Local irreducibility of the first Painlevé equation

Guy Casale

Abstract

In this article the local irreducibility of the first Painlevé equation $(P_1 : y'' = 6y^2 + x)$ is investigated. The notion of irreducibility used concern the reducibility of the general solution following Painlevé-Nishioka-Umemura [22, 21, 28]. By local, we mean irreducibility over any ordinary differential extension K of $\mathbb{C}(x)$ of finite type. Such a field may contain any finite set of solutions of the equation.

The main tool used is the Galois groupoid of P_1 over K along lines given in [19, 6]. In order to adapt the previous calculations to this more general framework, the degeneration of P_1 on an elliptic equation is replaced by the use of weight on the dependent variables following H. Umemura [28]. The result can be interpreted as follows. The knowledge of any finite set of solutions of P_1 does not give any differential-algebraic informations about the dependency of the general solution on the integrating constants.

Contents

1	The	e Galois groupoid of a foliation	1
	1.1	\mathcal{D} -variety over L	1
	1.2	\mathcal{D} -linear space over L	2
	1.3	\mathcal{D} -Lie groupoid over L	2
	1.4	Prolongation and differential invariants	3
	1.5	\mathcal{D} -Lie algebras over L	4
	1.6	The Galois groupoid	5
2	Maurer-Cartan form and Structural equation		
	2.1	Maurer-Cartan form	6
	2.2	Cartan's structural equation	6
	2.3	Godbillon-Vey sequences	7
	2.4	For codimension 2 foliation.	7
3	The	e Galois groupoid of P_1 over K	7
	3.1	Some lemmas on X_0	8
	3.2	The Galois groupoid is transitive	8
	3.3	The Galois groupoid is imprimitive in codimension one	9
	3.4	The Galois groupoid is not transversally affine	11
4	Loc	al irreducibility of P_1	14

References

14

¹ The author was supported by JSPS Fellowship for Foreign Researchers (FY2004 P4788) then by EIF Marie-Curie Fellowship (025116-Diff. Galois Theory) and project JC05_41465 of the ANR.

Address: IRMAR, Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex France E-mail address: guy.casale@univ-rennes1.fr

1 The Galois groupoid of a foliation

Let L be a differential field with commuting derivations $\partial_1, \ldots, \partial_n$. We will assume L is a finite transcendence degree extension of \mathbb{C} but we will use this assumption as less as we can. The field of constants of L is supposed to be algebraically closed and its characteritic is zero. In this article we assume this field is \mathbb{C} . Let Der(L) be the L-vector space generated by the ∂ 's and $Der^*(L)$ be its dual over L with dual base d_1, \ldots, d_n .

There is two (dual) ways to define a foliation on L. The first one is to give the equations of an involutive distribution. These equations are given by a L-subspace N of $Der^*(L)$ stable by the exterior differential $d : Der^*(L) \to \Lambda^2 Der^*(L)$ *i.e.* $dN \subset Der^*(L) \wedge N$. The second one is to give the solutions of these equations over L *i.e.* a subspace of Der(L) stable under the Lie bracket. In this article, a foliation must be thought as a particular \mathcal{D} -Lie algebra. As general \mathcal{D} -Lie algebras can have no solution over L, we will emphase the former point of view.

1.1 \mathcal{D} -variety over L

Let \mathbb{A}^m be the affine space of dimension m over L with coordinates z_1, \ldots, z_m . The space of order q jets of sections of \mathbb{A}^m over $L : J_q(\mathbb{A}^m_{/L}) = \operatorname{spec} L[J_q]$ is the variety defined by the L-algebra

$$L[J_q] = L[z_i^{\alpha} \mid 1 \le i \le m, \alpha \in \mathbb{N}^n, 1 \le |\alpha| \le q].$$

These varieties form a projective system $\pi_q^p : J_p \to J_q$ for $p \ge q$. The space of jets of sections $J(\mathbb{A}^m_{/L}) = \lim_{\to \to} J_q(\mathbb{A}^m_{/L})$ is a scheme of 'countable' type over L. The derivations of L act on L[J] by the following formulae

$$D_i : L[J_q] \to L[J_{q+1}], \quad 1 \le i \le n$$
$$D_i = \partial_i + \sum_{j,\alpha} z_j^{\alpha + \epsilon_i} \frac{\partial}{\partial z_j^{\alpha}}.$$

where ϵ_i is the multi-index $(0 \dots 0, \underbrace{1}_{ith}, 0 \dots 0))$.

Definition 1.1 An affine \mathcal{D} -variety over L is a sub-variety \mathcal{Z} of $J(\mathbb{A}^m/L)$ defined by a differential ideal (i.e. a ideal stable under the action of the D_i 's).

Example 1 Let Z be an affine variety over L in \mathbb{A}^n . Its ideal I generates a differential ideal \mathcal{I} of $L[J(\mathbb{A}^m_{/L})]$. This \mathcal{D} -variety is the space of jet of sections of Z over L denoted by $J(Z_{/L})$.

The varieties $\mathcal{Z}_q = (\pi_q^{\infty})_* \mathcal{Z}$ are defined by the order q equations defining \mathcal{Z} .

Definition 1.2 Let \mathcal{Z} be a \mathcal{D} -variety over L and $L \subset E$ be a fields extension.

- A E-point of \mathcal{Z} is a morphism $L[\mathcal{Z}] \to E$ over the inclusion.

- A differential point is given by a differential morphism in a differential field.

Remark 1 A E-point of \mathcal{Z} is a section of \mathcal{Z} over E but a \mathcal{D} -E-point is the jet of a section of \mathcal{Z}_0 over E satisfying the differential equations encoded in the \mathcal{Z}_q , q > 0.

This construction is a special case of prolongation sequences defined in differential algebraic framework by J. Johnson [14]. Johnson's construction allows us to replace $\mathbb{A}^m_{/L}$ by any *L*-algebra like $L \underset{\mathbb{C}}{\otimes} L$.

1.2 \mathcal{D} -linear space over L

Let V be a finite dimensional L-linear space. In this article V will stand both for the 'abstract' linear space and for the 'concrete' variety defined by the L-algebra $SymV^*$ of symetric powers of its dual.

Definition 1.3 A \mathcal{D} -linear space over L is a \mathcal{D} -variety \mathcal{V} over L with a linear structure :

- there is a L-linear \mathcal{D} -invariant subspace $Lin\mathcal{V} \subset L[\mathcal{V}]$ such that $L[\mathcal{V}_q] = Sym Lin\mathcal{V}_q$ its symetric powers ring,

- the actions of the ∂ 's on $Lin\mathcal{V}$ satisfy Liebniz rules.

For a L-vector space V, the set $\underline{V} = \{V(E) | E \text{ is a extension of } L\}$ is the set of 'local sections' of V on L.

1.3 \mathcal{D} -Lie groupoid over L

Let's build the space of order q jets of 'point transformations of spec L': $J_q^*(L)$ (J_q^* for short). Let $L^{(1)}$ et $L^{(2)}$ be two copies of L and $L[J_q^*]$ be the L-algebra

$$L^{(1)} \underset{\mathbb{C}}{\otimes} L^{(2)} \left[z_i^{\alpha}, \frac{1}{det(z_i^{\epsilon_j})} \mid 1 \le i \le n, \ \alpha \in \mathbb{N}^n, \ 1 \le |\alpha| \le q \right].$$

The spaces $J_q^* = \operatorname{spec} L[J_q^*]$ are groupoids over L. This groupoid structure is given by the following maps. The projections s (for *source*) on $\operatorname{spec} L^{(1)}$ and t (for *target*) on $\operatorname{spec} L^{(2)}$ are self-explained. The composition $c: (J_q^*, s) \times_L (J_q^*, t) \to J_q^*$ is defined on the order 0 jets by the inclusion of the product $L \otimes_{\mathbb{C}} L$ in $L \otimes_{\mathbb{C}} L \otimes_{\mathbb{C}} L$ in the first and third place. On higher order jets it is defined by using the formulae for composition of n formal power series of n variables. The inversion is defined by the inversion formulae for formal power series. These maps satisfy some commutative diagrams [18] (obvious in the framework of jet spaces). Moreover, one gets derivations

$$D_i: L[J_q^*] \to L[J_{q+1}^*], \quad 1 \le i \le n$$

defined by

$$D_i = \partial_i^{(1)} + \sum_j z_j^{\epsilon_i} \partial_j^{(2)} + \sum_{j,\alpha} z_j^{\alpha + \epsilon_i} \frac{\partial}{\partial z_j^{\alpha}}$$

We set $J^* = \lim_{\leftarrow} J^*_q$ with ring $L[J^*] = \lim_{\rightarrow} L[J^*_q]$. This space is a scheme of 'countable' type with a structure of groupoid over L and a structure of \mathcal{D} -variety over $L^{(1)}$.

Definition 1.4 A \mathcal{D} -Lie groupoid over L is a subgroupoid of J^* defined by a perfect differential ideal.

Remark 2 The hypothesis 'perfect' is not relevant. By a theorem of B.Malgrange, every non-reduced \mathcal{D} -Lie groupoid is in fact reduced. This is proved in the analytic framework in [19].

Example 2 The \mathcal{D} -Lie groupoid defined by the ideal (0), i.e. J^* itself, is called the groupoid of point transformations over L on \mathbb{C} . Sometimes, it will be denoted by $Aut(L/\mathbb{C})$.

1.4 Prolongation and differential invariants

Definition 1.5 The space of order q frame on $\operatorname{spec} L$ is $J_q^*(\widehat{\mathbb{C}^n, 0} \to \operatorname{spec} L)$ or R_q for short. It is defined by the L-algebra

$$L[R_q] = L\left[r_i^{\alpha}, \frac{1}{det(r_i^{\epsilon_j})} \ ; \ 1 \le i \le n, \ \alpha \in \mathbb{N}^n, \ 1 \le |\alpha| \le k\right].$$

This space is a principal homogeneous space over L with structural group the linear algebraic group $\Gamma_q(\mathbb{C}^n) = J_q^*(\widehat{\mathbb{C}^n, 0} \to \widehat{\mathbb{C}^n, 0})$ acting by source composition.

Definition 1.6 Let E be a differential extension of L and $v = \sum v_i \partial_i \in E \bigotimes_L Der(L)$. One defines the prolongation of v on R_q by

$$R_q v = v + \sum_{\substack{i,\alpha\\ |\alpha| \le q}} D^{\alpha} v_i \frac{\partial}{\partial r_i^{\alpha}}$$

This prolongation is $\Gamma_q(\mathbb{C}^n)$ -invariant and compatible with the Lie bracket. This allows us to prolong any Lie algebra of vector fields.

Lemma 1.7 Let $N \subset Der^*(L)$ be the equations of a foliation over L. The equations of the prolongation of the foliation is the $L[R_q]$ ideal $R_qN \subset T^*R_q = Der^*(L) \bigoplus_r T^*(R_q/L)$ generated by

$$\omega^{\alpha} = \sum_{\beta_1 + \beta_2 = \alpha} \begin{pmatrix} \alpha \\ \beta_1 \end{pmatrix} D^{\beta_1} \omega_i \ dr_i^{\beta_2}$$

with $\omega = \sum \omega_i d_i \in N$, $dr_i^0 = d_i$

Definition 1.8 Let $N \subset Der^*(L)$ be the equations of a foliation on L. Rational differential invariants of N (or of \mathcal{F}_N : the foliation described by N) are the invariants (i.e. rational first integrals) of R_qN in $L(R_q)$.

1.5 \mathcal{D} -Lie algebras over L

Some notations – Let $SDer^*(L) = L[a_1, \ldots, a_n]$ be the symetric powers ring of the vector space of differentials of L. The space $T_L = \operatorname{spec} SDer^*(L)$ is the tangent space of L. For an extension E of L, $T_L(E)$ is the space of E-point of T_L . The space of order q jets of sections of T_L over L, $J_q(T_{L/L})$ ($J_q T$ for short), is defined by the following ring:

$$L[J_q T] = L[a_i^{\alpha}; 1 \le i \le n, \ \alpha \in \mathbb{N}^n, \ 0 \le |\alpha| \le q].$$

The space JT and its ring is defined by taking limits. Its ring L[JT] is a \mathcal{D} -algebra, the derivation Der(L) of L act on it by

$$D_i = \partial_i + \sum_{j,\alpha} a_j^{\alpha + \epsilon_i} \frac{\partial}{\partial a_j^{\alpha}}.$$

It is a \mathcal{D} -vector space: the linear stucture is given by the *L*-vector space of linear partial differential equations $LinJT \subset L[JT]$, *i.e.* the differential *L*-vector space generated by $Der^*(L)$.

The Lie bracket on the vector fields over L with coefficients in E defines a Lie bracket on the space $JT_L(\mathcal{D}-E)$ of differential E-points.

Temporary definition 1.9 A \mathcal{D} -Lie algebra over L is a sub- \mathcal{D} -vector space \mathcal{L} of JT such that the differential points of \mathcal{L} are stable under Lie bracket.

A less 'differential' definition will be given following B.Malgrange [19]. This definition will use a prolongation of the Lie bracket on \underline{JT} called the Spencer bracket and the stability condition will be on the 'ordinary' points of the jet space.

1.5.1 Brackets on \underline{JT}

There is two brackets defined on $J_q T$. The first bracket is defined on $J_q T$ and takes values in $J_q T$. It is called Spencer bracket. It allows us to named $J_q T$ a Lie algebroid [18]. The second one is defined on fibers of $J_q T$ and takes values in $J_{q-1}T$. It is called the fiberwise bracket. By duality each bracket defines a differential on the system of dual vector spaces.

Spencer bracket – The construction of this bracket (denoted by [.,.]) follows the diagonal method [16, 19]. Let $R_q^{(1)}$ et $R_q^{(2)}$ be two copies of R_q

$$\lambda: R_q^{(1)} \times R_q^{(2)} \to J_q^*$$

defined for couples (r, s) of q frames by $r \circ s^{-1}$ and the morphism of ring induced. This map is the quotient by the diagonal action of $\Gamma_q(\mathbb{C}^n)$ by source composition. The tangent of λ :

$$T\lambda: T(R_q^{(1)} \times R_q^{(2)})_{/R_q^{(1)}} \to TJ_{q/L^{(1)}}^*$$

identifies vector fields on $R_q^{(1)} \times R_q^{(2)}$ in the kernel of the first projection and invariant under the action of $\Gamma_q(\mathbb{C}^n)$ and vector fields on J_q^* in the kernel of the *source*.

Because the constructions of the 'vertical' tangent and the jet space commute, one have

$$T(J_{q/L^{(1)}}^*)|_{id} \sim J_q T.$$

From an other side, the identification of TR_q with $T(R_q^{(1)} \times R_q^{(2)})_{/R_q^{(1)}}|_{diag}$ is equivariant under the action of $\Gamma_q(\mathbb{C}^n)$. From these identifications, one gets $\underline{\lambda}: TR_q \to J_q T$; it is the quotient by $\Gamma_q(\mathbb{C}^n)$.

Definition 1.10 The Spencer bracket on sections of $J_q T$ is the bracket induced by the Lie bracket on R_q .

By duality, this bracket gives a differential on $Lin J_q T$.

Fiberwise bracket – This bracket (denoted by $\{., .\}$) is defined by the formulae giving $j_{q-1}[X, Y]$ in terms of $j_q X$ et $j_q Y$ for two vector fields on \mathbb{C}^n .

There are several formulae which characterized the Spencer bracket. The relation between the two brackets is the following

$$[fj_{q}u, gj_{q}v] = fg\{j_{q}u, j_{q}v\} + f L_{u}(g) j_{q}v - g L_{v}(f) j_{q}u$$

with f et g in $E \supset L$, u and v are any E-point of $T_{/L}$, $j_q u$ stands for the corresponding E-point of $J_q T$ and L_u is the Lie derivative along u.

1.5.2 \mathcal{D} -Lie algebra over L

Definition 1.11 A \mathcal{D} -Lie algebra over L is a sub- \mathcal{D} -vector space \mathcal{L} of JT such that the points of \mathcal{L} are stable under Spencer bracket.

As in the differential case, the \mathcal{D} -Lie algebra of a \mathcal{D} -Lie groupoid is defined by the vertical tangent along the identity [18].

Theorem 1.12 ([19]) Let \mathcal{Z} be a \mathcal{D} -Lie groupoid over L. After identification $J_q T \sim T J_{q/L^{(1)}}^*|_{id}$, the \mathcal{D} -vector space $T \mathcal{Z}_{/L^{(1)}}|_{id}$ is a \mathcal{D} -Lie algebra over L.

Foliations over L are special \mathcal{D} -Lie-algebra. Here is the definition used in this article.

Remark 3 A foliation \mathcal{F} is a \mathcal{D} -Lie-algebra differentially defined by $\mathcal{F}_0 \subset J_0T$.

1.6 The Galois groupoid

As for algebraic Lie groups and Lie algebras, the main problem for dealing with \mathcal{D} -Lie groupoids and \mathcal{D} -Lie algebras is the lack of *Lie third theorem*. In general a \mathcal{D} -Lie algebra over *L* is not the algebra of a \mathcal{D} -Lie groupoid over *L*.

Definition 1.13 Let \mathcal{L} be a \mathcal{D} -Lie algebra over L. The smallest \mathcal{D} -Lie groupoid over L whose \mathcal{D} -Lie algebra contains \mathcal{L} is the \mathcal{D} -envelope of \mathcal{L} .

When \mathcal{L} is the \mathcal{D} -Lie algebra of a \mathcal{D} -Lie groupoid over L, it is called integrable over L.

As foliations are particular \mathcal{D} -Lie-algebras, one sets the following definition.

Definition 1.14 Let \mathcal{F} be a foliation over L. Its \mathcal{D} -envelope is called the Galois groupoid of \mathcal{F} over L.

This definition generalizes the definition of the differential Galois group of Picard-Vessiot theory. If \mathcal{L} is the \mathcal{D} -Lie-algebra of the Galois groupoid of \mathcal{F} , \mathcal{F} is an ideal of \mathcal{L} . The transversal Lie algebroid \mathcal{L}/\mathcal{F} measures the lack on integrability.

The proof of the existence of such a minimal groupoid is done using Noetherianity properties. That the reason of the hypothese 'L is finite type field over \mathbb{C} '.

2 Maurer-Cartan form and Structural equation

2.1 Maurer-Cartan form

The groupoid J_q^* acts on itself by *target* composition. Let $L^{(1)}$, $L^{(2)}$ be the *source* and *target* of a first copy of $J_q^{*(1)}$ and $L^{(2)}$, $L^{(3)}$ be the *source* and *target* of a second copy, $J_q^{*(2)}$. The action of the second jet space on the first one is given by the following map :

$$J_q^{*(1)} \times_{L^{(2)}} J_q^{*(2)} \to J_q^{*(1)}.$$

The tangent gives $TJ_{q/L^{(1)}}^{*(1)} \times_{T_{L^{(2)}}} TJ_{q}^{*(2)} \to TJ_{q/L^{(1)}}^{*(1)}$. Thanks to the connection given by J_1 , one gets a morphism $T_{L^{(2)}} \times_{L^{(2)}} J_1(J_{q/L^{(2)}}^{*(2)}) \to TJ_q^{*(2)}$. These morphisms, the inclusion of $J_{q+1}^{*}{}^{(2)} \to J_1(J_{q/L^{(2)}}^{*(2)})$ and the trivial identification $TJ_{q/L^{(1)}}^{*(1)} \sim TJ_{q/L^{(1)}}^{*(1)} \times_{T_{L^{(2)}}} T_{L^{(2)}}$ give

$$TJ_{q/L^{(1)}}^{*(1)} \times_{L^{(2)}} J_{q+1}^{*(2)} \to TJ_{q/L^{(1)}}^{*(1)}$$

By restriction of this morphism on the vertical tangent of $J_q^{*(1)}$ along the identity (on which $L^{(1)} = L^{(2)}$), one gets an isomorphism $J_q T \times_L J_{q+1}^* \to T J_{q/L}^* \times_{J_q^*} J_{q+1}^*$ which induces a form Θ on the pull back of the vertical tangent of $T J_{q/L}^*$ on J_{q+1}^* with values in $J_q T$. By associativity this form is invariant under the action of J_{q+1}^* by target composition. By construction it is compatible with (fiberwise) Lie bracket.

Definition 2.1 The form $\Theta: TJ_{q/L}^* \times_{J_q^*} J_{q+1}^* \to J_qT$ is the order q (fiberwise) Maurer-Cartan form of J^* .

The (fiberwise) Maurer-Cartan form is the limit $\Theta : \widetilde{T}J^*_{/L} \to JT$ where \widetilde{T} stand for the shifted tangent.

Definition 2.2 Let \mathcal{Z} be a \mathcal{D} -Lie groupoid with \mathcal{D} -Lie algebra $\mathcal{L}(\mathcal{Z})$. The restriction of Θ on \mathcal{Z} takes values in $\mathcal{L}(\mathcal{Z})$. It is the (fiberwise) Maurer-Cartan form of \mathcal{Z} .

In the special case of a Galois groupoid \mathcal{Z} of a foliation \mathcal{F} , one defines the transversal (fiberwise) Maurer-Cartan form in the following way. The foliation is a ideal of $\mathcal{L}(\mathcal{Z})$ one can get the quotient and

$$\Theta_{\mathcal{Z}}: T\mathcal{Z}_{/L} \to \mathcal{L}(\mathcal{Z})/\mathcal{F}$$

is the transversal Maurer-Cartan form.

```
To give the definition of 'non-fiberwise' Maurer-Cartan form ??
```

2.2 Cartan's structural equation

Let $\widetilde{\Theta} : \widetilde{T}J_{q+1/L}^* \to J_{q-1}T$ be the order q Maurer-Cartan form followed by the projection. The fiberwise structural equation is (see [12] for a proof)

$$d\widetilde{\Theta} = \frac{1}{2} \{ \widetilde{\Theta} \land \widetilde{\Theta} \}$$

where d is the relative differential over L. In the special case of a Galois groupoid \mathcal{Z} of a foliation \mathcal{F} , the transversal structural equation

$$d\widetilde{\Theta}_{\mathcal{Z}} = \frac{1}{2} \{ \widetilde{\Theta}_{\mathcal{Z}} \wedge \widetilde{\Theta}_{\mathcal{Z}} \}$$

is satisfied by the transversal Maurer-Cartan form.

To give the 'non-fiberwise' structural equations ??

2.3 Godbillon-Vey sequences

In order to define Godbillon-Vey sequences, one will assume that $L = \mathbb{C}(V)$ for some (pro)variety. Let \mathcal{Z} be a groupoid containing the Galois groupoid of \mathcal{F} and

$$s: \operatorname{spec}\left(L^{(1)} \otimes L^{(2)}\right) \to \mathcal{Z}$$

be a section over $\operatorname{\mathsf{spec}} L^{(1)}$. Then by pull-back on gets a $L^{(1)}\text{-linear}$ map

$$s^* \widetilde{\Theta}_{\mathcal{Z}} : L^{(1)} \otimes Der(L^{(2)}) \to \mathcal{L}(\mathcal{Z})/\mathcal{F}$$

By using a point of V, it can be specialized on \mathbb{C} and one gets

$$GV: Der(L^{(2)}) \to \left(\mathcal{L}(\mathcal{Z})/\mathcal{F}\right)\Big|_{v}.$$

A direct computation shows that $(\mathcal{L}(\mathcal{Z})/\mathcal{F})|_v$ is isomorphic to a sub-Lie-algebra $\widehat{\mathfrak{g}} \subset \widehat{\chi}^d$ of formal vector fields in $d = codim\mathcal{F}$ variables.

By construction $dGV = GV \wedge GV$, first integrals of $\widehat{\mathfrak{g}}_0$ give first integrals of \mathcal{Z} and the projection of GV onto $\widehat{\mathfrak{g}}_0 \subset \mathbb{C}^d$ gives d-(number of independent first integrals) 1-forms defining \mathcal{F} .

By choosing a basis of first integrals and a basis of $\hat{\mathfrak{g}}_0$ over \mathbb{C} one gets a sequence of 1-forms in $Der^*(L)$ called a Godbillon-Vey sequence for \mathcal{F} given by \mathcal{Z} and s.

2.4 For codimension 2 foliation.

By choosing for all order q a base of sections of $\mathcal{L}(\mathcal{Z})/\mathcal{F}$ over $L^{(1)}$, the transversal Maurer-Cartan form gives rise to a family of form in $\Omega^1_{\mathcal{Z}/L^{(1)}}$ satisfying coordinate version of the structural equation. Such families of forms are classified in [3] in the case of codimension 2 foliations by combinatorial arguments (see also [6]). The main consequence of this classification used in this paper is the following theorem

Theorem 2.3 If \mathcal{F} is defined by a closed 2-form $\gamma \in \Lambda^2 Der^*(L)$ then at least one of the following situation occurs

- the Galois groupoid of \mathcal{F} is intransitive: there is a first integral in L;
- the Galois groupoid is imprimive in codimension one: there is a form $\omega \subset Der^*(L)$ such that $\omega \wedge d\omega = 0$ and $\omega = 0$ on \mathcal{F} .

• the Galois groupoid is transversally affine: there are an algebraic extension \widetilde{L} of L, two 1-forms θ_1 and θ_2 in $\widetilde{L} \otimes Der^*(L)$ vanishing on \mathcal{F} and three 1-forms $\omega_{1,1}, \omega_{1,2}, \omega_{2,1}$ in $\widetilde{L} \otimes Der^*(L)$ such that

$$d\begin{pmatrix}\theta_1\\\theta_2\end{pmatrix} = \begin{pmatrix}\omega_{1,1} & \omega_{1,2}\\\omega_{2,1} & -\omega_{1,1}\end{pmatrix} \land \begin{pmatrix}\theta_1\\\theta_2\end{pmatrix}, \quad d\begin{pmatrix}\omega_{1,1} & \omega_{1,2}\\\omega_{2,1} & -\omega_{1,1}\end{pmatrix} = \begin{pmatrix}\omega_{1,1} & \omega_{1,2}\\\omega_{2,1} & -\omega_{1,1}\end{pmatrix} \land \begin{pmatrix}\omega_{1,1} & \omega_{1,2}\\\omega_{2,1} & -\omega_{1,1}\end{pmatrix}$$

• the Galois groupoid of \mathcal{F} is the groupoid of invariance of γ .

3 The Galois groupoid of P_1 over K

The theorem 2.3 will be used to compute the Galois groupoid of the first Painlevé equation: $y'' = 6y^2 + x$ over any ordinary differential extension K on $\mathbb{C}(x)$. The derivations is denoted by $\frac{\partial}{\partial x}$. The vector field over K(y, y') defining the first Painlevé equation is

$$X_1 = \frac{\partial}{\partial x} + y'\frac{\partial}{\partial y} + (6y^2 + x)\frac{\partial}{\partial y'}$$

Its foliation \mathcal{F}_1 is defined by the closed 2-form

$$\gamma = dy \wedge dy' - y'dx \wedge dy' + (6y^2 + x)dx \wedge dy.$$

Theorem 3.1 For any differential extension K of $\mathbb{C}(x)$ of finite type, the Galois groupoid of \mathcal{F}_1 over L = K(y, y') is the groupoid of invariance of γ .

In order to study the properties of the vector field X_1 , weight on variables are introduced following [28]. The elements of K have weight 0. The variables y and y' have respectively weights wy = 2 and wy' = 3. The degree induced by this weight will be denoted by δ_w . The vector field has a decomposition $X_1 = \frac{\partial}{\partial x} + X_0 + x \frac{\partial}{\partial y'}$ into homogeneous composants of weights 0, 1 and -3. The 'simplified' vector field

$$X_0 = y'\frac{\partial}{\partial y} + 6y^2\frac{\partial}{\partial y'}$$

comes from the Hamiltonian $u = y'^2 - 4y^3$ on \mathbb{C}^2 . For this reason it is easier to study X_1 by mean of X_0 .

3.1 Some lemmas on X_0

The missing proofs of the following lemmas can be found in [28].

Lemma 3.2 If R is a homogeneous first integral of X_0 in K[y, y'] then $R = a u^p$ with $a \in K$.

Lemma 3.3 If R is homogeneous and satisfies $X_0R = a u^p$ for some $a \in K$ then R = a = 0.

Lemma 3.4 If R is homogeneous and $X_0R = ay$ with $a \in K$ then R = a = 0.

Lemma 3.5 The equation $X_0R = \frac{a}{y'^2} + b$, with a and b in K(u) has a solution if and only if $a = \frac{3}{2}c u$ et $b = -\frac{1}{2}c$ with $c \in K$. In this case, the homogeneous solution is $R = c\frac{y}{y'}$.

Proof. – Set $R = \frac{2}{3} \frac{a}{u} \frac{y}{y'} + R_0$ then $X_0 R = \frac{a}{y'^2} - \frac{1}{3} \frac{a}{u} + X_0 R_0$. Lemma 3.3 asserts that $X_0 R_0 = b + \frac{1}{3} \frac{a}{u}$ has no non zero solution.

Lemma 3.6 The equation $X_0R = y\left(\frac{a}{y'^2} + b\right)$, with a and b in K(u) has a solution if and only if a = 3ub. In this case, the homogeneous solution is $R = 2b\frac{y^2}{y'}$.

Proof. – Let R be such a rational function and write $R = 2b\frac{y^2}{y'} + (a - 3bu)R_0$ then $X_0R_0 = \frac{y}{y'^2}$. In coordinates y, u, R_0 is equal to $A + \sqrt{4y^3 + uB}$ with A and B in K(y) and the equation is

$$\frac{\partial A}{\partial y} = 0$$
 and $(4y^3 + u)\frac{\partial B}{\partial y} + 6y^2B = \frac{y}{4y^3 + u}$

Then A is in K(u) and B can be written $B = \frac{P}{(4y^3+u)^m}$ for a $P \in K(u)[y]$ of degree n and some integer m. A direct computation shows thant m must be 1 and n can not be integer. This proves the lemma.

3.2 The Galois groupoid is transitive

Proposition 3.7 There is no first integral of X_1 in K[y, y']

Proof. – Let $R = \sum_{h=m}^{M} R_h$ be the decomposition of R in homogeneous composantes with $R_M \neq 0$. The equation

$$X_1 R = \sum_{h=m-3}^{M} \frac{\partial R_{h+1}}{\partial x} + X_0 R_h + x \frac{\partial R_{h+3}}{\partial y} = 0$$

implies $\frac{\partial R_{h+1}}{\partial x} + X_0 R_h + x \frac{\partial R_{h+3}}{\partial y} = 0, \forall h \in \{m-3, \dots, M\}.$

• h = M. The equation is $X_0 R_M = 0$. By lemma 3.2, $R_M = a \ u^k$ with $a \in K$ and M = 6k.

• h = M - 1. The equation is $X_0 R_{M-1} = -a' u^k$. By lemma 3.3, $R_{M-1} = a' = 0$.

- h = M 2 and M 3. The equation is $X_0 R_h = 0$. By lemma 3.2, $R_h = 0$.
- h = M 4. The equation is $X_0 R_{M-4} = -xa2k \ u^{k-1}y'$. By lemma 3.2, $R_{M-4} = -xa2k \ u^{k-1}y$.

• h = M - 5. The equation is $X_0 R_{M-5} = a_2 k \ u^{k-1} y$. By lemma 3.4, $R_{M-5} = a = 0$.

This gives a contradiction and proves the proposition.

Corollary 3.8 There is no invariant divisor for X_1

Proof. – Suppose that there exist P and L in K[y, y'] for K a differential extension of $\mathbb{C}(x)$ such that $X_1P = LP$. Because $\delta_w(X_1P) \leq \delta_wP + 1$, one has $\delta_wL \leq 1$. But in K[y, y'] there is no weight 1 element and $L = \ell \in K$ has weight zero. Let K' be an extension of K by a solution of $e' + e\ell = 0$. One checks that eP is a first integral of X_1 in K'[y, y']. By the previous proposition, P is zero. \Box

Corollary 3.9 There is no first integral of X_1 in K(y, y')

3.3 The Galois groupoid is imprimitive in codimension one

If there is an integrable 1-form on \mathbb{C}^3 vanishing on X_1 with coefficient in K(y, y), $\omega = Adx + Bdy + Cdy'$, it can be supposed to be polynomial and the coefficients have no common divisor.

Lemma 3.10 If this form ω exists then for a extension K^* of K, there is a 1-form ω^* over $K^*[y, y']$ satisfying $i_{X_1}\omega^* = 0$ and $i_{X_1}d\omega^* = 0$.

Proof. – Let ω be such a 1-form. Because it is integrable, $d\omega = \alpha \wedge \omega$ for a 1-form α with coefficients in K(y, y'). Take the inner product with $X_1 : i_{X_1} d\omega = L\omega$ with $L = \alpha(X_1)$. Because these two 1-forms are polynomial and the coefficients of ω do not have common divisor, L must be in K[y, y']. Its degree $\delta_w L$ is strictly less than two then $L = \ell \in K$. Let $K^* = K(e)$ for a solution of $e' + e\ell = 0$ and $\omega^* = e\omega$. Then $i_{X_1} d\omega^* = 0$.

Proposition 3.11 There is no integrable 1-form over K(y, y') such that $i_{X_1}\omega = 0$ and $i_{X_1}d\omega = 0$.

Proof. – As for the proposition 3.7, computations will be decomposed following the weight. Let ω be a 1-form given by lemma 3.10. The weight decomposition is $\omega = \sum_{h=m}^{M} \omega_h$. Let's have a look to the equations satisfied by the five terms of highest weight.

• h = M. The equations are $\omega_M(X_0) = 0$ and $i_{X_0} d\omega_M = 0$. From these equations and lemma 3.2,

$$\omega_M = a_M u^p dx + b_M u^{p-1} du, a_M \text{ and } b_M \text{ in } K.$$

• h = M - 1. From the first equation $\omega_{M-1}(X_0) = -a_M u^p$, one gets

$$\omega_{M-1} = a_{M-1}dx + b_{M-1}du - \frac{a_M \ u^p}{y'}dy.$$

The second equation is $i_{X_0}d\omega_{M-1} + i_{\frac{\partial}{\partial n}}d\omega_M = 0$. Computing the terms of this sum one gets

$$- i_{X_0} d\omega_{M-1} = (X_0 a_{M-1} + a'_M u^p) dx + \left(X_0 b_{M-1} + a_M p u^{p-1} - \frac{a_M u^p}{2y'^2}\right) du,$$

$$- i_{\frac{\partial}{\partial x}} d\omega_M = (b'_M u^{p-1} - a_M p u^{p-1}) du.$$

This gives

- $X_0 a_{M-1} + a'_M u^p = 0$, by lemma 3.3, $a'_M = a_{M-1} = 0$;
- $X_0 b_{M-1} = \frac{a_m \ u^p}{2y'^2} b'_M u^{p-1}$, by lemma 3.5, $6b'_M = a_M$ and $b_{M-1} = 2b'_M \ u^{p-1} \frac{y}{y'}$.

One has

$$\omega_{M-1} = a_M \ u^{p-1} \frac{y}{3y'} du - a_M \ u^p \frac{1}{y'} dy.$$

- h = M 2 and M 3. The equations are $\omega_h(X_0) = 0$ and $i_{X_0} d\omega_h = 0$, by lemma 3.2, $\omega_h = 0$.
- h = M 4. The first equation is $\omega_{M-4}(X_0) + \omega_M(x \frac{\partial}{\partial u'}) = 0$. The fourth 1-form can be written

$$\omega_{M-4} = a_{M-4}dx + b_{M-4}du - 2b_M x \ u^{p-1}dy.$$

The second equation is $i_{X_0}d\omega_{M-4} + i_x\frac{\partial}{\partial y'}d\omega_M = 0$. One computes these two terms:

$$- i_{X_0}d\omega_{M-4} = (X_0a_{M-4} + 2y' \ u^{p-1}(b_M + xb'_M)) \ dx + (X_0b_{M-4} + 2xy' \ (p-1)u^{p-2}b_M) \ du;$$
$$- i_{x\frac{\partial}{\partial y'}}d\omega_M = (a_M 2xy' \ pu^{p-1} - b'_M 2xy' \ u^{p-1}) \ dx.$$

This gives

-
$$X_0 a_{M-4} = -2u^{p-1}y'(b_M + pa_M x);$$

-
$$X_0 b_{M-4} = -2u^{p-2}y'(p-1)xb_M$$
.

These equations are easily solved and

$$\omega_{M-4} = -2(b_M + pa_M x)yu^{p-1}dx - 2(p-1)b_M xy \ u^{p-2}du - 2b_M x \ u^{p-1}dy$$

• h = M - 5. The first equation is $\omega_{M-5}(X_0) + \omega_{M-4}(\frac{\partial}{\partial x}) + \omega_{M-1}(x\frac{\partial}{\partial y'}) = 0$. From $\omega_{M-4}(\frac{\partial}{\partial x}) = -2(b_M + pa_M x)y \ u^{p-1}$ and $\omega_{M-1}(x\frac{\partial}{\partial y'}) = \frac{2}{3}a_M xy \ u^{p-1}$, one gets

$$\omega_{M-5} = a_{M-5}dx + b_{M-5}du + \left(2b_M + (2p - \frac{2}{3})a_Mx\right)\frac{y}{y'}u^{p-1}dy.$$

The second equation is $i_{X_0}\omega_{M-5} + i_{\frac{\partial}{\partial x}}\omega_{M-4} + i_{x\frac{\partial}{\partial y'}}\omega_{M-1} = 0$ and gives $i_{\frac{\partial}{\partial x}}i_{X_0}\omega_{M-5} + i_{\frac{\partial}{\partial x}}i_{x\frac{\partial}{\partial y'}}\omega_{M-1} = 0$. This equation is equivalent to $X_0a_{M-5} = (2p - \frac{1}{3})a_Myu^{p-1}$. By lemma 3.4, $a_M = a_{M-5} = 0$ and the second equation is $X_0b_{M-5} = u^{p-2}b_My\left(2(p-1) - \frac{u}{y'^2}\right)$. This implies $b_M = 0$ by lemma 3.6 and gives a contradiction.

3.4 The Galois groupoid is not transversally affine

The aim of this section is to prove the following proposition

Proposition 3.12 There does not exist als₂-sequence for \mathcal{F}_{X_1} .

The proof will be decomposed in several lemmas.

Lemma 3.13 If there exists a asl_2 -sequence for the foliation of P_1 , there exists a polynomial one with $\theta_1 = dy - y'dx$ and $\theta_2 = dy' - (6y^2 + x)dx$.

Proof. – Let $\widetilde{\Theta}$ the vector of forms $(\widetilde{\theta}_1, \widetilde{\theta}_2)^T$ and $\widetilde{\Omega}$ be a asl_2 -sequence for P_1 with coefficients in an algebraic extension L of K(y, y'). One has $\Theta = F\widetilde{\Theta}$ for a matrix with coefficients in L. Because P_1 has no first integrals, det F must be a constant. Then Θ can be completed in a asl_2 -sequence for P_1 by the matrix $\Omega = dFF^{-1} + F\widetilde{\Omega}F^{-1}$.

Suppose that the coefficients of Ω are not in K(y, y'). One can find two matrices Ω and $\overline{\Omega}$ satisfying the asl_2 equations beginning with Θ . This implies that the \mathcal{D} -Lie groupoid of invariance of these two transversally affine stucture admits a order one equation. From E. Cartan [] (see also []), one gets a codimension one foliation vanishing on X_1 . Then section 3.3 proves that the coefficients of Ω are in K(y, y').

Let f be the equation of an irreductible component of the polar locus of Ω . Let's write $\Omega = \frac{1}{f^n}\Omega_p + \Omega_0$ with Ω_0 et Ω_p polynomial and Ω_p not divisible by f. From the asl_2 -equations, one gets $\Omega_p \wedge \Theta = 0$ and

$$\frac{-n}{f^{n+1}}\Omega_p \wedge df + \frac{1}{f^n}d\Omega_p + d\Omega_0 = \frac{1}{f^{2n}}\Omega_p \wedge \Omega_p + \frac{1}{f^n}\left(\Omega_0 \wedge \Omega_p + \Omega_p \wedge \Omega_0\right) + \Omega_0 \wedge \Omega_O.$$

The contraction by X gives

$$\frac{1}{f^n}i_Xd\Omega_p + \frac{n}{f^{n+1}}Xf\Omega^p + i_xd\Omega_0 = \frac{1}{f^n}\left(\Omega_0(X)\Omega_p - \Omega_p\Omega_0(X)\right) + \Omega_0(X)\Omega_0 - \Omega_0\Omega_0(X)$$

thus Xf is divisible by f and f is a constante.

Because

$$\begin{pmatrix} d\theta_1 \\ d\theta_2 \end{pmatrix} = \begin{pmatrix} 0 & dx \\ 12ydx & 0 \end{pmatrix} \land \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix},$$

one has

$$\Omega = A\theta_1 + B\theta_2 + \begin{pmatrix} 0 & 1\\ 12y & 0 \end{pmatrix} dx,$$

where A and B are matrices of polynomials such that $A\begin{pmatrix} 0\\1 \end{pmatrix} = B\begin{pmatrix} 1\\0 \end{pmatrix}$. Writing the equation $d\Omega = \Omega \wedge \Omega$ in the basis (dx, θ_1, θ_2) , one gets the following system of p.d.e.'s on A and B:

$$(E) \quad \begin{cases} XA + 12yB - \begin{pmatrix} 0 & 0\\ 12 & 0 \end{pmatrix} = \left[\begin{pmatrix} 0 & 1\\ 12y & 0 \end{pmatrix}, A \right] \\ XB + A = \left[\begin{pmatrix} 0 & 1\\ 12y & 0 \end{pmatrix}, A \right] \\ \frac{\partial B}{\partial y} - \frac{\partial A}{\partial y'} = [A, B] \end{cases}$$

Lemma 3.14 $\delta_w A = \delta_w B + 1$.

Proof. – This comes from the previous system of equations. From the first one, one gets $max(\delta_w A + 1, \delta_w B + 2, 0) \ge \delta_w S$ where S stand for the right hand side of the first equation from (E). If $\delta_w A + 1 \ne \delta_w B + 2$ then one gets equality. One gets also $\delta_w S \le \delta_w A + 2$. This implies $\delta_w A \ge \delta_w B$. From the second equation of (E), one gets $\delta_w A \le \delta_w B + 2$.

If $\delta_{\mathsf{w}}B = 0$ then $A = A_1y + A_0$ with A_1 and A_0 in $M_{2\times 2}(K)$. The first equation gives

$$A_{1}'y + A_{1}y' + A_{0}' + 12yB - \begin{pmatrix} 0 & 0 \\ 12 & 0 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 12 & 0 \end{pmatrix}, A_{1} \end{bmatrix} y^{2} + \left(\begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_{0} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 12 & 0 \end{pmatrix}, A_{1} \end{bmatrix} \right) y + \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_{0} \end{bmatrix}.$$
This implies

This implies

$$A_1 = 0, B = \left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_0 \right] \text{ and } A'_0 - \begin{pmatrix} 0 & 0 \\ 12 & 0 \end{pmatrix} = \left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_0 \right].$$

The second equation gives

$$B' + A_0 = \left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B \right] + y \left[\begin{pmatrix} 0 & 0 \\ 12 & 0 \end{pmatrix}, B \right].$$

This implies

$$B = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}$$
 and $A_0 = \begin{pmatrix} b & 0 \\ -b' & -b \end{pmatrix}$.

From the equality $A\begin{pmatrix} 0\\1 \end{pmatrix} = B\begin{pmatrix} 1\\0 \end{pmatrix}$, one gets b = 0 and A = 0. This is a contradiction.

In the case $\delta_{w}A = \delta_{w}B$, let A_{m} and B_{m} be the homogeneous part of weight $m = \delta_{w}A$. Taking homogeneous part of the equations (E), one gets :

$$\begin{cases} B_m = \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_m \right] \\ 0 = \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B_m \right] \\ A_m \begin{pmatrix} 0 \\ 1 \end{pmatrix} = B_m \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{cases}$$

From the second equation, one gets $B_m = \begin{pmatrix} 0 & 0 \\ b_m & 0 \end{pmatrix}$. The third one implies $A_m = \begin{pmatrix} -b_m & 0 \\ a_m & b_m \end{pmatrix}$. The first one gives the contradiction.

In the case $\delta_{\mathsf{w}}A = \delta_{\mathsf{w}}B + 2$, computation are done in the same way. The weight $\delta_{\mathsf{w}}A + 2$ equations gives $A_m = \begin{pmatrix} 0 & 0 \\ a_m & 0 \end{pmatrix}$. The weight $\delta_{\mathsf{w}}A + 1$ equations are $X_0A_m = 12y \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{m-1} \end{bmatrix}$ and $A_{m-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$. This implies $A_{m-1} = \begin{pmatrix} 0 & 0 \\ a_{m-1} & 0 \end{pmatrix}$ and $X_0a_m = 0$. Finally the weight $\delta_{\mathsf{w}}A$ equations are :

$$\begin{cases} \frac{\partial A_m}{\partial x} + X_0 A_{m-1} + 12y B_{m-2} = 12y \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{m-2} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_m \end{bmatrix} \\ A_m = 12y \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B_{m-2} \end{bmatrix} \\ 0 = [A_m, B_{m-2}] \end{cases}$$

The third equation implies $\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B_{m-2} \end{bmatrix} = 0$ then $A_m = 0$. This contradiction proves the lemma. \Box

Proof of proportion 3.12. – Let A_m the homogeneous part of weight $m = \delta_w A$ of A. Homogeneous part of weight m + 2 of equations (E) gives

$$\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_m \end{bmatrix} = 0 \text{ thus } A_m = \begin{pmatrix} 0 & 0 \\ a_m & 0 \end{pmatrix}.$$

Homogeneous part of weight m + 1 of equations (E) gives

$$\begin{cases} X_0 A_m + 12y B_{m-1} = 12y \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{m-1} \right] \\ 0 = 12y \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B_{m-1} \right] \\ A_{m-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = B_{m-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{cases}$$

For the second and third equation one gets

$$B_{m-1} = \begin{pmatrix} 0 & 0 \\ b_{m-1} & 0 \end{pmatrix}$$
 and $A_{m-1} = \begin{pmatrix} -b_{m-1} & 0 \\ a_{m-1} & b_{m-1} \end{pmatrix}$.

Then the first equation is

$$\boxed{X_0 a_m = -36y b_{m-1}}$$

Homogeneous part of weight m of equations (E) gives

$$\begin{cases} \frac{\partial A_m}{\partial x} + X_0 A_{m-1} + 12y B_{m-2} = 12y \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{m-2} \right] + \left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_m \right] \\ X_0 B_{m-1} + A_m = 12y \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B_{m-2} \right] \\ \left[A_m, B_{m-2} \right] + \left[A_{m-1}, B_{m-1} \right] = 0 \\ A_{m-2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = B_{m-2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{cases}$$

The third equation gives

$$\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ a_m & 0 \end{pmatrix}, B_{m-2} \end{bmatrix} = \begin{pmatrix} 0 & 0 \\ 2b_{m-1}^2 & 0 \end{pmatrix} \text{ thus } B_{m-2} = \begin{pmatrix} b_{m-1}^2/a_m & 0 \\ b_{m-2} & -b_{m-1}^2/a_m \end{pmatrix}.$$

The fourth gives

$$A_{m-2} = \begin{pmatrix} -b_{m-2} & b_{m-1}^2/a_m \\ a_{m-2} & b_{m-2} \end{pmatrix}$$

and the second gives Then the first equation is

$$X_0 b_m + a_m = 24y \frac{b_{m-1}^2}{a_m}$$

Let's have a look to the equations satisfy by a_m and b_{m-1} , denoted by a and b in the sequel :

$$X_0 a = -36yb$$
$$X_0 b = 24y\frac{b^2}{a} - a$$

These equations imply

$$X_0\left(\frac{b}{a}\right) = 60y\left(\frac{b}{a}\right)^2 - 1$$

Lemma 3.15 With previous notation, $y^2 \frac{b}{a} \in K[y, y']$.

Proof. – Let's show that for any $n \in \mathbb{N}$, $y^{2n-1}\frac{b^{n+1}}{a^n}$ is a polynomial. This is true for n = 1 because $X_0 b = 24y\frac{b^2}{a} - a$ and a, b are polynomials and X_0 has polynomial coefficients. For the same reason, it is true for n = 2:

$$X_0\left(y^2\frac{b^2}{a}\right) = 84y^3\frac{b^3}{a^2} - 2y^2b + 2y'y\frac{b^2}{a}$$

Now assume that it is true for $y^{2n-3}\frac{b^n}{a^{n-1}}$ and $y^{2n-5}\frac{b^{n-1}}{a^{n-2}}$. Then because

$$X_0\left(y^{2n-2}\frac{b^n}{a^{n-1}}\right) = (2n-2)y^{2n-3}y'\frac{b^n}{a^{n-1}} + y^{2n-2}\left((60n-36)y\frac{b^{n+1}}{a^n} - n\frac{b^{n-1}}{a^{n-2}}\right)$$

it is true for $y^{2n-1}\frac{b^{n+1}}{a^n}$. Let's write $b = y^p \prod \beta_i^{n_i}$ and $a = y^q \prod \alpha_j^{m_j}$ the factorization in irreducible elements, one gets $(n+1)p + 2n - 1 \ge nq$ and $(n+1)n_i \ge nm_i$. Let n be large enough, this prove that $p+2 \ge q$ and $n_i \ge m_i$. This proves the lemma.

Now one can finish the proof on proposition 3.12. Becaus a is homogeneous of weight m, b of weight m-1 and y of weight 2, $y^2 \frac{b}{a}$ is a homogeneous polynomial of weight 3. Such a polynomial is ky' for somme $k \in K$ thus $\frac{b}{a} = k \frac{y'}{y^2}$. One can compute

$$X_0 \frac{b}{a} = -2k - 2k\frac{u}{y^3}$$

and

$$60y\left(\frac{b}{a}\right)^2 - 1 = 240k^2 - 1 + 60k^2\frac{u}{y^3}$$

Such a k cannot exist. This proves the proposition

4 Local irreducibility of P_1

A differential equation is said locally reducible if there exists a field extens

References

- Bialynicki-Birula, A. On Galois theory of fields with operators, Amer. Journ. Math. vol 84 No. 1 (1962) 89–109
- [2] Cartan, É. Sur la structure des groupes infinis de transformations, Ann. Sci. École Normale Sup. 22 (1905) 219–308
- [3] Cartan, É. Les sous-groupes des groupes continus de transformations, Ann. Sci. École Normale Sup. 25 (1908) 57–194
- [4] Casale, G. Sur le groupoïde de Galois d'un feuilletage Thèse de l'Université Paul Sabatier, Toulouse ; disponible sur http://doctorants.picard.ups-tlse.fr/theses.htm
- [5] Casale, G. Feuilletages de codimension un, groupoïde de Galois et intégrales premières, à paraître aux Ann. Inst. Fourier (2006)
- [6] Casale, G. Le groupoïde de Galois de P_1 et son irréductibilité, (2005)
- [7] Drach, J. Essai sur une théorie générale de l'intégration et sur la classification des transcendantes, Ann. Sci. Écoles Normale Sup. 15 (1898) 243–384
- [8] Drach, J. Sur le groupe de rationalité des équations du second ordre de M. Painlevé, Bull. Sci. Math. 39 (1915) 149–166
- [9] Drach, J. L'équation différentielle de la balistique extérieur et son intégration par quadratures, Ann. Sci. École Normale Sup. 37 (1920) 1–94
- [10] Drach, J. Sur le mouvement d'un solide qui a un point fixe, C.R. Acad. Sci. Paris 179 (1924) 735–737
- [11] Guillemin, V. et Sternberg, S. An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964) 16–47
- [12] Guillemin, V. et Sternberg, S. Deformation theory of pseudogroup structure, Memoirs of the Amer. Math. Soc. 64 (1966)
- [13] Ince, E.L. Ordinary Differential Equations, Dover Publication, New York (1944)
- [14] Johnson, J. Prolongations of integrals domaines J. Algebra 94 (1985) 173–210
- [15] Kolchin, E. Differential Algebra and Algebraic Group, Academic Press (1973)
- [16] Kumpera, A. et Spencer, D. *Lie Equations*, Annals of Math. Studies, Princeton University Press (1972)
- [17] Lie, S. Theorie der transformationsgruppen I, Math. Ann. 16 (1880) Transformations Groups, translated by M. Ackerman, commented by R. Hermann, Lie groups : History, Frontiers and Applications Vol 1 Math. Sci. Press (1975)
- [18] Mackenzie, K. Lie groupoids and Lie Algebroids in Differential Geometry London Math. Soc. LNS 124 Cambridge University Press (1987)

- [19] Malgrange, B. Le groupoïde de Galois d'un feuilletage, Monographie 38 vol 2 de L'enseignement mathématique (2001)
- [20] Malgrange, B. Systèmes Différentiels Involutifs, Panoramas et synthèses 19 Soc. Math. France (2005)
- [21] Nishioka, K. A note on the transcendency of Painlevé's first transcendent, Nagoya Math. J. 109 (1988) 63–67
- [22] Painlevé, P. Leçons de Stokholm (1875), Oeuvres complètes Tome 1, éditions du CNRS (1972)
- [23] Painlevé, P. Mémoire sur les équations différentielles dont l'intégrale générale est uniforme, Bull. Soc. Math. 28 (1900) 201-261
- [24] Painlevé, P. Démonstration de l'irréductibilité absolue de l'équation $y_{xx} = 6y^2 + x$, C.R. Acad. Sci. Paris **135** (1902) 641–647
- [25] Picard, E. Sur les équations différentielles et les groupes algébriques de transformations, Ann. Fac. Sci. Université de Toulouse 1 (1887) 1–15
- [26] Pommaret, J-F. Differential Galois Theory, Mathematics and its applications, vol 15 Gordon & Breach Sci. Publishers (1983)
- [27] Ritt, J.F. Differential Algebra, American Mathematical Society Colloquium Publications, Vol. XXXIII, American Mathematical Society, New York (1950)
- [28] Umemura, H. On the irreducibility of the first differential equation of Painlevé, Alg. Geom. and Com. Alg. in honor of M. Nagata (1987) 771–789
- [29] Umemura, H. Galois theory of algebraic and differential equation, Nagoya Math. J. vol 144 (1996) 1–58 - Differential Galois theory of infinite dimension, Nagoya Math. J. vol 144 (1996) 59–135
- [30] Vessiot, E. Sur la théorie de Galois et ses diverses généralisations, Ann. Sci. Ecole Normale Sup. 21 (1904) 9–85
- [31] Vessiot, E. Sur la réductibilité et l'intégration des systèmes complets, Ann. Sci. Ecole Normale Sup. 29 (1912) 209–278