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1 Abstract

In this article the local irreducibility of the first Painlevé equation (P1 : y′′ = 6y2 + x) is inves-
tigated. The notion of irreducibility used concern the reducibility of the general solution following
Painlevé-Nishioka-Umemura [22, 21, 28]. By local, we mean irreducibility over any ordinary dif-
ferential extension K of C(x) of finite type. Such a field may contain any finite set of solutions of
the equation.

The main tool used is the Galois groupoid of P1 over K along lines given in [19, 6]. In order
to adapt the previous calculations to this more general framework, the degeneration of P1 on an
elliptic equation is replaced by the use of weight on the dependent variables following H. Umemura
[28]. The result can be interpreted as follows. The knowledge of any finite set of solutions of P1

does not give any differential-algebraic informations about the dependency of the general solution
on the integrating constants.
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1 The Galois groupoid of a foliation

Let L be a differential field with commuting derivations ∂1, . . . , ∂n. We will assume L is a finite tran-
scendence degree extension of C but we will use this assumption as less as we can. The field of constants
of L is supposed to be algebraically closed and its characteritic is zero. In this article we assume this
field is C. Let Der(L) be the L-vector space generated by the ∂’s and Der∗(L) be its dual over L with
dual base d1, . . . , dn.

There is two (dual) ways to define a foliation on L. The first one is to give the equations of an
involutive distribution. These equations are given by a L-subspace N of Der∗(L) stable by the exterior
differential d : Der∗(L)→ Λ2Der∗(L) i.e. dN ⊂ Der∗(L) ∧N . The second one is to give the solutions
of these equations over L i.e. a subspace of Der(L) stable under the Lie bracket. In this article, a
foliation must be thought as a particular D-Lie algebra. As general D-Lie algebras can have no solution
over L, we will emphase the former point of view.

1.1 D-variety over L

Let Am be the affine space of dimension m over L with coordinates z1, . . . , zm. The space of order q
jets of sections of Am over L : Jq(Am

/L) = specL[Jq] is the variety defined by the L-algebra

L[Jq] = L
[
zαi | 1 ≤ i ≤ m, α ∈ Nn, 1 ≤ |α| ≤ q

]
.

These varieties form a projective system πpq : Jp → Jq for p ≥ q. The space of jets of sections
J(Am

/L) = lim
→
Jq(Am

/L) is a scheme of ‘countable’ type over L. The derivations of L act on L[J ] by

the following formulae

Di : L[Jq]→ L[Jq+1], 1 ≤ i ≤ n

Di = ∂i +
∑
j,α

zα+εi
j

∂

∂zαj
.

where εi is the multi-index (0 . . . 0, 1
ith
, 0 . . . 0)).

Definition 1.1 An affine D-variety over L is a sub-variety Z of J(Am
/L) defined by a differential ideal

(i.e. a ideal stable under the action of the Di’s).

Example 1 Let Z be an affine variety over L in An. Its ideal I generates a differential ideal I of
L[J(Am

/L)]. This D-variety is the space of jet of sections of Z over L denoted by J(Z/L).

The varieties Zq = (π∞q )∗Z are defined by the order q equations defining Z.

Definition 1.2 Let Z be a D-variety over L and L ⊂ E be a fields extension.

– A E-point of Z is a morphism L[Z]→ E over the inclusion.

– A differential point is given by a differential morphism in a differential field.

Remark 1 A E-point of Z is a section of Z over E but a D-E-point is the jet of a section of Z0 over
E satisfying the differential equations encoded in the Zq, q > 0.

This construction is a special case of prolongation sequences defined in differential algebraic frame-
work by J. Johnson [14]. Johnson’s construction allows us to replace Am

/L by any L-algebra like L⊗
C
L.
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1.2 D-linear space over L

Let V be a finite dimensional L-linear space. In this article V will stand both for the ‘abstract’ linear
space and for the ‘concrete’ variety defined by the L-algebra SymV ∗ of symetric powers of its dual.

Definition 1.3 A D-linear space over L is a D-variety V over L with a linear structure :
– there is a L-linear D-invariant subspace LinV ⊂ L[V ] such that L[Vq] = SymLinVq its symetric

powers ring,
– the actions of the ∂’s on LinV satisfy Liebniz rules.

For a L-vector space V , the set V = {V (E)| E is a extension of L} is the set of ‘local sections’ of V
on L.

1.3 D-Lie groupoid over L

Let’s build the space of order q jets of ‘point transformations of specL’: J∗q (L) (J∗q for short). Let L(1)

et L(2) be two copies of L and L[J∗q ] be the L-algebra

L(1) ⊗
C
L(2)

[
zαi ,

1

det(z
εj
i )

∣∣1 ≤ i ≤ n, α ∈ Nn, 1 ≤ |α| ≤ q

]
.

The spaces J∗q = specL[J∗q ] are groupoids over L. This groupoid structure is given by the following

maps. The projections s (for source) on specL(1) and t (for target) on specL(2) are self-explained. The
composition c : (J∗q , s)×L(J∗q , t)→ J∗q is defined on the order 0 jets by the inclusion of the product L⊗CL
in L⊗C L⊗C L in the first and third place. On higher order jets it is defined by using the formulae for
composition of n formal power series of n variables. The inversion is defined by the inversion formulae
for formal power series. These maps satisfy some commutative diagrams [18] (obvious in the framework
of jet spaces). Moreover, one gets derivations

Di : L[J∗q ]→ L[J∗q+1], 1 ≤ i ≤ n

defined by

Di = ∂
(1)
i +

∑
j

zεij ∂
(2)
j +

∑
j,α

zα+εi
j

∂

∂zαj

We set J∗ = lim
←

J∗q with ring L[J∗] = lim
→

L[J∗q ]. This space is a scheme of ‘countable’ type with a

structure of groupoid over L and a structure of D-variety over L(1).

Definition 1.4 A D-Lie groupoid over L is a subgroupoid of J∗ defined by a perfect differential ideal.

Remark 2 The hypothesis ‘perfect’ is not relevant. By a theorem of B.Malgrange, every non-reduced
D-Lie groupoid is in fact reduced. This is proved in the analytic framework in [19].

Example 2 The D-Lie groupoid defined by the ideal (0), i.e. J∗ itself, is called the groupoid of point
transformations over L on C. Sometimes, it will be denoted by Aut(L/C).

1.4 Prolongation and differential invariants

Definition 1.5 The space of order q frame on specL is J∗q (Ĉn, 0 → specL) or Rq for short. It is
defined by the L-algebra

L[Rq] = L

[
rαi ,

1

det(r
εj
i )

; 1 ≤ i ≤ n, α ∈ Nn, 1 ≤ |α| ≤ k

]
.

This space is a principal homogeneous space over L with structural group the linear algebraic group

Γq(Cn) = J∗q (Ĉn, 0→ Ĉn, 0) acting by source composition.
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Definition 1.6 Let E be a differential extension of L and v =
∑
vi∂i ∈ E ⊗

L
Der(L). One defines the

prolongation of v on Rq by

Rqv = v +
∑
i,α
|α|≤q

Dαvi
∂

∂rαi
.

This prolongation is Γq(Cn)-invariant and compatible with the Lie bracket. This allows us to prolong
any Lie algebra of vector fields.

Lemma 1.7 Let N ⊂ Der∗(L) be the equations of a foliation over L. The equations of the prolongation
of the foliation is the L[Rq] ideal RqN ⊂ T ∗Rq = Der∗(L)⊕

L
T ∗(Rq/L) generated by

ωα =
∑

β1+β2=α

(
α

β1

)
Dβ1ωi dr

β2

i

with ω =
∑
ωidi ∈ N , dr0

i = di

Definition 1.8 Let N ⊂ Der∗(L) be the equations of a foliation on L. Rational differential invariants
of N (or of FN : the foliation described by N) are the invariants (i.e. rational first integrals) of RqN
in L(Rq).

1.5 D-Lie algebras over L

Some notations – Let SDer∗(L) = L[a1, . . . , an] be the symetric powers ring of the vector space of
differentials of L. The space TL = specSDer∗(L) is the tangent space of L. For an extension E of L,
TL(E) is the space of E-point of TL. The space of order q jets of sections of TL over L, Jq(TL/L) (Jq T
for short), is defined by the following ring:

L[Jq T ] = L [aαi ; 1 ≤ i ≤ n, α ∈ Nn, 0 ≤ |α| ≤ q] .

The space J T and its ring is defined by taking limits. Its ring L[J T ] is a D-algebra, the derivation
Der(L) of L act on it by

Di = ∂i +
∑
j,α

aα+εi
j

∂

∂aαj
.

It is a D-vector space: the linear stucture is given by the L-vector space of linear partial differential
equations LinJ T ⊂ L[J T ], i.e. the differential L-vector space generated by Der∗(L).

The Lie bracket on the vector fields over L with coefficients in E defines a Lie bracket on the space
J TL(D-E) of differential E-points.

Temporary definition 1.9 A D-Lie algebra over L is a sub-D-vector space L of J T such that the
differential points of L are stable under Lie bracket.

A less ‘differential’ definition will be given following B.Malgrange [19]. This definition will use a
prolongation of the Lie bracket on J T called the Spencer bracket and the stability condition will be on
the ‘ordinary’ points of the jet space.

1.5.1 Brackets on J T

There is two brackets defined on Jq T . The first bracket is defined on Jq T and takes values in Jq T . It

is called Spencer bracket. It allows us to named Jq T a Lie algebroid [18]. The second one is defined
on fibers of Jq T and takes values in Jq−1 T . It is called the fiberwise bracket. By duality each bracket
defines a differential on the system of dual vector spaces.
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Spencer bracket – The construction of this bracket (denoted by [ . , . ]) follows the diagonal method

[16, 19]. Let R
(1)
q et R

(2)
q be two copies of Rq

λ : R(1)
q ×R(2)

q → J∗q

defined for couples (r, s) of q frames by r ◦ s−1 and the morphism of ring induced. This map is the
quotient by the diagonal action of Γq(Cn) by source composition. The tangent of λ :

Tλ : T (R(1)
q ×R(2)

q )
/R

(1)
q
→ TJ∗q /L(1)

identifies vector fields on R
(1)
q ×R(2)

q in the kernel of the first projection and invariant under the action
of Γq(Cn) and vector fields on J∗q in the kernel of the source.

Because the constructions of the ‘vertical’ tangent and the jet space commute, one have

T (J∗q /L(1))|id ∼ Jq T.

From an other side, the identification of TRq with T (R
(1)
q ×R(2)

q )
/R

(1)
q
|diag is equivariant under the action

of Γq(Cn). From these identifications, one gets λ : TRq → Jq T ; it is the quotient by Γq(Cn).

Definition 1.10 The Spencer bracket on sections of Jq T is the bracket induced by the Lie bracket on
Rq.

By duality, this bracket gives a differential on Lin Jq T .

Fiberwise bracket – This bracket (denoted by { . , . } ) is defined by the formulae giving jq−1[X, Y ]
in terms of jqX et jqY for two vector fields on Cn.

There are several formulae which characterized the Spencer bracket. The relation between the two
brackets is the following

[fjqu, gjqv] = fg{jqu, jqv}+ f Lu(g) jqv − g Lv(f) jqu

with f et g in E ⊃ L, u and v are any E-point of T/L, jqu stands for the corresponding E-point of JqT
and Lu is the Lie derivative along u.

1.5.2 D-Lie algebra over L

Definition 1.11 A D-Lie algebra over L is a sub-D-vector space L of J T such that the points of L
are stable under Spencer bracket.

As in the differential case, the D-Lie algebra of a D-Lie groupoid is defined by the vertical tangent
along the identity [18].

Theorem 1.12 ([19]) Let Z be a D-Lie groupoid over L. After identification Jq T ∼ TJ∗q /L(1)|id, the

D-vector space TZ/L(1) |id is a D-Lie algebra over L.

Foliations over L are special D-Lie-algebra. Here is the definition used in this article.

Remark 3 A foliation F is a D-Lie-algebra differentially defined by F0 ⊂ J0T .
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1.6 The Galois groupoid

As for algebraic Lie groups and Lie algebras, the main problem for dealing with D-Lie groupoids and
D-Lie algebras is the lack of Lie third theorem. In general a D-Lie algebra over L is not the algebra of
a D-Lie groupoid over L.

Definition 1.13 Let L be a D-Lie algebra over L. The smallest D-Lie groupoid over L whose D-Lie
algebra contains L is the D-envelope of L.

When L is the D-Lie algebra of a D-Lie groupoid over L, it is called integrable over L.

As foliations are particular D-Lie-algebras, one sets the following definition.

Definition 1.14 Let F be a foliation over L. Its D-envelope is called the Galois groupoid of F over L.

This definition generalizes the definition of the differential Galois group of Picard-Vessiot theory. If
L is the D-Lie-algebra of the Galois groupoid of F , F is an ideal of L. The transversal Lie algebroid
L/F measures the lack on integrability.

The proof of the existence of such a minimal groupoid is done using Noetherianity properties. That
the reason of the hypothese ‘L is finite type field over C’.

2 Maurer-Cartan form and Structural equation

2.1 Maurer-Cartan form

The groupoid J∗q acts on itself by target composition. Let L(1), L(2) be the source and target of a first

copy of J∗q
(1) and L(2), L(3) be the source and target of a second copy, J∗q

(2). The action of the second
jet space on the first one is given by the following map :

J∗q
(1) ×L(2) J∗q

(2) → J∗q
(1).

The tangent gives TJ∗q
(1)

/L(1) ×T
L(2)

TJ∗q
(2) → TJ∗q

(1)

/L(1) . Thanks to the connection given by J1, one gets a

morphism TL(2) ×L(2) J1(J
∗
q

(2)

/L(2))→ TJ∗q
(2). These morphisms, the inclusion of J∗q+1

(2) → J1(J
∗
q

(2)

/L(2)) and

the trivial identification TJ∗q
(1)

/L(1) ∼ TJ∗q
(1)

/L(1) ×T
L(2)

TL(2) give

TJ∗q
(1)

/L(1) ×L(2) J∗q+1
(2) → TJ∗q

(1)

/L(1) .

By restriction of this morphism on the vertical tangent of J∗q
(1) along the identity (on which L(1) = L(2)),

one gets an isomorphism JqT ×L J∗q+1 → TJ∗q /L×J∗q J
∗
q+1 which induces a form Θ on the pull back of the

vertical tangent of TJ∗q /L on J∗q+1 with values in JqT . By associativity this form is invariant under the

action of J∗q+1 by target composition. By construction it is compatible with (fiberwise) Lie bracket.

Definition 2.1 The form Θ : TJ∗q /L ×J∗q J
∗
q+1 → JqT is the order q (fiberwise) Maurer-Cartan form of

J∗.

The (fiberwise) Maurer-Cartan form is the limit Θ : T̃ J∗/L → J T where T̃ stand for the shifted tangent.

Definition 2.2 Let Z be a D-Lie groupoid with D-Lie algebra L(Z). The restriction of Θ on Z takes
values in L(Z). It is the (fiberwise) Maurer-Cartan form of Z.

In the special case of a Galois groupoid Z of a foliation F , one defines the transversal (fiberwise)
Maurer-Cartan form in the following way. The foliation is a ideal of L(Z) one can get the quotient and

ΘZ : T̃Z/L → L(Z)/F

is the transversal Maurer-Cartan form.

To give the definition of ’non-fiberwise’ Maurer-Cartan form ??
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2.2 Cartan’s structural equation

Let Θ̃ : T̃ J∗q+1/L
→ Jq−1T be the order q Maurer-Cartan form followed by the projection. The fiberwise

structural equation is (see [12] for a proof)

dΘ̃ =
1

2
{Θ̃ ∧ Θ̃}

where d is the relative differential over L. In the special case of a Galois groupoid Z of a foliation F ,
the transversal structural equation

dΘ̃Z =
1

2
{Θ̃Z ∧ Θ̃Z}

is satisfied by the transversal Maurer-Cartan form.

To give the ’non-fiberwise’ structural equations ??

2.3 Godbillon-Vey sequences

In order to define Godbillon-Vey sequences, one will assume that L = C(V ) for some (pro)variety. Let
Z be a groupoid containing the Galois groupoid of F and

s : spec
(
L(1) ⊗ L(2)

)
→ Z

be a section over specL(1) . Then by pull-back on gets a L(1)-linear map

s∗Θ̃Z : L(1) ⊗Der(L(2))→ L(Z)/F

By using a point of V , it can be specialized on C and one gets

GV : Der(L(2))→
(
L(Z)/F

)∣∣
v
.

A direct computation shows that
(
L(Z)/F

)∣∣
v

is isomorphic to a sub-Lie-algebra ĝ ⊂ χ̂d of formal vector
fields in d = codimF variables.

By construction dGV = GV ∧GV , first integrals of ĝ0 give first integrals of Z and the projection of
GV onto ĝ0 ⊂ Cd gives d−(number of independent first integrals) 1-forms defining F .

By choosing a basis of first integrals and a basis of ĝ0 over C one gets a sequence of 1-forms in
Der∗(L) called a Godbillon-Vey sequence for F given by Z and s.

2.4 For codimension 2 foliation.

By choosing for all order q a base of sections of L(Z)/F over L(1), the transversal Maurer-Cartan form
gives rise to a family of form in Ω1

Z/L(1) satisfying coordinate version of the structural equation. Such

families of forms are classified in [3] in the case of codimension 2 foliations by combinatorial arguments
(see also [6]). The main consequence of this classification used in this paper is the following theorem

Theorem 2.3 If F is defined by a closed 2-form γ ∈ Λ2Der∗(L) then at least one of the following
situation occurs

• the Galois groupoid of F is intransitive: there is a first integral in L;

• the Galois groupoid is imprimive in codimension one: there is a form ω ⊂ Der∗(L)such that
ω ∧ dω = 0 and ω = 0 on F .
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• the Galois groupoid is transversally affine: there are an algebraic extension L̃ of L, two 1-forms
θ1 and θ2 in L̃ ⊗ Der∗(L) vanishing on F and three 1-forms ω1,1, ω1,2, ω2,1 in L̃ ⊗ Der∗(L) such
that

d

(
θ1

θ2

)
=

(
ω1,1 ω1,2

ω2,1 −ω1,1

)
∧
(
θ1

θ2

)
, d

(
ω1,1 ω1,2

ω2,1 −ω1,1

)
=

(
ω1,1 ω1,2

ω2,1 −ω1,1

)
∧
(
ω1,1 ω1,2

ω2,1 −ω1,1

)

• the Galois groupoid of F is the groupoid of invariance of γ.

3 The Galois groupoid of P1 over K

The theorem 2.3 will be used to compute the Galois groupoid of the first Painlevé equation: y′′ = 6y2+x
over any ordinary differential extension K on C(x). The derivations is denoted by ∂

∂x
. The vector field

over K(y, y′) defining the first Painlevé equation is

X1 =
∂

∂x
+ y′

∂

∂y
+ (6y2 + x)

∂

∂y′
.

Its foliation F1 is defined by the closed 2-form

γ = dy ∧ dy′ − y′dx ∧ dy′ + (6y2 + x)dx ∧ dy.

Theorem 3.1 For any differential extension K of C(x) of finite type, the Galois groupoid of F1 over
L = K(y, y′) is the groupoid of invariance of γ.

In order to study the properties of the vector field X1, weight on variables are introduced following
[28]. The elements of K have weight 0. The variables y and y′ have respectively weights wy = 2 and
wy′ = 3. The degree induced by this weight will be denoted by δw. The vector field has a decomposition
X1 = ∂

∂x
+X0 +x ∂

∂y′
into homogeneous composants of weights 0, 1 and −3. The ‘simplified’ vector field

X0 = y′
∂

∂y
+ 6y2 ∂

∂y′

comes from the Hamiltonian u = y′2 − 4y3 on C2. For this reason it is easier to study X1 by mean of
X0.

3.1 Some lemmas on X0

The missing proofs of the following lemmas can be found in [28].

Lemma 3.2 If R is a homogeneous first integral of X0 in K[y, y′] then R = a up with a ∈ K.

Lemma 3.3 If R is homogeneous and satisfies X0R = a up for some a ∈ K then R = a = 0.

Lemma 3.4 If R is homogeneous and X0R = ay with a ∈ K then R = a = 0.

Lemma 3.5 The equation X0R = a
y′2

+ b, with a and b in K(u) has a solution if and only if a = 3
2
c u

et b = −1
2
c with c ∈ K. In this case, the homogeneous solution is R = c y

y′
.

Proof. – Set R = 2
3
a
u
y
y′

+R0 then X0R = a
y′2
− 1

3
a
u

+X0R0. Lemma 3.3 asserts that X0R0 = b+ 1
3
a
u

has no non zero solution. �
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Lemma 3.6 The equation X0R = y
(

a
y′2

+ b
)

, with a and b in K(u) has a solution if and only if

a = 3ub. In this case, the homogeneous solution is R = 2by
2

y′
.

Proof. – Let R be such a rational function and write R = 2by
2

y′
+ (a− 3bu)R0 then X0R0 = y

y′2
. In

coordinates y, u, R0 is equal to A+
√

4y3 + uB with A ans B in K(y) and the equation is

∂A

∂y
= 0 and (4y3 + u)

∂B

∂y
+ 6y2B =

y

4y3 + u
.

Then A is in K(u) and B can be written B = P
(4y3+u)m

for a P ∈ K(u)[y] of degree n and some integer
m. A direct computation shows thant m must be 1 and n can not be integer. This proves the lemma.

�

3.2 The Galois groupoid is transitive

Proposition 3.7 There is no first integral of X1 in K[y, y′]

Proof. – Let R =
∑M

h=mRh be the decomposition of R in homogeneous composantes with RM 6= 0.
The equation

X1R =
M∑

h=m−3

∂Rh+1

∂x
+X0Rh + x

∂Rh+3

∂y
= 0

implies ∂Rh+1

∂x
+X0Rh + x∂Rh+3

∂y
= 0, ∀h ∈ {m− 3, . . . ,M}.

• h = M . The equation is X0RM = 0. By lemma 3.2, RM = a uk with a ∈ K and M = 6k.

• h = M − 1. The equation is X0RM−1 = −a′ uk. By lemma 3.3, RM−1 = a′ = 0.

• h = M − 2 and M − 3. The equation is X0Rh = 0. By lemma 3.2, Rh=0.

• h = M − 4. The equation is X0RM−4 = −xa2k uk−1y′. By lemma 3.2, RM−4 = −xa2k uk−1y.

• h = M − 5. The equation is X0RM−5 = a2k uk−1y. By lemma 3.4, RM−5 = a = 0.

This gives a contradiction and proves the proposition. �

Corollary 3.8 There is no invariant divisor for X1

Proof. – Suppose that there exist P and L in K[y, y′] for K a differential extension of C(x) such
that X1P = LP . Because δw(X1P ) ≤ δwP + 1, one has δwL ≤ 1. But in K[y, y′] there is no weight 1
element and L = ` ∈ K has weight zero. Let K‘ be an extension of K by a solution of e′+ e` = 0. One
checks that eP is a first integral of X1 in K‘[y, y′]. By the previous proposition, P is zero. �

Corollary 3.9 There is no first integral of X1 in K(y, y′)

3.3 The Galois groupoid is imprimitive in codimension one

If there is an integrable 1-form on C3 vanishing on X1 with coefficient in K(y, y), ω = Adx+Bdy+Cdy′,
it can be supposed to be polynomial and the coefficients have no common divisor.

Lemma 3.10 If this form ω exists then for a extension K∗ of K, there is a 1-form ω∗ over K∗[y, y′]
satisfying iX1ω

∗ = 0 and iX1dω
∗ = 0.
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Proof. – Let ω be such a 1-form. Because it is integrable, dω = α∧ω for a 1-form α with coefficients
in K(y, y′). Take the inner product with X1 : iX1dω = Lω with L = α(X1). Because these two 1-forms
are polynomial and the coefficients of ω do not have common divisor, L must be in K[y, y′]. Its degree
δwL is strictly less than two then L = ` ∈ K. Let K∗ = K(e) for a solution of e′ + e` = 0 and ω∗ = eω.
Then iX1dω

∗ = 0. �

Proposition 3.11 There is no integrable 1-form over K(y, y′) such that iX1ω = 0 and iX1dω = 0.

Proof. – As for the proposition 3.7, computations will be decomposed following the weight. Let ω
be a 1-form given by lemma 3.10. The weight decomposition is ω =

∑M
h=m ωh. Let’s have a look to the

equations satisfied by the five terms of highest weight.

• h = M . The equations are ωM(X0) = 0 and iX0dωM = 0. From these equations and lemma 3.2,

ωM = aM updx+ bM up−1du, aM and bM in K.

• h = M − 1. From the first equation ωM−1(X0) = −aM up, one gets

ωM−1 = aM−1dx+ bM−1du−
aM up

y′
dy.

The second equation is iX0dωM−1 + i ∂
∂x
dωM = 0. Computing the terms of this sum one gets

- iX0dωM−1 = (X0aM−1 + a′M up) dx+
(
X0bM−1 + aMp u

p−1 − aM up

2y′2

)
du,

- i ∂
∂x
dωM = (b′M up−1 − aMp up−1) du.

This gives

- X0aM−1 + a′Mu
p = 0, by lemma 3.3, a′M = aM−1 = 0;

- X0bM−1 = am up

2y′2
− b′Mup−1, by lemma 3.5, 6b′M = aM and bM−1 = 2b′M up−1 y

y′
.

One has

ωM−1 = aM up−1 y

3y′
du− aM up

1

y′
dy.

• h = M − 2 and M − 3. The equations are ωh(X0) = 0 and iX0dωh = 0, by lemma 3.2, ωh = 0.

• h = M − 4. The first equation is ωM−4(X0) + ωM(x ∂
∂y′

) = 0. The fourth 1-form can be written

ωM−4 = aM−4dx+ bM−4du− 2bMx u
p−1dy.

The second equation is iX0dωM−4 + ix ∂
∂y′
dωM = 0. One computes these two terms:

- iX0dωM−4 = (X0aM−4 + 2y′ up−1(bM + xb′M)) dx+ (X0bM−4 + 2xy′ (p− 1)up−2bM) du;

- ix ∂
∂y′
dωM = (aM2xy′ pup−1 − b′M2xy′ up−1) dx.

This gives

- X0aM−4 = −2up−1y′(bM + paMx);

- X0bM−4 = −2up−2y′(p− 1)xbM .

10



These equations are easily solved and

ωM−4 = −2(bM + paMx)yup−1dx− 2(p− 1)bMxy u
p−2du− 2bMx u

p−1dy.

• h = M − 5. The first equation is ωM−5(X0) + ωM−4(
∂
∂x

) + ωM−1(x
∂
∂y′

) = 0.

From ωM−4(
∂
∂x

) = −2(bM + paMx)y up−1 and ωM−1(x
∂
∂y′

) = 2
3
aMxy u

p−1, one gets

ωM−5 = aM−5dx+ bM−5du+

(
2bM + (2p− 2

3
)aMx

)
y

y′
up−1dy.

The second equation is iX0ωM−5 + i ∂
∂x
ωM−4 + ix ∂

∂y′
ωM−1 = 0 and gives i ∂

∂x
iX0ωM−5 + i ∂

∂x
ix ∂

∂y′
ωM−1 = 0.

This equation is equivalent to X0aM−5 = (2p − 1
3
)aMyu

p−1. By lemma 3.4, aM = aM−5 = 0 and the

second equation is X0bM−5 = up−2bMy
(

2(p− 1)− u
y′2

)
. This implies bM = 0 by lemma 3.6 and gives a

contradiction. �

3.4 The Galois groupoid is not transversally affine

The aim of this section is to prove the following proposition

Proposition 3.12 There does not exist als2-sequence for FX1.

The proof will be decomposed in several lemmas.

Lemma 3.13 If there exists a asl2-sequence for the foliation of P1, there exists a polynomial one with
θ1 = dy − y′dx and θ2 = dy′ − (6y2 + x)dx.

Proof. – Let Θ̃ the vector of forms (θ̃1, θ̃2)
T and Ω̃ be a asl2-sequence for P1 with coeffcients in an

algebraic extension L of K(y, y′). One has Θ = F Θ̃ for a matrix with coefficients in L. Because P1 has
no first integrals, detF must be a constant. Then Θ can be completed in a asl2-sequence for P1 by the
matrix Ω = dFF−1 + F Ω̃F−1.

Suppose that the coefficients of Ω are not in K(y, y′). One can find two matrices Ω and Ω̃ satisfying
the asl2 equations beginning with Θ. This implies that the D-Lie groupoid of invariance of these two
transversally affine stucture admits a order one equation. From E. Cartan [] (see also []), one gets a
codimension one foliation vanishing on X1. Then section 3.3 proves that the coefficients of Ω are in
K(y, y′).

Let f be the equation of an irreductible component of the polar locus of Ω. Let’s write Ω = 1
fn

Ωp+Ω0

with Ω0 et Ωp polynomial and Ωp not divisible by f . From the asl2-equations, one gets Ωp ∧Θ = 0 and

−n
fn+1

Ωp ∧ df +
1

fn
dΩp + dΩ0 =

1

f 2n
Ωp ∧ Ωp +

1

fn
(Ω0 ∧ Ωp + Ωp ∧ Ω0) + Ω0 ∧ ΩO.

The contraction by X gives

1

fn
iXdΩp +

n

fn+1
XfΩp + ixdΩ0 =

1

fn
(Ω0(X)Ωp − ΩpΩ0(X)) + Ω0(X)Ω0 − Ω0Ω0(X)

thus Xf is divisible by f and f is a constante.

�
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Because (
dθ1

dθ2

)
=

(
0 dx

12ydx 0

)
∧
(
θ1

θ2

)
,

one has

Ω = Aθ1 +Bθ2 +

(
0 1

12y 0

)
dx,

where A and B are matrices of polynomials such that A

(
0
1

)
= B

(
1
0

)
. Writing the equation dΩ = Ω∧Ω

in the basis (dx, θ1, θ2), one gets the following system of p.d.e.’s on A and B :

(E)



XA+ 12yB −
(

0 0
12 0

)
=

[(
0 1

12y 0

)
, A

]

XB + A =

[(
0 1

12y 0

)
, A

]
∂B

∂y
− ∂A

∂y′
= [A,B]

Lemma 3.14 δwA = δwB + 1.

Proof. – This comes from the previous system of equations. From the first one, one gets max(δwA+
1, δwB + 2, 0) ≥ δwS where S stand for the right hand side of the first equation from (E). If δwA+ 1 6=
δwB + 2 then one gets equality. One gets also δwS ≤ δwA + 2. This implies δwA ≥ δwB. From the
second equation of (E), one gets δwA ≤ δwB + 2.

If δwB = 0 then A = A1y + A0 with A1 and A0 in M2×2(K). The first equation gives

A′1y+A1y
′+A′0+12yB−

(
0 0
12 0

)
=

[(
0 0
12 0

)
, A1

]
y2+

([(
0 1
0 0

)
, A0

]
+

[(
0 0
12 0

)
, A1

])
y+

[(
0 1
0 0

)
, A0

]
.

This implies

A1 = 0, B =

[(
0 1
0 0

)
, A0

]
and A′0 −

(
0 0
12 0

)
=

[(
0 1
0 0

)
, A0

]
.

The second equation gives

B′ + A0 =

[(
0 1
0 0

)
, B

]
+ y

[(
0 0
12 0

)
, B

]
.

This implies

B =

(
0 0
b 0

)
and A0 =

(
b 0
−b′ −b

)
.

From the equality A

(
0
1

)
= B

(
1
0

)
, one gets b = 0 and A = 0. This is a contradiction.

In the case δwA = δwB, let Am and Bm be the homogeneous part of weight m = δwA. Taking
homogeneous part of the equations (E), one gets :

Bm =

[(
0 0
1 0

)
, Am

]

0 =

[(
0 0
1 0

)
, Bm

]

Am

(
0
1

)
= Bm

(
1
0

)
.
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From the second equation, one gets Bm =

(
0 0
bm 0

)
. The third one implies Am =

(
−bm 0
am bm

)
. The first

one gives the contradiction.

In the case δwA = δwB + 2, computation are done in the same way. The weight δwA + 2 equations

gives Am =

(
0 0
am 0

)
. The weight δwA+1 equations are X0Am = 12y

[(
0 0
1 0

)
, Am−1

]
and Am−1

(
0
1

)
= 0.

This implies Am−1 =

(
0 0

am−1 0

)
and X0am = 0. Finally the weight δwA equations are :

∂Am
∂x

+X0Am−1 + 12yBm−2 = 12y

[(
0 0
1 0

)
, Am−2

]
+

[(
0 1
0 0

)
, Am

]
Am = 12y

[(
0 0
1 0

)
, Bm−2

]
0 = [Am, Bm−2]

The third equation implies

[(
0 0
1 0

)
, Bm−2

]
= 0 then Am = 0. This contradiction proves the lemma. �

Proof of propotion 3.12. – Let Am the homogeneous part of weight m = δwA of A. Homogeneous
part of weight m+ 2 of equations (E) gives[(

0 0
1 0

)
, Am

]
= 0 thus Am =

(
0 0
am 0

)
.

Homogeneous part of weight m+ 1 of equations (E) gives

X0Am + 12yBm−1 = 12y

[(
0 0
1 0

)
, Am−1

]

0 = 12y

[(
0 0
1 0

)
, Bm−1

]

Am−1

(
0
1

)
= Bm−1

(
1
0

)
For the second and third equation one gets

Bm−1 =

(
0 0

bm−1 0

)
and Am−1 =

(
−bm−1 0
am−1 bm−1

)
.

Then the first equation is

X0am = −36ybm−1

Homogeneous part of weight m of equations (E) gives

∂Am
∂x

+X0Am−1 + 12yBm−2 = 12y

[(
0 0
1 0

)
, Am−2

]
+

[(
0 1
0 0

)
, Am

]

X0Bm−1 + Am = 12y

[(
0 0
1 0

)
, Bm−2

]
[Am, Bm−2] + [Am−1, Bm−1] = 0

Am−2

(
0
1

)
= Bm−2

(
1
0

)
.
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The third equation gives[(
0 0
am 0

)
, Bm−2

]
=

(
0 0

2b2m−1 0

)
thus Bm−2 =

(
b2m−1/am 0
bm−2 −b2m−1/am

)
.

The fourth gives

Am−2 =

(
−bm−2 b2m−1/am
am−2 bm−2

)
,

and the second gives Then the first equation is

X0bm + am = 24y
b2m−1

am
.

Let’s have a look to the equations satisfy by am and bm−1, denoted by a and b in the sequel :

X0a = −36yb

X0b = 24y
b2

a
− a

These equations imply

X0

(
b

a

)
= 60y

(
b

a

)2

− 1

Lemma 3.15 With previous notation, y2 b

a
∈ K[y, y′].

Proof. – Let’s show that for any n ∈ N, y2n−1 bn+1

an
is a polynomial. This is true for n = 1 because

X0b = 24y b
2

a
− a and a, b are polynomials and X0 has polynomial coefficients. For the same reason, it

si true for n = 2 :

X0

(
y2 b

2

a

)
= 84y3 b

3

a2
− 2y2b+ 2y′y

b2

a
.

Now assume that it is true for y2n−3 bn

an−1 and y2n−5 bn−1

an−2 . Then because

X0

(
y2n−2 bn

an−1

)
= (2n− 2)y2n−3y′

bn

an−1
+ y2n−2

(
(60n− 36)y

bn+1

an
− nb

n−1

an−2

)
it is true for y2n−1 bn+1

an
. Let’s write b = ypΠβnii and a = yqΠα

mj
j the factorization in irreducible elements,

one gets (n+ 1)p+ 2n− 1 ≥ nq and (n+ 1)ni ≥ nmi. Let n be large enough, this prove that p+ 2 ≥ q
and ni ≥ mi. This proves the lemma. �

Now one can finish the proof on proposition 3.12. Becaus a is homogeneous of weight m, b of weight
m − 1 and y of weight 2, y2 b

a
is a homogeneous polynomial of weight 3. Such a polynomial is ky′ for

somme k ∈ K thus b
a

= k y
′

y2
. One can compute

X0
b

a
= −2k − 2k

u

y3

and

60y

(
b

a

)2

− 1 = 240k2 − 1 + 60k2 u

y3
.

Such a k cannot exist. This proves the proposition
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4 Local irreducibility of P1

A differential equation is said locally reducible if there exists a field extens
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