)) = 0 ; i = 1, . . . ,m}

such that

1. Ei(ϕ ◦ ψ) =
∑

cj
iEj(ϕ) + dk

i Ek(ψ),
where c’s and d’s are in C(x,ϕ,ψ)[ϕα, ψα, Dx

Dϕ , Dx
Dψ ].

2. Ei(idU ) = 0 for all identities maps idU : U → U ,

3. Ei(ϕ−1) =
∑

ej
iEj(ϕ),

where e′s are in C(x,ϕ)[ϕα, Dx
Dϕ ]

Such an pseudogroup has a Lie algebra :

Definition 6 Let PG be an algebraic pseudogroup on X with equations Ei, i = 1 . . . m. Its Lie algebra is the
sheaf LPG of local analytic vector fields )a =

∑
aj(x) ∂

∂xj
on U such that

LEi()a) :=
∑ ∂Ei

∂ϕα
j

(idU )aα
j = 0 for all i = 1 . . . m.

Proposition 7 The sheaf LPG is a sheaf of Lie algebra for the usual Lie bracket of vector fields.

Definition 8 An algebraic pseudogroup PG is said to be inf-solvable (infinitesimally solvable) if its Lie algebra
is a (sheaf of) solvable Lie algebra.

Definition 9 A solvable coparallelism of X is given by n 1-forms ω• : ω1, . . . ,ωn such that dωi = 0 mod ω1, . . . ,ωi−1.
It is called exactly solvable if ωi is relatively exact (there is a rational function hi such that ωi = dhi

mod ω1, . . . ,ωi−1) or exponentially relatively exact (there is a rational function hi such that ωi = dhi/hi

mod ω1, . . . ,ωi−1).

Theorem 10 Let ω• be a solvable coparallelism on X.
– The algebraic pseudogroup PG(ω•) defined by

ϕ∗( ∧

j=1...i

ωj
)

=
∧

j=1...i

ωj for i = 1 . . . n

is infinitesimally solvable.
– If ω• is exactly solvable then subgroups of PG(ω•) are almost solvable.

Remark 11 All inf-solvable pseudogroups are not given directly by this kind of equation but after suitable
prolongation. See [É.Cartan (1905)].
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Proof. – The proof of the first part is a local analytic version of the proof of the second part. Let
G ⊂ PG(ω•) be a subgroup of the pseudogroup defined by a exactly solvable coparallelism on X.

Let h1 be a primitive of ω1. For each ϕ ∈ PG(ω•), one gets a constant cϕ by the equality h1 ◦ ϕ = ϕ + cϕ.
The map ϕ '→ cϕ is a morphism of pseudogroup onto the “pseudogroup” Inv(dx) on C. The restriction of this
morphism on G gives a morphism of group m1 from G to (C,+) whose kernel is denoted by G1.

Now considere X as a variety over the affine line with coordinate ring C[h1]. The relative differential is
denoted by d/. Because ω2 is exact modulo dh1, one gets a rational function h2 on X such that d/h2 = ω2. Take
a ϕ ∈ PG(ω•)∩Inv(h1). Because differentials of h2 and h2◦ϕ are equal modulo dh1, one gets h2◦ϕ = h2+cϕ(h1)
for an analytic function cϕ. This gives a morphism m2 of pseudogroup from PG(ω•)∩Inv(h1) to the “additive”
pseudogroup of analytic functions on the affine line. This morphism maps G1 on a commutative group. By
induction one gets a sequence

Gn ⊂ . . . ⊂ G1 ⊂ G

with Gi/Gi−1 commutative and Gn finite. !

2 Khovanskii’s theorem

Definition 12 Let C(x1, . . . , xn) be the partial differential field of rational functions of n arguments with
derivations ∂x1 . . . ∂xn and K be a differential extension of C(x1, . . . , xn). It is said to be Liouvillian if one can
find a tower of differential extensions

C(x1, . . . , xn) = K0 ⊂ K1 . . . ⊂ Kp = K

such that Ki ⊂ Ki+1 is one of the following
– algebraic,
– additive Ki+1 = Ki(G) with ∂xiG ∈ Ki,
– mutiplicative Ki+1 = Ki(G) with ∂xiG

G ∈ Ki.
Liouvillian functions are elements of Liouvillian extensions.

Let X be a model for a field L i.e. C(X) = L. If this field is differential with derivations ∂x1 . . . ∂xn then
X is endowed with a dimension n foliation generated by these derivations.

Lemma 13 The foliation of a Liouvillian extension of C(x1, . . . xn) of transcendence degree q is defined by
a solvable family of q 1-form. Restriction of this family to a transverse xi = ci gives a exactly solvable
coparallelism.

Proof. – The construction of these forms is direct from the definition of Liouvillian extension. Let
-1, . . . , -q be a transcendence basis given by the definition then

∂xi =
∂

∂xi
+

∑
ri,j(x1 . . . xn, -1 . . . -j−1)∂&j

where ∂&j stands for ∂
∂&j

in the additive case and -j
∂

∂&j
in the multiplicative case. The forms are θi = d-j −

∑
ri,jdxi in additive cases or θi = d&j

&j
−

∑
ri,jdxi in multiplicative cases. Their restriction to the transverse

are exact forms or exponentially exact forms. They form a special type of exactly solvable coparallelism but
as we will see in the 2◦) of the proof of theorem 14, only exact solvability in relevant.

!

Theorem 14 The monodromy Mon(f) of a Liouvillian function f is almost solvable.

Proof. – Let L be a Liouvillian differential field extension of K = C(x1, . . . xn) containing f .

1◦) Geometry of L – Let X be an affine variety over C such that C(X) = L. The vector fields ∂
∂x1

. . . ∂
∂xn

define a (singular) foliation F on X. By constrution, this foliation can be defined by a very special family of
1-form θ• : θ1, . . . θk where k is the number of really differential (= non-algebraic) extension involved in the
“Liouvillianity” of L. These forms satisfy the solvability property :

“θi is closed modulo θ1, . . . θi−1”.
From the inclusion of K in L, one gets a rational map π : X ""# Cn transversal to F . The forms θ• give
rational solvable coparallelisms on fibers of π.
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2◦) Holonomy of L/K – The forms θ• define a transversal geometric structure on (X,F). The isometries
pseudogroup of this structure, is PG(θ•). If )a is a vector field tangent to F then from d

( ∧
j=1...i

ωj
)

= 0 and

ι%a
( ∧
j=1...i

ωj
)

= 0 on gets L%a

( ∧
j=1...i

ωj
)

= 0 so its flows belong to PG(θ•).

Let Hol(F) be the holonomy pseudogroup of F computed on a generic fiber T of π. Because holonomy
maps are built from flows of tangent vector fields, one gets Hol(F) ⊂ PG(θ•)

∣∣
T

= PG(θ•
∣∣
T
).

3◦) Monodromy of f – By definition f is a rational function in the coordinates of a leaf L of F and its
monodromy group is a quotient of the monodromy group of L. This group is the subgroup of permutation of
L ∩ T generated by regular π-preimages of loops on Cn pointing at π(T ), thus Mon(L) ⊂ Hol(F ) ⊂ PG(θ•

∣∣
T
)

as pseudogroups on T . Remark that Mon(L) is not a priori a transformation group on T but on T ∩ L. One
can use the holonomies along pathes involved in definition of an element of Mon(L) to realize this group as a
subgroup of Diff(T, T ∩L)∩PG(θ•

∣∣
T
). The theorem 10 can be applied to prove almost solvability of Mon(L).

Because Mon(f) is a quotient of Mon(L), it is almost solvable too.
!
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