Local irreducibility of the first Painlevé equation

Guy Casale

Abstract

In this article the local irreducibility of the first Painlevé equation (P; : 3’ = 6y® + z) is inves-
tigated. The notion of irreducibility used concern the reducibility of the general solution following
Painlevé-Nishioka-Umemura [22, 21, 28]. By local, we mean irreducibility over any ordinary dif-
ferential extension K of C(z) of finite type. Such a field may contain any finite set of solutions of
the equation.

The main tool used is the Galois groupoid of P; over K along lines given in [19, 6]. In order
to adapt the previous calculations to this more general framework, the degeneration of P; on an
elliptic equation is replaced by the use of weight on the dependent variables following H. Umemura
[28]. The result can be interpreted as follows. The knowledge of any finite set of solutions of P
does not give any differential-algebraic informations about the dependency of the general solution
on the integrating constants.
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1 The Galois groupoid of a foliation

Let L be a differential field with commuting derivations 0y, ...,0d,. We will assume L is a finite tran-
scendence degree extension of C but we will use this assumption as less as we can. The field of constants
of L is supposed to be algebraically closed and its characteritic is zero. In this article we assume this
field is C. Let Der(L) be the L-vector space generated by the 0’s and Der*(L) be its dual over L with
dual base dy,...,d,.

There is two (dual) ways to define a foliation on L. The first one is to give the equations of an
involutive distribution. These equations are given by a L-subspace N of Der*(L) stable by the exterior
differential d : Der*(L) — A?*Der*(L) i.e. dN C Der*(L) A N. The second one is to give the solutions
of these equations over L i.e. a subspace of Der(L) stable under the Lie bracket. In this article, a
foliation must be thought as a particular D-Lie algebra. As general D-Lie algebras can have no solution
over L, we will emphase the former point of view.

1.1 D-variety over L

Let A™ be the affine space of dimension m over L with coordinates z1,..., z,. The space of order ¢
jets of sections of A™ over L : J(A™,) = spec L[J,] is the variety defined by the L-algebra

LIJ)=L[z| 1<i<m, aeN", 1<|a] <q].

These varieties form a projective system 7# : J, — J, for p > ¢. The space of jets of sections
J(A™ ) = lim J,(A™ 1) is a scheme of ‘countable’ type over L. The derivations of L act on L[J]| by

the following formulae
D;:LlJ,| = L[J41], 1<i<n

0
D; = 0; + qu“i—a.
o 70z

where ¢; is the multi-index (0...0, 1,0...0)).

ith

Definition 1.1 An affine D-variety over L is a sub-variety Z of J(A™ 1) defined by a differential ideal
(i.e. a ideal stable under the action of the D;’s).

Example 1 Let Z be an affine variety over L in A"™. Its ideal I generates a differential ideal T of
L[J(A™)]. This D-variety is the space of jet of sections of Z over L denoted by J(Z1).

The varieties Z, = (7.°).2 are defined by the order ¢ equations defining Z.

Definition 1.2 Let Z be a D-variety over L and L C E be a fields extension.
- A E-point of Z is a morphism L|Z] — E over the inclusion.
— A differential point is given by a differential morphism in a differential field.

Remark 1 A E-point of Z is a section of Z over E but a D-E-point is the jet of a section of Zy over
E satisfying the differential equations encoded in the Z,, ¢ > 0.

This construction is a special case of prolongation sequences defined in differential algebraic frame-
work by J. Johnson [14]. Johnson’s construction allows us to replace A’/"L by any L-algebra like L ® L.
C
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1.2 D-linear space over L

Let V be a finite dimensional L-linear space. In this article V' will stand both for the ‘abstract’ linear
space and for the ‘concrete’ variety defined by the L-algebra SymV™* of symetric powers of its dual.

Definition 1.3 A D-linear space over L is a D-variety V over L with a linear structure :

~ there is a L-linear D-invariant subspace LinY C L[V| such that L[V,| = Sym LinV, its symetric
POWETS TiNg,

— the actions of the 0’s on LinV satisfy Liebniz rules.

For a L-vector space V', the set V. = {V(FE)| E is a extension of L} is the set of ‘local sections’ of V'
on L.

1.3 D-Lie groupoid over L

Let’s build the space of order ¢ jets of ‘point transformations of spec L’: J;(L) (J; for short). Let L1
et L® be two copies of L and L[J;] be the L-algebra

1
LW L® |0 1<i<n, aeN", 1<|a| <ql.
C det(z;”)

The spaces J; = spec L[J;] are groupoids over L. This groupoid structure is given by the following
maps. The projections s (for source) on spec L") and t (for target) on spec L?) are self-explained. The
composition ¢ : (J;,s) xp(J;,t) — J; is defined on the order 0 jets by the inclusion of the product L&c L
in L ®c L ®c L in the first and third place. On higher order jets it is defined by using the formulae for
composition of n formal power series of n variables. The inversion is defined by the inversion formulae
for formal power series. These maps satisfy some commutative diagrams [18] (obvious in the framework
of jet spaces). Moreover, one gets derivations

D L[J] — LIJ5,), 1<i<n

defined by
_ A e 5(2) a+e€; 0
D;=0"+) 207+ 90
J Jro J

We set J* = lim J; with ring L[J*] = lim L[J;]. This space is a scheme of ‘countable’ type with a
structure of groupoid over L and a structure of D-variety over L.

Definition 1.4 A D-Lie groupoid over L is a subgroupoid of J* defined by a perfect differential ideal.

Remark 2 The hypothesis ‘perfect’ is not relevant. By a theorem of B.Malgrange, every non-reduced
D-Lie groupoid is in fact reduced. This is proved in the analytic framework in [19].

Example 2 The D-Lie groupoid defined by the ideal (0), i.e. J* itself, is called the groupoid of point
transformations over L on C. Sometimes, it will be denoted by Aut(L/C).
1.4 Prolongation and differential invariants

Definition 1.5 The space of order q frame on specL is Jg(@) — specL) or R, for short. It is
defined by the L-algebra

1
LR =L |, ———=~; 1<i<n, aeN", 1<|a| <k|.
det(r;”)

This space is a principal homogeneous space over L with structural group the linear algebraic group
[y(C") = Jz(C",0 — C",0) acting by source composition.
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Definition 1.6 Let E be a differential extension of L and v =Y v;0; € E ® Der(L). One defines the
L

prolongation of v on R, by

Ry =v+ Z Davi%.

\Dfizq
This prolongation is I'j(C™)-invariant and compatible with the Lie bracket. This allows us to prolong
any Lie algebra of vector fields.

Lemma 1.7 Let N C Der*(L) be the equations of a foliation over L. The equations of the prolongation
of the foliation is the L|R,] ideal R;N C T*R, = Der*(L) & T*(R,/L) generated by
L

w* = Z (g) DA, drf2

with w =Y w;d; € N, dr? = d;

Definition 1.8 Let N C Der*(L) be the equations of a foliation on L. Rational differential invariants
of N (or of Fi : the foliation described by N ) are the invariants (i.e. rational first integrals) of RyN
in L(R,).

1.5 D-Lie algebras over L

Some notations — Let SDer*(L) = L[ay, ..., a,] be the symetric powers ring of the vector space of
differentials of L. The space T}, = spec SDer*(L) is the tangent space of L. For an extension F of L,
Ty (E) is the space of E-point of Tf. The space of order ¢ jets of sections of Ty, over L, Jo(Ty,r) (J; T
for short), is defined by the following ring:

LIJ,TI=Llaf ;1<i<n, aeN", 0<|a] <q].

The space JT and its ring is defined by taking limits. Its ring L[JT] is a D-algebra, the derivation
Der(L) of L act on it by

-0
Di = & + ZG_?H_EZW.
ja “

It is a D-vector space: the linear stucture is given by the L-vector space of linear partial differential
equations LinJ T C L[JT], i.e. the differential L-vector space generated by Der*(L).

The Lie bracket on the vector fields over L with coefficients in E defines a Lie bracket on the space
J T, (D-E) of differential E-points.

Temporary definition 1.9 A D-Lie algebra over L is a sub-D-vector space L of JT such that the
differential points of L are stable under Lie bracket.

A less ‘differential’ definition will be given following B.Malgrange [19]. This definition will use a
prolongation of the Lie bracket on J T called the Spencer bracket and the stability condition will be on
the ‘ordinary’ points of the jet space.

1.5.1 Brackets on JT

There is two brackets defined on J,T". The first bracket is defined on J, 7" and takes values in J,T". It
is called Spencer bracket. It allows us to named JqT" a Lie algebroid [18]. The second one is defined
on fibers of J, T" and takes values in J,_1 T". It is called the fiberwise bracket. By duality each bracket
defines a differential on the system of dual vector spaces.




Spencer bracket — The construction of this bracket (denoted by [.,.]) follows the diagonal method
[16, 19]. Let R(gl) et R,(Iz) be two copies of R,
ARV x RP) —

defined for couples (r,s) of ¢ frames by r o s7' and the morphism of ring induced. This map is the

quotient by the diagonal action of I',(C™) by source composition. The tangent of A :

TAT(RY x BRY) poy — Ty

identifies vector fields on Rél) X Rff) in the kernel of the first projection and invariant under the action
of I',(C") and vector fields on J; in the kernel of the source.
Because the constructions of the ‘vertical” tangent and the jet space commute, one have

T( ;/Lu))‘id ~ JqT'

From an other side, the identification of T'R, with T(R((Il) X R,(f)) /R |diag 18 equivariant under the action
q
of [',(C"). From these identifications, one gets A : TR, — J, T ; it is the quotient by I',(C").

Definition 1.10 The Spencer bracket on sections of J,T is the bracket induced by the Lie bracket on
R,.

By duality, this bracket gives a differential on Lin J,T'.

Fiberwise bracket — This bracket (denoted by {., .} ) is defined by the formulae giving j,—1[X, Y]
in terms of j, X et j,Y for two vector fields on C".

There are several formulae which characterized the Spencer bracket. The relation between the two
brackets is the following

[fiqu; g3qv] = fgldqu, jo} + f Lu(g) Jqv — g Lo(f) jeu
with f et gin E D L, v and v are any E-point of T, j,u stands for the corresponding E-point of J,T°

and L, is the Lie derivative along wu.

1.5.2 D-Lie algebra over L
Definition 1.11 A D-Lie algebra over L is a sub-D-vector space L of JT such that the points of L

are stable under Spencer bracket.

As in the differential case, the D-Lie algebra of a D-Lie groupoid is defined by the vertical tangent
along the identity [18].

Theorem 1.12 ([19]) Let Z be a D-Lie groupoid over L. After identification J,T ~ TJ;
D-vector space TZ/L<1> lia is a D-Lie algebra over L.

/L(1> |z’d; the

Foliations over L are special D-Lie-algebra. Here is the definition used in this article.
Remark 3 A foliation F is a D-Lie-algebra differentially defined by Fo C JoT'.
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1.6 The Galois groupoid

As for algebraic Lie groups and Lie algebras, the main problem for dealing with D-Lie groupoids and
D-Lie algebras is the lack of Lie third theorem. In general a D-Lie algebra over L is not the algebra of
a D-Lie groupoid over L.

Definition 1.13 Let £ be a D-Lie algebra over L. The smallest D-Lie groupoid over L whose D-Lie
algebra contains L s the D-envelope of L.
When L is the D-Lie algebra of a D-Lie groupoid over L, it is called integrable over L.

As foliations are particular D-Lie-algebras, one sets the following definition.
Definition 1.14 Let F be a foliation over L. Its D-envelope is called the Galois groupoid of F over L.

This definition generalizes the definition of the differential Galois group of Picard-Vessiot theory. If
L is the D-Lie-algebra of the Galois groupoid of F, F is an ideal of £. The transversal Lie algebroid
L/F measures the lack on integrability.

The proof of the existence of such a minimal groupoid is done using Noetherianity properties. That
the reason of the hypothese ‘L is finite type field over C’.

2 Maurer-Cartan form and Structural equation

2.1 Maurer-Cartan form

The groupoid J; acts on itself by target composition. Let L), L) be the source and target of a first

copy of J, +(1) and L@ LG be the source and target of a second copy, Jy “(2) The action of the second
jet space on the first one is given by the following map :

J*(l) X (@ J*(2) _)J;(l)

The tangent gives TJ* W XT, o) TJ;( — Tt @)~ Thanks to the connection given by Ji, one gets a

q /L q /L
morphism Ty X e Ji(Jy /L)@)) TJ* . These morphisms, the inclusion of J;+1 — J1(J;/L<2>) and
the trivial identification TJ;/L<1 TJ;/L W XT, o) T2 give

x ( x(1)

By restriction of this morphism on the vertical tangent of .J; () along the identity (on which L() = L®)),
one gets an isomorphism J,T' X, J; 1 — T'J; /L X gz Jy41 which induces a form © on the pull back of the
vertical tangent of T'J; sz on Jy41 with values in J,T'. By associativity this form is invariant under the

action of J*,; by target composition. By construction it is compatible with (fiberwise) Lie bracket.

g+1

Definition 2.1 The form O : TJ;/L Xz Jgp1 — JoT' is the order q (fiberwise) Maurer-Cartan form of
J*.

The (fiberwise) Maurer-Cartan form is the limit © : T'.J* /L — J T where T stand for the shifted tangent.

Definition 2.2 Let Z be a D-Lie groupoid with D-Lie algebra L(Z). The restriction of © on Z takes
values in L(Z). It is the (fiberwise) Maurer-Cartan form of Z.

In the special case of a Galois groupoid Z of a foliation F, one defines the transversal (fiberwise)
Maurer-Cartan form in the following way. The foliation is a ideal of £(Z) one can get the quotient and

Oz : TVZ/L — L(2)F

is the transversal Maurer-Cartan form.



2.2 Cartan’s structural equation

Let © : TJ*

atl/p
structural equation is (see [12] for a proof)

— J,—1T" be the order ¢ Maurer-Cartan form followed by the projection. The fiberwise

~ 1 ~ ~
de = 5{@ N©O}
where d is the relative differential over L. In the special case of a Galois groupoid Z of a foliation F,
the transversal structural equation

~ 1 ~ ~
0z = 3{62 16z}

is satisfied by the transversal Maurer-Cartan form.

2.3 Godbillon-Vey sequences

In order to define Godbillon-Vey sequences, one will assume that L = C(V) for some (pro)variety. Let
Z be a groupoid containing the Galois groupoid of F and

S : spec (L(l) ® L(Q)) — Z
be a section over spec L(Y) . Then by pull-back on gets a L(V-linear map
§0z : LW @ Der(L®) — L(Z)/F
By using a point of V, it can be specialized on C and one gets

GV : Der(L®) — (L(2)/F)]..
A direct computation shows that (E(Z )/ F ) |U is isomorphic to a sub-Lie-algebra g C ¢ of formal vector
fields in d = codivmJF variables.

By construction dGV = GV A GV, first integrals of gy give first integrals of Z and the projection of
GV onto gy C C¢ gives d—(number of independent first integrals) 1-forms defining F.

By choosing a basis of first integrals and a basis of gy over C one gets a sequence of 1-forms in
Der*(L) called a Godbillon-Vey sequence for F given by Z and s.

2.4 For codimension 2 foliation.

By choosing for all order ¢ a base of sections of £L(Z)/F over L'V, the transversal Maurer-Cartan form
gives rise to a family of form in le L satisfying coordinate version of the structural equation. Such

families of forms are classified in [3] in the case of codimension 2 foliations by combinatorial arguments
(see also [6]). The main consequence of this classification used in this paper is the following theorem

Theorem 2.3 If F is defined by a closed 2-form v € A?Der*(L) then at least one of the following
situation occurs

e the Galois groupoid of F is intransitive: there is a first integral in L;

o the Galois groupoid is imprimive in codimension one: there is a form w C Der*(L)such that
wAdw=0andw=0 onF.



o the Galois groupoid is transversally affine: there are an algebraic extension L of L, two 1-forms
61 and 6 in L ® Der*(L) vanishing on F and three 1-forms wy1,wi,wa1 in L @ Der*(L) such

that
d th _ W11 Wiz A th o d Wi,1 W12 _ Wi,1 W12 A W11 W12
0 W1 —Wi,1 6 Wo1 —Wi,1 W1 —W1,1 W21 —Wi,1
e the Galois groupoid of F is the groupoid of invariance of .

3 The Galois groupoid of P, over K

The theorem 2.3 will be used to compute the Galois groupoid of the first Painlevé equation: y” = 6y*+x
over any ordinary differential extension K on C(x). The derivations is denoted by a%. The vector field
over K(y,y') defining the first Painlevé equation is

o 0, 0

Its foliation JF7 is defined by the closed 2-form
y=dyANdy —y'dx Ady + (6y° + z)dx A dy.

Theorem 3.1 For any differential extension K of C(x) of finite type, the Galois groupoid of Fi over
L = K(y,y') is the groupoid of invariance of .

In order to study the properties of the vector field X, weight on variables are introduced following
[28]. The elements of K have weight 0. The variables y and 3’ have respectively weights wy = 2 and

wy’ = 3. The degree induced by this weight will be denoted by d,,. The vector field has a decomposition
X, = 6% + X, +xaiy, into homogeneous composants of weights 0, 1 and —3. The ‘simplified’ vector field

0 0
Xo=y — +6y*—
’ dy oy

comes from the Hamiltonian u = 3 — 49® on C2. For this reason it is easier to study X; by mean of
Xo.

3.1 Some lemmas on X

The missing proofs of the following lemmas can be found in [28].

Lemma 3.2 If R is a homogeneous first integral of Xo in Kly,y'] then R = au? with a € K.
Lemma 3.3 If R is homogeneous and satisfies XoR = a u? for some a € K then R =a = 0.

Lemma 3.4 If R is homogeneous and XoR = ay with a € K then R =a = 0.

3

Lemma 3.5 The equation XoR = ot b, with a and b in K(u) has a solution if and only if a = 5c u
et b= —%c with ¢ € K. In this case, the homogeneous solution is R = cﬁ.

Proof. — Set R= %%5 + Ry then XoR = 1% — %% + XoRy. Lemma 3.3 asserts that XoRy = b+ %%
has no non zero solution. ([l



Lemma 3.6 The equation XoR = y <;% + b), with a and b in K(u) has a solution if and only if

a = 3ub. In this case, the homogeneous solution is R = QbZ—?.

Proof. — Let R be such a rational function and write R = 2b§ + (a — 3bu) Ry then XoRy = # In
coordinates y, u, Ry is equal to A+ y/4y3 + uB with A ans B in K(y) and the equation is

0A 0B
— =0 and (4¢3 — +6y°B =
o an (y—l—u)ay—Fy

Y
dy3 +u

Then A is in K (u) and B can be written B = —2— for a P € K (u)[y] of degree n and some integer

4y3+u)m
m. A direct computation shows thant m must (be 1 and n can not be integer. This proves the lemma.

0

3.2 The Galois groupoid is transitive

Proposition 3.7 There is no first integral of X1 in K[y, /|

Proof. — Let R = ZhM:m Ry, be the decomposition of R in homogeneous composantes with Ry, # 0.

The equation
M

8Rh+1 aRh+3
XiR = XoR =0

implies % + XoRy + xaRa};” =0,YVhe{m—3,...,M}.

e h = M. The equation is XoRy = 0. By lemma 3.2, Ry; = a u* with a € K and M = 6k.

e h = M — 1. The equation is XoRy—1 = —a’ v*. By lemma 3.3, Ry;_q1 = a’ = 0.

e h=M —2 and M — 3. The equation is XoR; = 0. By lemma 3.2, R,=0.

e h = M — 4. The equation is XoRy—4 = —za2k v 1y'. By lemma 3.2, Ry;_y = —xa2k u*1y.
e h = M — 5. The equation is XoRy_5 = a2k v*~'y. By lemma 3.4, Ry;_5 = a = 0.

This gives a contradiction and proves the proposition. ([l
Corollary 3.8 There is no invariant divisor for X,

Proof. — Suppose that there exist P and L in K[y, 3/| for K a differential extension of C(z) such
that X, P = LP. Because 0,,(X;P) < 6,P + 1, one has 6,,L < 1. But in K[y, ] there is no weight 1
element and L = ¢ € K has weight zero. Let K‘ be an extension of K by a solution of €' +ef = 0. One
checks that eP is a first integral of X; in K*[y,4/]. By the previous proposition, P is zero. O

Corollary 3.9 There is no first integral of Xy in K(y,v/)

3.3 The Galois groupoid is imprimitive in codimension one

If there is an integrable 1-form on C? vanishing on X; with coefficient in K (y,y), w = Adz+ Bdy+Cdy/,
it can be supposed to be polynomial and the coefficients have no common divisor.

Lemma 3.10 If this form w exists then for a extension K* of K, there is a 1-form w* over K*[y,y/]
satisfying ix,w* =0 and ix,dw* = 0.



Proof. — Let w be such a 1-form. Because it is integrable, dw = aAw for a 1-form « with coefficients
in K(y,y'). Take the inner product with X : iy, dw = Lw with L = «a(X;). Because these two 1-forms
are polynomial and the coefficients of w do not have common divisor, L must be in K[y, y']. Its degree
dwL is strictly less than two then L = ¢ € K. Let K* = K(e) for a solution of € + el = 0 and w* = ew.
Then ix,dw* = 0. O

Proposition 3.11 There is no integrable 1-form over K(y,y') such that ix,w =0 and ix,dw = 0.

Proof. — As for the proposition 3.7, computations will be decomposed following the weight. Let w
be a 1-form given by lemma 3.10. The weight decomposition is w = Zﬁim wy. Let’s have a look to the
equations satisfied by the five terms of highest weight.

e i = M. The equations are wy(Xo) = 0 and ix,dwys = 0. From these equations and lemma 3.2,

wiyr = ay uPdx + by uP~rdu, apr and by in K.

e h =M — 1. From the first equation wy;_1(Xo) = —ay uP, one gets

apy uP
/

dy.

Wy—1 = ap—1dx + byr—du —
The second equation is ix,dwyr—1 + ¢ o dwyr = 0. Computing the terms of this sum one gets
= ixgdwar1 = (Xoan—1 + al, uP) da + (XObM,1 +anp W — T“) du,
- iagde = (Vyy uP~ — app uP™t) du.

This gives

- Xoap—1 + dyu? =0, by lemma 3.3, a;, = ap—1 = 0;

P — —
- Xoby—1 = 45 — Vyu? 1 by lemma 3.5, 60y, = ap; and byr_y = 20}, uP 1%.

One has

1
WM—1 = Qg up_lidu — ay uP—dy.
3y’ Yy

e h =M — 2 and M — 3. The equations are wp(Xg) = 0 and ix,dw;, = 0, by lemma 3.2, w, = 0.
e h =M — 4. The first equation is wyr—4(Xo) + wM(xaiy,) = 0. The fourth 1-form can be written

War—a = apr—adx + byy_gdu — 2byx uP " dy.
The second equation is ix,dwpr—4 + 17, 2 dwyr = 0. One computes these two terms:
- ixydwir—a = (Xoanr—q + 2y uP~H(bps + xbyy)) do + (Xobar—a + 22y’ (p — 1)uP~2byy) du;
- iza%/de = (ap2xy’ puP~™t — 0y, 20y wP~1) dx.
This gives
- Xoan—g = =2uP~ 1y (bys + panz);

- Xobp—g = —2uP7%y (p — 1)xbyy.
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These equations are easily solved and

wyr—a = —=2(bar + payz)yu? ™ de — 2(p — 1)byxy wP~du — 2byx uP~ dy.

e h =M — 5. The first equation is wy;_5(Xo) + wM_4(%) + wM_l(xa%,) =0.
From wyy—4(Z) = —2(bas + payz)y uP~! and wM,l(:caiy,) = 2ayxy uP~, one gets

2
War—5 = ap—sdx 4 bp_sdu + <2bM +(2p — §>GM$> glupfldy'
Y

The second equation is ix,war—5 + % 2 WAr—g +1, 2 wp-1 = = 0 and gives ¢ ol @XOwM 5+1 2 Ty 2 wp-1 = =0.
This equation is equivalent to XOCLM,E) = (2p — —)aMyup ! By lemma 3 4, apy = apy—5 = 0 and the
second equation is Xoby—5 = uP~2bary (2(]9 —-1)— ) This implies by; = 0 by lemma 3.6 and gives a

contradiction. O

3.4 The Galois groupoid is not transversally affine

The aim of this section is to prove the following proposition
Proposition 3.12 There does not exist alsy-sequence for Fx,.
The proof will be decomposed in several lemmas.

Lemma 3.13 If there exists a asly-sequence for the foliation of Py, there exists a polynomial one with
0, = dy — y'dzx and 0, = dy' — (6y* + x)dw.

Proof. — Let O the vector of forms (51, 52)T and Q be a asly-sequence for P, with coeffcients in an
algebraic extension L of K(y,y'). One has © = F O for a matrix with coefficients in L. Because P, has
no first integrals, det F' must be a constant. Then © can be completed in a asly-sequence for Py by the
matrix Q = dFF~! + FQF~!.

Suppose that the coefficients of Q2 are not in K(y,%’). One can find two matrices 2 and Q satisfying
the asly equations beginning with ©. This implies that the D-Lie groupoid of invariance of these two
transversally affine stucture admits a order one equation. From E. Cartan [] (see also []), one gets a
codimension one foliation vanishing on X;. Then section 3.3 proves that the coefficients of 2 are in
K(y,y).

Let f be the equation of an irreductible component of the polar locus of 2. Let’s write 2 = f%Qp—i—Qo
with €y et 2, polynomial and €2, not divisible by f. From the asl;-equations, one gets 2, A© = 0 and

anQ /\df+fnde+on o Q A, +f (Q0 Ay + 2, AQg) + Qo A Qo

The contraction by X gives

L.
FZdep—Ff 1

thus X f is divisible by f and f is a constante.

Xpr + szQQ fn (Qo(X)Qp - QpQQ(X)) + Qo(X)QO - QoQo(X)

11



Because
d@l - O dl’ A 01
dfy)  \12ydz 0 0y

01

one has

0
1
in the basis (dx, 6, 6s), one gets the following system of p.d.e.’s on A and B :

(
00 01
cavin (50 - [(0 1) ]

() { XB+A-= Klgy (1]) ,A]

where A and B are matrices of polynomials such that A < ) =B ((1)) . Writing the equation d{) = QAQ

0B 0A
— — - = [A, B
( dy Oy
Lemma 3.14 6,A =6,8B + 1.
Proof. — This comes from the previous system of equations. From the first one, one gets maz(d,, A+

1,0uB +2,0) > 0,5 where S stand for the right hand side of the first equation from (E). If §,A + 1 #
owB + 2 then one gets equality. One gets also 6,5 < 6,A + 2. This implies 6,A > 6,B. From the
second equation of (E), one gets dyA < d,B + 2.

If 6,B =0 then A = Ay + Ao with A; and Ay in Mayo(K). The first equation gives

/ P 00 00 01 00 01
eafsaern=(0) = | (10) 4o+ ([ (00) ]« (20) ] )=o) ]
This implies

01 p 00 01
A =0,B= KOO) ,AO} and A) (120) _ KOO) A]

The second equation gives
, (01 00
weso=((5o) 2] +0|(20) 2]

00 b 0
b (00 wia- (1)

From the equality A (?) =B ((1)), one gets b =0 and A = 0. This is a contradiction.

This implies

In the case 0,A = 0, B, let A,, and B,, be the homogeneous part of weight m = d,A. Taking
homogeneous part of the equations (F), one gets :

( (00 ]
Bm_ -(1 0) 7Am_

/00 -
0= _(10>,Bm_ .




00
by, O

—by, 0

mbm

). The third one implies A,, = ( ) The first

From the second equation, one gets B,, = (

one gives the contradiction.

In the case §,A = 4, B + 2, computation are done in the same way. The weight d,,A + 2 equations

gives A, = (ao 8) The weight 6, A+ 1 equations are XyA,, = 12y {((1) 8) ,Am_l} and A,,_; ((1)) = 0.
This implies A,,_1 = <a 0 8) and Xga,, = 0. Finally the weight d, A equations are :
m—1

00 01
0Am _
Fr+ XoAp1 +12yBy, 2 = 12y {(1 0) 7Am21 + {(0 0> ;Am:|

Ay = 12y K(l) 8) ,Bm_z}

0= [Am7 Bm—2]
The third equation implies [((1) 8) ,Bm_2:| = 0 then A,, = 0. This contradiction proves the lemma. [J

Proof of propotion 5.12. — Let A,, the homogeneous part of weight m = d,,A of A. Homogeneous
part of weight m + 2 of equations (F) gives

00 00
(1) 0] =0 ms a,= (0 0).

Homogeneous part of weight m + 1 of equations (E) gives

(

XoAm + 12yByy = 12y K(l) 8) ,Am_l}

[
e ) -}

For the second and third equation one gets
- 0 0 o _bm—l 0
Bm,1 = (bm_l 0) and Am,1 = ( 1 bm_l) .

| Xom = —36ybn 1 |

Then the first equation is

Homogeneous part of weight m of equations (E) gives

( 00 01
d:;% ‘I‘XOAm—l + 12me_2 = ]_2y |:<1 0) 7Am—2:| + |:(0 0) 7Am:|

00

(

[Am7 BmfZ] + [Amfla Bmfl} =0

s (1) =2 )
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The third equation gives

00 (0 0 (B2 Ja, O
(o) 2] = (2 0) s = (527 )

The fourth gives
(_me b?n—l/am)
Am_Q — )

Ap—2 bmf2

and the second gives Then the first equation is

b2
Xob + ay, = 24y -

m

Let’s have a look to the equations satisfy by a,, and b,,_1, denoted by a and b in the sequel :

Xoa = —36yb

bZ
Xob=24y— —a
a

“(3)-m() -

b
Lemma 3.15 With previous notation, y*— € K|y, v].
a

These equations imply

Proof. — Let’s show that for any n € N, y?"~ “’ is a polynomial. This is true for n = 1 because

Xob = 24y§ — a and a, b are polynomials and X has polynomial coefficients. For the same reason, it
si true for n = 2 :

5 b & b
X (y —) — 84y3—2 —2y%b + 2y'y—.
a

2n3b 2n5b’

Now assume that it is true for y —— and y . Then because

2n—2 b" 2n—3, / b" 2n—2 o !
Xoly prl B (2n = 2)y™" "y pret’ (60n — 36)y prra L

it is true for y?*! b " Let’s write b = yPIIB" and a = qua 7 the factorization in irreducible elements,

one gets (n+ 1)p —|— 2n —1>ng and (n+ 1)n; > nm,;. Let n be large enough, this prove that p+2 > ¢
and n; > m;. This proves the lemma. O

Now one can finish the proof on proposition 3.12. Becaus a is homogeneous of weight m, b of weight
m — 1 and y of weight 2, yzg is a homogeneous polynomial of weight 3. Such a polynomial is ki’ for

somme k € K thus g = k:;’—; One can compute

Xl = ok 2%k~
a y
and

b 2
60y <—) — 1= 240k% — 1 + 60k>—
a y

Such a k cannot exist. This proves the proposition

14



4 Local irreducibility of P,

A differential equation is said locally reducible if there exists a field extens
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