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Résumé

Nous nous intéressons à la notion d’intégrabilité par quadratures discrètes pour les systèmes
aux différences algébriques. Nous montrons que les groupes de Galois des équations variation-
nelles discrètes le long des solutions algébriques d’un système aux différences intégrable sont
virtuellement résolubles. Cette condition nécessaire à l’intégrabilité, dans la veine de la théorie
de Morales et Ramis, est ensuite utilisée pour montrer que deux types d’équations de Painlevé
discrètes ne sont pas intégrables par des quadratures discrètes.

Abstract

We give a necessary condition for integrability of a difference system by means of discrete
quadratures : the discrete variational equations along algebraic solutions must have almost
solvable Galois groups. This necessary condition à la Morales and Ramis is used in order to
prove that q-analogues of Painlevé I and Painlevé III equations are non integrable by discrete
quadratures.
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∗address : IRMAR UMR 6625, Université de Rennes 1, Campus de Beaulieu 35042 Rennes Cedex - France ;

E-mail : guy.casale@univ-rennes1.fr
†address : Institut Fourier - UMR5582 Institut Fourier, 100 rue des Maths, BP 74 38402 St Martin d’Heres -

France ; E-mail :Julien.Roques@ujf-grenoble.fr

1



5 A linearization theorem 10
5.1 Variational equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Nonintegrability of a discrete Painlevé I equation 11
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Introduction

In this paper, we develop a technique à la Morales-Ramis in order to study the integrability by
discrete quadratures of general algebraic difference equations and we give two applications to q-
Painlevé equations. More precisely, we prove:

Necessary condition for integrability. If an algebraic difference equation is integrable by dis-
crete quadratures then the Galois groups of its discrete variational equations (of all order) along
algebraic particular solutions are virtually solvable.

and we use this result in order to prove that q-analogues of Painlevé I and Painlevé III equations
are non integrable by q-quadratures. For the original Morales-Ramis theory, we refer to the work
of Morales and Ramis [24, 25] and of Morales, Ramis and Simo [26]; for its ramifications and its
innumerable applications, see [19, 27] for instance.

Our work heavily relies on the Galois pseudogroup introduced by A. Granier [14] following ideas
of B. Malgrange [21]. The basic strategy is to prove, using Artin approximation theorem, that the
pseudogroup of an algebraic q-difference equation controls the Galois group of its linearization along
any particular solution. The above necessary condition for integrability is then deduced from the
fact that the pseudogroup a difference equation integrable by discrete quadratures is infinitesimally
solvable.

This paper is organized as follows. In sections 1, 2 and 3 we recall the definition of Malgrange
pseudogroup and we prove its infinitesimal solvability in the integrable case. In section 4 we recall
useful results regarding the Galois theory of linear q-difference equations. In section 5 we prove the
above necessary condition for integrability. In section 6 and in section 7 we prove that q-analogues
of Painlevé I and Painlevé III equations are non integrable by quadratures.

1 Frame bundles and prolongations

Let M be a smooth irreducible affine algebraic variety over C of dimension d with coordinate ring
C[M ]. Classical constructions from differential geometry will be presented algebraically by means
of their functors of points [17, 21]. The formal frame bundle of M is the complex proalgebraic
variety RM of all formal invertible maps r : (Cd, 0) → M . More precisely, for any C-algebra A,
the A-points of RM are given by

RM(A) = {locally invertible C-algebra morphisms f : C[M ]→ A[[t]]}

where A[[t]] = A[[t1, . . . , td]] is the ring of formal power series in the indeterminates t1, ..., td.
A C-algebra morphism f : C[M ] → A[[t]] is said to be locally invertible if its scalar extension

fA : A[M ] → A[[t]] induces an isomorphism dfA : J/J2 → (t)/(t)2 where (t) = (t1, . . . , td) is
the ideal of A[[t]] generated by t1, ..., td and where J = f−1

A (t); it is equivalent to require that
fA induces an isomorphism f̂A : Â[M ], J → A[[t]] (see [23]). The algebra C[RM ] of this variety
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is built up from the differential algebra C{M} generated by C[M ] with d commuting derivations
∂
∂t1
, . . . ∂

∂td
by adding det

[
∂
∂ti
xj
]−1

for any transcendence basis x1, . . . , xd of C[M ] over C. The
projection on M is given on the A-points by f → f/(t).

The ring C[RM ] is filtered by the subrings C[RM ]k of differential polynomials of order less
than or equal to k. The ring C[RM ]k is the coordinate ring of the order k frame bundle RkM of
M . For any C-algebra A, the A-points of RkM are given by

RkM(A) = {locally invertible C-algebra morphisms f : C[M ]→ A[[t]]/(t)k+1}

A derivation or an endomorphism of C[RM ] is said to be of degree less than or equal to n if it
maps C[RM ]k in C[RM ]k+n for all k ∈ N.

1.1 RM has a canonical parallelism

One gets a morphism from the C-Lie algebra χ of formal vector field on (Cd, 0) to the C-Lie algebra
of vector fields on RM of degree less than or equal to 1. Let A be a C-algebra. For any A-point
Z ∈ χ⊗̂A of χ, the map

RM(A) → RM(A[ε]/(ε2))
f 7→ (I + εZ) ◦ f

defines a vector field on RM . One can check that images of non vanishing vector fields (at 0 ∈
(Cd, 0)) have degree 1 but images of vanishing vector fields have degree 0. This Lie subalgebra is
denoted by χ0.

At each point f of RM , the image of χ spans TfRM and its Lie subalgebra χ0 spans the relative
tangent Tf (RM/M).

1.2 RM is a principal bundle

Let Γ be the complex proalgebraic group whose A-points are :

Γ(A) = {invertible (t)-continuous A-algebra morphisms g : A[[t]]→ A[[t]]}.

This group acts on RM and the quotient RM/Γ is M . This action has degree 0 and integrates
the infinitesimal action of its Lie algebra χ0. This group is the projective limit of the complex
algebraic groups Γk indexed by k ∈ N whose A-points are

Γk(A) = {invertible A-algebra morphisms g : A[[t]]/(t)k+1 → A[[t]]/(t)k+1}.

1.3 RM is a ‘natural’ bundle

Let us consider two points p, p′ of M . Let ϕ be an isomorphism from be the formal scheme M̂, p

with ring Ĉ[M ], p to the formal scheme M̂, p′ with ring ̂C[M ], p′. We have a natural lift Rϕ of ϕ :

Rϕ : R̂M, p = M̂, p ×
M
RM → R̂M, p′ = M̂, p′ ×

M
RM

defined, for any f : ̂C[M ], p′ → A[[t]], by Rϕ(f) = f ◦ ϕ. This isomorphism has degree 0. The
prolongation ϕ→ Rϕ has degree 0 with respect to the induced graduations.

Let p be a point of M and let X be a formal vector field at p i.e. I + εX is a morphism from
Ĉ[M ], p to (Ĉ[M ], p)[ε]/ε2. We have a natural lift RX of X :

RM(A) → RM(A[ε]/(ε2))
f 7→ fε ◦ (I + εX)

where fε is the prolongation of f sending ε to itself. These prolongations commute with the actions
of Γ and χ.
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1.4 C[RM ] is a differential ring

The fact that C[RM ] is a differential ring is clear from its definition but the differential structure
is not canonical. Let h be a Lie algebra such that χ = h +χ0. Then C[RM ] is a localization of the
h-differential ring generated by C[M ].

By duality on gets a differential d : h∗ → ∧2h∗. The action of h gives a total derivative
D : C[RM ] → C[RM ] ⊗ h∗. It can be prolong into D : C[RM ] ⊗ ∧nh∗ → C[RM ] ⊗ ∧n+1h∗ by
D(f ⊗ h∗) = Df ∧ h∗ + f ⊗ dh∗ and, by Jacobi identity, DD = 0.

2 Groupoids and Algebroids

2.1 The groupoid EM

The product EM = RM ×RM has a structure of groupoid on RM given by

• two projections s and t onto the first and the second factor respectively,

• a composition c : EM ×
tRMs

EM → EM : the projection on the first and third factors,

• an identity e : RM → EM : the diagonal,

• an inverse i : EM → EM exchanging the two factors.

These maps have order 0 and satisfy some commutative diagrams [20]. This product situation is
the prototype of groupoid. Subgroupoids of EM are algebraic equivalence relations on RM .

This space is endowed with two commuting prolongation procedures for vector fields on M . The
first one, the source prolongation of X, RsX is defined by RX on s∗C[RM ] and 0 on t∗C[RM ].
The target prolongation is defined in the same way (mutatis mutandis). These prolongations of
vector fields can be integrated at the formal maps level.

2.2 The groupoid AutM

The group Γ acts diagonally on the product RM × RM = EM . The quotient EM/Γ has two
projections on RM/Γ = M still denoted by s and t. The groupoid structure of the direct product
induces a groupoid structure on the quotient still denoted by c, e and i. This groupoid is AutM .
Points of this space can be identified with formal maps ϕ between formal neighborhoods of points
in M : let f, g be two A-frames on M and let f̂A : ̂A[M ], f−1(t)→ A[[t]], ĝA : ̂A[M ], g−1(t)→ A[[t]]
be the corresponding formal completions, then

RM(A)×RM(A) → AutM(A)
(f, g) 7→ (f̂A)−1ĝA

is the quotient map. Because source and target prolongations commute with Γ they provide
prolongations on AutM still denoted by Rs and Rt.

One can find RM from AutM by choosing a closed point p ∈ M and a formal C-frame at p,
r : (Cd, 0)→ (M,p). The part Aut(p,M) of AutM above {p}×M for the (source,target) projection
can be identified with RM by means of r. Two such isomorphisms are related by the action of Γ.
All these maps are compatible with the filtrations of rings.

This groupoid has a differential structure coming from the differential structure of RM . Any
section r : M → RM of the projection (a moving frame on M) can be used to trivialize some
bundles:

• TM = M × h by (p, v) 7→ (p, Tpr̂(p)
−1
v),

• M ×RM = AutM by (p, f) 7→ f−1 ◦ r(p),
and one gets

C[AutM ]→ C[RM ]⊗C[M ] D⊗1→ C[RM ]⊗h∗⊗C[M ]→ C[RM ]⊗Ω1(M)→ C[AutM ] ⊗
s∗C[M ]

Ω1(M)

giving the differential structure D of the ring C[AutM ]. Because gauge transformations act tran-
sitively on moving frames, this definition is independent of r.
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2.3 Subgroupoids and pseudogroups

There are two possibilities to define subgroupoids of Aut(M). The first one is to consider algebraic
subvarieties of Aut(M) (projective limits of subvarieties of Autk(M)) such that restrictions of
source, target, composition, identity and inverse maps give a groupoid structure. The second one
is to take limit of groupoids i.e. G = lim

←
Gk with Gk a subvariety of Autk(M) and a subgroupoid

for k large enough.
These objects are too smooth for our purpose and for this reason we introduce singular sub-

groupoids.

Definition 2.1 A singular (sub)groupoid of AutM is an algebraic subvariety of AutM : G = lim
←
Gk

with Gk a subvariety of Autk(M) and a subgroupoid of Autk(M − S) for k large enough and S a
closed subvariety of M independent of k.

From the differential structure one gets also the notion of differential subvarieties. A D-variety
(for short) is an algebraic subvariety defined by a differential ideal I (i.e. such that DI ⊂ I ⊗
Ω1(M)).

Definition 2.2 A subpseudogroup G of AutM is a singular algebraic groupoid given by a differ-
ential ideal (they are called D-groupoids in [21]).

2.4 The Lie algebroid eM

The Lie algebroid of RM ×RM is the relative tangent bundle for the source projection above the
diagonal. It is a vector bundle over RM canonically isomorphic to its tangent TRM .

The pull back of the usual Lie bracket of vector fields on the sections of TRM defines a Lie
bracket on the sections of eM . It is compatible with the graduation i.e. it induces a bracket on
the projectable vector fields on TRkM . It is obvious that such objects satisfy the definition from
[20]; we will only use concrete examples.

A Lie subalgebroid of eM is a linear subspace of eM in the sense of [15] stable by the bracket.
The relative tangent bundle for the source projection of a singular subgroupoid of EM is a Lie
algebroid.

Example 2.3 A foliation on M defined by F ⊂ TM gives by prolongation of sections a foliation
RF ⊂ TRM stable under Lie bracket. It is a Lie subgroupoid.

Example 2.4 An equivalence relation E ⊂M×M gives by prolongation of sections an equivalence
relation on EM i.e. a subgroupoid. Its Lie algebroid is the Lie algebroid defined by the foliation of
M by equivalence classes of E.

Remark 2.5 If F has no first integrals, it cannot be the foliation by equivalence classes of an
equivalence relation thus it is not the Lie algebroid of an algebraic groupoid (even singular).

2.5 The Lie algebroid autM

This Lie algebroid and its Lie subalgebroids are defined from the previous one by taking quotients.
Because the identity e : M → AutM is a differential morphism for differential structures d on

C[M ] and D on C[AutM ], the tangent bundle along e inherits a differential structure. Further-
more because these structures are compatible with source projection, the relative tangent bundle
autM has also a differential structure i.e. it is a C[M ]-module with connection. Lie algebroids of
pseudogroups are Lie algebroids with a connection above the exterior derivative on C[M ].

Let G ⊂ AutM be a pseudogroup, p ∈ M be a closed point not in the singular locus S of G
and G(p,M) = s−1(p) ∩G. By choosing a formal frame r : (Cd, 0) → (M,p) at p, one can identify
G(p,M) with a subvariety of RM . By groupoid laws, this subvariety is a G(p,p)-principal bundle
over M − S with G(p,p) = s−1(p) ∩ t−1(p) ∩G. This defines a Lie subalgebra g of χ. By choosing
another frame at p, one gets another Lie subalgebra conjugated to the previous one under the
action of Γ. This g will be called ‘the’ Lie algebra of G at p.
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2.6 Some properties of pseudogroups

A pseudogroup G is usually not an algebraic groupoid but only out of a singular locus. Nevertheless
it defines a set theoretical groupoid.

Theorem 2.6 Let ϕ1, ϕ2 be two composable formal maps in neighborhood of two C-points and let
G be a pseudogroup. If ϕ1 and ϕ2 are in G so is ϕ1 ◦ ϕ2.

The proof of this theorem can be found in [8, theorem 1.5]. The main ingredient of the proof is
Artin approximation theorem (already used in a special case in [26]).

A consequence of this theorem is that G(p,p) is a group for any point p and G(p,M) is a G(p,p)

principal bundle over t(G(p,M)) ⊂ M . The proof of the previous theorem has also the following
consequence proved in [8, lemma 3.3].

Lemma 2.7 If the Lie algebra of a pseudogroup at a generic point is solvable with a sequence of
derived algebras of length N , so is its Lie algebra at any point.

3 Malgrange’s pseudogroup

3.1 Definition

A set theoretical pseudogroup on M is a set of analytic invertible maps ϕ : U → V between analytic
open sets of M stable by composition (when defined), inversion, restriction, analytic continuation
(under the invertibility condition).

Let Φ : M 99K M be a rational dominant map. The pseudogroup PGΦ is the set theoretical
pseudogroup generated by the restrictions of Φ to any open subset where it is invertible. Such a
set of invertible maps describes a subset of AutM by taking all Taylor expansions of every map at
every point where it is defined. This subset of AutM is still denoted by PGΦ.

Definition 3.1 Let M be a smooth complex algebraic variety and let Φ : M 99K M be a rational
dominant map. The Malgrange pseudogroup MalΦ of Φ is the Zariski closure in AutM of the set
theoretical pseudogroup PGΦ generated by Φ.

We have to prove that such an object is an algebraic pseudogroup.
Proof. – Let Z be the Zariski closure of PGΦ in Aut(M). Because Aut(M) acts on itself

by target composition, one can look at the stabilizer of Z. It is proved in [5] that it is a singular
groupoid included in Z. Let RtΦ be the action of Φ on Aut(M). It is a dominant map of
order 0 from Aut(M) to Aut(M). Because RtΦ(PGΦ) = PGΦ, RtΦ−1(Z) ⊃ Z by minimality
Z = RtΦ(Z). Thus formal invertible germs of Φ are in the stabilizer of Z, by minimality Z is equal
to its stabilizer and Z is a singular groupoid.

Let ϕ ∈ PGΦ be a map defined on an open set U . By its pointwise Taylor extension ϕ is
an analytic section of the source projection ϕ : U → AutM . This section is differential for the
differential structure d of O(U) and D of C[AutM ] i.e. the morphism ϕ# : C[AutM ] → O(U) is
differential. Let I be the ideal of Z. Then E ∈ I can be written ϕ#E = 0 for all ϕ ∈ PGΦ, this
implies ϕ#DE = 0 for all ϕ ∈ PGΦ and I is differential. �

Theorem 3.2 Let M and N be two smooth complex algebraic varieties endowed with rational
dominant maps Φ : M 99K M and Ψ : N 99K N . A rational dominant morphism π : N 99K M is
a difference morphism if π ◦ Ψ = Φ ◦ π. In this situation, one gets a rational dominant groupoid
morphism

π?MalΨ 99KMalΦ.
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Proof. – One defines the algebraic pseudogroup Aut(Fπ) as the singular groupoid whose
points are the formal invertible π-projectable maps :

Aut(Fπ) = {ϕ ∈ Aut(M) | ∃π?ϕ ∈ Aut(N) s.t. π ◦ ϕ = (π?ϕ) ◦ π}

The projection of such a map induces a map

π? : Aut(Fπ) 99K AutM.

The map Ψ preserves the foliation given by level sets of π thus MalΨ ⊂ Aut(Fπ). Let π?MalΨ
be the Zariski closure of the image of MalΨ. Because Ψ is π-projectable on Φ, this is also true for
PGΨ on PGΦ and MalΦ ⊂ π?MalΨ. But π−1

? MalΦ is an algebraic pseudogroup containing any
map π-projectable on a map in MalΦ thus MalΨ ⊂ π−1

? MalΦ. The theorem follows from this
inclusion by applying π?. �

Remark 3.3 In usual Galois theory this theorem just states that if Q ⊂ L ⊂ M is a tower of
number fields such that M/Q and L/Q are galoisian extensions then the small Galois group is a
quotient of the big one.

3.2 Examples

q-Liouvillian functions

Definition 3.4 (Franke [12]) Let (C(t), σ) be the difference field of rational functions with dif-
ference operator σ a Moebius transformation. A difference extension (K,σ) of (C(t), σ) is said to
be σ-Liouvillian if one can find a tower of differential extensions

(C(t), σ) = (K0, σ0) ⊂ (K1, σ1) . . . ⊂ (Kn, σn) = (K,σ)

such that, for all i ∈ {1, ..., n}, the extension Ki−1 ⊂ Ki is either

• algebraic,

• or additive in the sense that there exist ni ∈ N and zi ∈ Ki such that σni
i zi − zi ∈ Ki−1 and

Ki = Ki−1(zi, . . . , σni−1
i zi),

• or multiplicative in the sense that there exist ni ∈ N zi ∈ Ki such that σ
ni
i zi

zi
∈ Ki−1 and

Ki = Ki−1(zi . . . , σni−1
i zi).

The σ-Liouvillian functions are elements of σ-Liouvillian extensions.

Assume that K is Liouvillian and that the transcendence degree of K over C is d = 1 +
∑
i ni.

Let N be a model for a field L i.e. C(N) = L. Because this field is a difference field, N is endowed
with a rational map Ψ.

Proposition 3.5 The Lie algebra of the Malgrange pseudogroup of Ψ at p ∈ N is solvable.

Proof. – Let m be the smallest common multiple of ni’s and z0 = t, z1, . . . , zd be a transcen-
dence basis in the partial order given by the definition. We have

σm(zi) = ai(z0, . . . , zi−1) + zi

in the additive case and
σm(zi) = bi(z0, . . . , zi−1)zi

in the multiplicative case.
By lemma 2.7, it is enough to prove the proposition at a generic point. There exist some

special rational differential 1-forms θ0, . . . , θd on W satisfying, for all 0 ≤ i ≤ d, (Ψm)∗θi = θi
mod (θ0, . . . , θi−1). The construction of these forms is direct from the definition of the σ-Liouvillian
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extensions. The forms are θ0 = dt = dz0 and, for all 1 ≤ i ≤ d, θi = dzi in the additive case or
θi = dzi

zi
in the multiplicative case.

The equations (Ψm)∗θi = θi mod (θ0, . . . , θi−1) for 0 ≤ i ≤ d are a synthetic way of writing in-
finitely many algebraic equations satisfied by elements of PG(Ψm). The Lie algebroid of Mal(Ψm)
at a point p must be included in the solutions of the linearized equations : the vector fields Y in
the Lie algebroid must satisfied LY θi = 0 mod (θ0, . . . , θi−1). Let p be a generic point on N and
t1, ..., td be local analytic coordinates such that dti = θi. The vector field Y can be written

Y = c0
∂

∂t0
+ c1(t0)

∂

∂t1
+ c2(t0, t1)

∂

∂t2
+ · · ·+ cd(t0, · · · , td−1)

∂

∂td
.

The (d+ 1)th derived algebra of this type of Lie algebra of formal vector fields is trivial.
The theorem is proved for Ψm. To prove it for Ψ, remark that equations of invariance of

differential invariants for Φm give partial differential equation satisfied by Φ and all its iterated
and inverse branches. The lilnearization of such equations along the identity is the linearisation of
equation of invariance we started with multiplied by m. Then at the Lie algebra level mal(Ψ) ⊂
mal(Ψm). The other inclusion is easy to prove to get equality. This proves the theorem. �

Rational systems integrable by σ-quadratures

Definition 3.6 Let 
σy1 = E1(t, y1, y2, . . . , ym)
...
σym = Em(t, y1, y2, . . . , ym)

be a rank m system of rational σ-difference equations. This system is said to be integrable by
σ-quadratures if there is a σ-Liouvillian solution (f1, . . . , fm) such that C(t, f1, . . . , fm) is σ-
isomorphic to {C(t, y1, . . . , ym)}σ/I where {·}σ is the σ-ring generated by · and I is the σ-ideal
generated by the equations of the system.

One defines the Malgrange pseudogroup of E as that of

Φ : Cm+1 99K Cm+1

(t, y1, . . . , ym) 7→ (σ(t), E1, . . . , Em) .

A consequence of proposition 3.5, theorem 3.2 and lemma 2.7 is

Theorem 3.7 If a rational ordinary σ-difference system is integrable by σ-quadratures then the
Lie algebra of its Malgrange pseudogroup is solvable.

4 Galois theory for linear q-difference equations

In this section we collect some results concerning the Galois theory of linear q-difference equations
which will be used in the next sections. We set σt = σqt = qt with q ∈ C∗ such that |q| > 1. Two
rather different approaches for q-difference Galois theory will be used.

4.1 Picard-Vessiot theory

Let G be a complex linear algebraic group. Let E π→ P1 be a principal G-bundle i.e. E×
P1
E ∼ E×G

over E for the first projection. For a π-projectable G-invariant rational dominant map V : E 99K E
such that σ = π∗V is t 7→ qt for some q ∈ C∗ with |q| > 1 or t → t + 1, PV denotes a closed
minimal V -invariant subvariety of E dominating P1 and GalV its stabilizer in G.

• Two such PV are isomorphic under action of G and called Picard-Vessiot varieties of V . The
ring extension C[π(PV )] ⊂ C[PV ] is usually called a Picard-Vessiot extension for V .

• The group GalV is well defined up to conjugation in G. It is the Galois group of V .
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• Common level sets of all invariants of V in C(E) dominating P1 are Picard-Vessiot varieties.

Up to some modification of the bundle over ∞ ∈ P1, we can assume that the bundle is trivial :
E = P1×G. If G = GLn(C), one gets V (t, g) = (σt,A(t)g) with A(t) ∈ GLn(C(t)). The equations
of invariants curves g = g(t) are linear σ-difference systems in fundamental form g(σt) = A(t)g(t).
By looking at the first column, one gets the usual vectorial form of linear σ-difference systems :
Y (σt) = A(t)Y (t). The construction given here of the Galois group follows [38]. In this linear
situation V will stand either for the system in fundamental form or for the system in vectorial
form.

4.2 Tannakian approach

Let Dq = C(t)〈σq,σ−1
q 〉 be the non commutative algebra of non commutative polynomials with

coefficients in C(t) satisfying to the relation σqf = (σqf)σq for any f ∈ C(t). We denote by F the
neutral Tannakian category over C of q-difference modules over C(t) : it is the full subcategory of
the category of left Dq-modules whose objects are the left Dq-modules which are finite dimensional
as C(t)-vector spaces. The objects of F can be interpreted as pairs (V,Φ) where V is a finite
dimensional C(t)-vector space V and where Φ is a σq-linear automorphism of V ; from this point of
view, the morphisms from an object (V,Φ) to an object (V ′,Φ′) are the C(t)-linear maps F : V →
V ′ such that FΦ = Φ′F ′.

We define similar categories F (0) and F (∞) by replacing the field C(t) by C({t}) and C({t−1})
respectively.

We have natural localization functors F  F (0) and F  F (∞).
A q-difference module over C(t) is regular singular both at 0 and at ∞ if its localization at

0 has a lattice over C{t} and its localization at ∞ has a lattice over C{t−1} which are invariant
under the action of σq and σ−1

q . We denote by E the full subcategory of F made of its regular
singular objects; it is a neutral Tannakian subcategory of F .

For details on what precedes, we refer to [38, 36].
For the general theory of Tannakian categories, we refer to [9]. Let ω be a complex valued

fiber functor over F . The Galois group of F is by definition the complex proalgebraic group
πq−diff1 = Aut⊗(ω) and the Galois group of an object M of F is the the complex linear algebraic
group Gal(M) = Aut⊗(ω|〈M〉) where 〈M〉 denotes the Tannakian subcategory of F generated by
M (it is the full subcategory of F whose objects are obtained form M by combining the following
operations : tensor products ⊗, direct sums ⊕, duals

∨· , quotients, subobjects).
By Tannakian duality ([9]) ω induces an equivalence of tensor categories between F and the

rational finite dimensional linear representations of πq−diff1 ; similarly, for any object M of F , ω
induces an equivalence of tensor categories between 〈M〉 and the rational finite dimensional linear
representations of Gal(M).

LetM be an object of F and let ρM : πq−diff1 → GL(ω(M)) be the representation corresponding
to M . We can identify Gal(M) with the image of ρM (⊂ GL(ω(M))).

We give now some properties to be used later in this article.

Proposition 4.1 An object M of F is simple if and only if the corresponding rational represen-
tation ρM is irreducible if and only if Gal(M) acts irreducibly on ω(M).

Proof. – Straightforward by Tannakian duality. �

Proposition 4.2 Let M be an object of F . The determinant of M is trivial if and only if Gal(M)
belongs to SL(ω(M)).

Proof. – Let n be the rank of M . Let ρM be the rational linear representation corresponding
to M . We have to prove that the determinant ΛnM of M is trivial if and only if the determinant
ΛnρM of ρM is trivial. This is indeed the case because, by Tannakian duality, the representation
corresponding to ΛnM is ΛnρM so ΛnM is trivial if and only if ΛnρM is trivial. �
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Proposition 4.3 If an object M of F has a virtually solvable Galois group then any object of 〈M〉
has a virtually solvable Galois group; in particular, any subobject of M has a virtually solvable
Galois group.

Proof. – Let N be an object of 〈M〉 and let ρN be the rational linear representation of Gal(M)
corresponding to N . Since Gal(M)◦ is solvable its image by the rational linear representation ρN ,
which is Gal(N)◦, is also solvable. �

Let us now consider a complex valued fiber functor ω(0) over F (0) and take for ω the complex
valued fiber functor obtained by composing ω(0) with the exact, faithful and tensor localization
functor F  F (0). The local Galois group at 0 of an object M of F is the complex linear algebraic
group Gloc,0(M) = Aut⊗(ω(0)|〈M (0)〉) (where M (0) denotes the localization of M at 0) which can
be viewed, as above, as a subgroup of GL(ω(0)(M (0))) = GL(ω(M)).

The localization functor F  F (0) induces, for any object of M of F , a closed immersion (this
is a consequence of Proposition 2.21. in [9]) :

Gloc,0(M) ↪→ Gal(M).

The following result is proved in [34]. Compare with Gabber connectedness criterion (Proposi-
tion 1.2.5 in [18]).

Theorem 4.4 Let M be an object of F . Then we have a natural surjective morphism :

Gloc,0(M)/Gloc,0(M)◦ � Gal(M)/Gal(M)◦.

In particular, if Gloc,0(M) is connected then Gal(M) is connected.

The interest of this theorem is that Gloc,0(M) is easy to describe if M is an object of E . The
following corollary will allow us to greatly simplify the calculations of Galois groups in sections 6
and 7.

Corollary 4.5 Let M be an object of E. Assume that with respect to some basis the action of σq
on the localization M (0) of M at 0 is given by a matrix A ∈ GLn(C{t}) such that the eigenvalues
of A(0) belong to qZ then Gal(M) is connected.

Proof. – Theorem 4.4 ensures that it is sufficient to prove that Gloc,0(M) is connected. This
is indeed the case, because, in virtue of Theorem 2.2.3.5. in [36], Gloc,0(M) is generated, as a
complex algebraic group, by a unipotent morphism. �

In concrete examples, we will work with q-difference systems. Let M be an object of F .
Choosing a C(t)-basis of M , we can interpret M as the q-difference system σqY = AY where A is
the inverse of the matrix representing the action of σq on M with respect to the given basis. We
will also work with associated q-difference operators. Concretely, let ΦA be the σq-linear operator
on the n-dimensional C(t)-vector space V = C(t)n given by ΦA(X) = A−1σqX. We will exhibit
e ∈ V such that (e,ΦA(e), ...,Φn−1

A (e)) is a basis over C(t) of V and we will work with P (σq) ∈ Dq
where P ∈ C(t)[X] is the unique unitary polynomial of degree n− 1 such that P (ΦA)e = 0; such a
e is called a cyclic vector and the theoretical existence of cyclic vector is ensured by the so-called
cyclic vector Lemma ([40, 37]).

5 A linearization theorem

5.1 Variational equations

Let Φ : M 99KM be a dominant rational map and let C be an algebraic rational Φ-invariant curve
with Φ|C being either t 7→ qt for some q ∈ C∗ with |q| > 1 or t 7→ t + 1. Prolongations of Φ are
dominant rational maps RkΦ on frame bundles RkM . The restriction of the frame bundles over C
are Γk-principal bundles over C which have a projectable Γk-invariant map given by the restriction
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of RkΦ over C . This is the order k variational equation in fundamental form. Because Rk+1Φ is
πk+1
k -projectable on RkΦ, this is also true for Galois groups. We have surjective morphisms

Gal(Rk+1Φ|C )� Gal(RkΦ|C ).

We set
Gal(RΦ|C ) = lim

←
Gal(RkΦ|C ).

Theorem 5.1 Let p be a generic point on C . We have

Gal(RΦ|C ) ⊂MalΦ(p,p).

Proof. – By choosing a formal chart at p ∈ C , the Γ-principal bundle RM |C is isomorphic
to the subspace of AutM(p,C ) with source p ∈ C and target in C . Under this identification

• AutM(p,p) is Γ,

• Gal(RΦ|C ) is a subgroup acting by left translation.

The closed subvariety MalΦ(p,C ) with source a and target in C of AutM(p,C ) is

• RΦ-invariant because MalΦ and C are RΦ-invariants,

• dominates C because its projection contains the orbits of p by Φ in C .

This implies that Gal(RΦ|C ) ⊂ Stab(MalΦ(p,C )) by source composition thus Gal(RΦ|C ) ⊂
MalΦ(p,p). �

5.2 Main theorem

The main theorem is now a consequence of theorem 5.1 and theorem 3.7.

Theorem 5.2 If Φ is integrable by N q-quadratures then Gal(RkΦ|C ) is solvable of length N .

The order 1 variational extension is the only important one for the solvability condition because
Gal(RkΦ|C ) is a commutative extension of Gal(Rk−1Φ|C ).

6 Nonintegrability of a discrete Painlevé I equation

The following system of non linear q-difference equations (qPA′7 in Sakai’s classification [35]) is a
q-analogue of Painlevé I equation :

y(qx) =
1− xz(x)

xy(x)(z(x)− 1)
z(x)

z(qx) =
(

1− xz(x)
xy(x)(z(x)− 1)

)2

z(x).

The corresponding dynamical system is :

Φ :

xy
z

 7→


qx
1− xz

xy(z − 1)
z(

1− xz
xy(z − 1)

)2

z

 .
Theorem 6.1 The qPA′7 Painlevé system is non integrable by q-quadratures.

Proof. – It is a consequence of sections 6.1 and 6.2 below and of Theorem 5.2. �
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Note that a direct proof of nonintegrability of qPA′7 can be found in [28] where the stronger
statement of irreducibility of nonalgebraic solutions is proved.

6.1 Invariant curve and discrete variational equation

Let q4 be a 4th root of q in C. A straightforward calculation shows that Φ leaves globally invariant
the curve parameterized by :

ϕ : t 7→

 t2

q4/t
1/t


and that Φ acts on the variable t as σq2 , where q2 = q24 , in the sense that :

Φ ◦ ϕ = ϕ ◦ σq2 .

This leads to the following discrete variational equation :

Y1(q2t) = DΦ(ϕ(t))(Y1(t)) =



q 0 0

−1
q4t3(1− t)

−1
q2

−2t
q4(1−t)

−2
q2t3(1− t)

−2
q34

−3t−1
q2(1−t)


Y1(t) (1)

6.2 Non virtual solvability of the Galois group of the discrete variational
equation

In this section we shall prove that the q2-difference system (1) has a non virtually solvable Galois
group. Proposition 4.3 shows that it is sufficient to prove that the following subsystem of (1) has
a non virtually solvable Galois group :

Y (q2t) = A(t)Y (t), A(t) =

[
−1
q2

−2t
q4(1−t)

−2
q34

−3t−1
q2(1−t)

]
∈ GL2(C(t)). (2)

This q2-difference system is actually a basic hypergeometric equation in disguise whose Galois
group was computed in [33].

Let us recall that the q2-hypergeometric operator with parameters (a, b; c, d) ∈ (C∗)4 is given
by : (

c

q2
σq2 − 1

)(
d

q2
σq2 − 1

)
− t(aσq2 − 1)(bσq2 − 1)

=
(
cd

q22
− tab

)
σ2
q2 +

(
−c+ d

q2
+ t(a+ b)

)
σq2 + (1− t).

Coming back to our concrete situation, we claim that e =
[
0
1

]
∈ C2 ⊂ C(t)2 is a cyclic vector

for (2) and that the corresponding q2-difference operator is q2-hypergeometric.
We have

A−1 =

[
−q2 3t+1

(1−t)
2q34t
(1−t)

2q4 −q2

]
.

Hence

ΦA(e) =

[
2q34t
(1−t)
−q2

]
.
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Consequently, e is a cyclic vector and we have

Φ2
A(e) = A−1

[
2q54t

(1−q2t)
−q2

]

=

[
−q2 3t+1

(1−t)
2q54t

(1−q2t) + 2q34t
(1−t) (−q2)

2q4
2q54t

(1−q2t) + (−q2)(−q2)

]

=

[
2q34t
(1−t) (− q(3t+1)

(1−q2t) − q2)
4q32t

(1−q2t) + q

]

=

[
2q34t
(1−t) (− q(3t+1)

(1−q2t) − q2)

−q2(− q(3t+1)
(1−q2t) − q2)

]
+

[
0

q2(− q(3t+1)
(1−q2t) − q2) + 4q32t

(1−q2t) + q

]

= −(
2qt+ (q + q2)

(1− q2t)
)ΦA(e)− q32(1− t)

(1− q2t)
e.

So we get the q2-difference operator σ2
q2 + 2qt+(q+q2)

(1−q2t) σq2 + q32(1−t)
(1−q2t) . Using the gauge transforma-

tion y = ty, we see that σ2
q2 + 2qt+(q+q2)

(1−q2t) σq2 + q32(1−t)
(1−q2t) is equivalent to σ2

q2 + 2t+(1+q−1
2 )

(q−1
2 −t)

σq2 + (1−t)
(q−1

2 −t)
.

This is the q2-hypergeometric operator with parameters (a, b; c, d) = (1, 1;−q2,−1). It is proved
in [33] that its Galois group is SL2(C) (to be precise, in [33] the Galois group computed is that
of the operator obtained by permuting (a, b) and (c, d) in the above operator but this is of course
inoffensive).

7 Nonintegrability of a discrete Painlevé III equation

The following system of non linear q-difference equations is a q-analogue of Painlevé III equation :
y(qx) =

1
y(x)z(x)

1 + a0xz(x)
a0x+ z(x)

z(q−1x) =
1

y(x)z(x)
qa1x

−1 + y(x)
1 + qa1x−1y(x)

(3)

where a0, a1 ∈ C∗. Note that (3) is equivalent to :

y(qx) =
1

y(x)z(x)
1 + a0xz(x)
a0x+ z(x)

z(qx) =
1

y(qx)z(x)
a1x
−1 + y(qx)

1 + a1x−1y(qx)

=
y(x)(a0x+ z(x))(x+ a0x

2z(x) + a0a1xy(x)z(x) + a1y(x)z(x)2)
(1 + a0xz(x))(xy(x)z(x)2 + a0x2y(x)z(x) + a0a1xz(x) + a1)

.

The corresponding discrete dynamical system is :

Φ :

xy
z

 7→


qx
1
yz

1 + a0xz

a0x+ z
y(a0x+ z)(x+ a0x

2z + a0a1xyz + a1yz
2)

(1 + a0xz)(xyz2 + a0x2yz + a0a1xz + a1)

 .
Theorem 7.1 If a0a1 6∈ −q−N then the qPIII equation (3) is non integrable by q-quadratures.

Proof. – It is a consequence of sections 7.1 and 7.2 below and of Theorem 5.2. �
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7.1 Invariant curve and discrete variational equation

A straightforward calculation shows that Φ leaves globally invariant the curve parameterized by :

ϕ : t 7→

t1
1


and that it acts on the variable t as σq in the sense that :

Φ ◦ ϕ = ϕ ◦ σq.

The discrete variational equation of Φ along ϕ is easily seen to be given by :

Y1(qt) = DΦ(ϕ(t))(Y1(t)) =



q 0 0

0 −1
2a1

t+ a1

0 − 2
a0t+ 1

−a0t
2 + (1 + a0a1)t− 3a1

(a0t+ 1)(t+ a1)


Y1(t) (4)

7.2 Non virtual solvability of the Galois group of the discrete variational
equation

In this section we shall prove that the q-difference system (4) has a non virtually solvable Galois
group. In this purpose, Proposition 4.3 ensures that it is sufficient to prove that the following
(regular singular) subsystem of (4) has a non virtually solvable Galois group :

Y (qt) = A(t)Y (t), A(t) =

[
−1 2a1

t+a1

− 2
a0t+1 −a0t

2+(1+a0a1)t−3a1
(a0t+1)(t+a1)

]
∈ GL2(C(t)). (5)

We claim that the Galois group of (5) is SL2(C). This assertion will be a consequence of the
following three observations.

First observation: G is connected – Indeed, a simple calculation shows that the complex eigenval-
ues of A(0) belong to qZ. Corollary 4.5 ensures that G is connected.

Second observation: G acts irreducibly on C2 – Indeed, G acts irreducibly if and only if (see
Proposition 4.1) (5) is irreducible if and only if some q-difference operator associated to (5) is
irreducible over C(t). Let us now determine an explicit q-difference operator associated to (5).

We claim that e =
[
0
1

]
∈ C2 ⊂ C(t)2 is a cyclic vector for (5). Indeed, we have:

A−1 =

[
−a0t

2+(1+a0a1)t−3a1
(a0t+1)(t+a1)

− 2a1
t+a1

2
a0t+1 −1

]
,

so :

ΦA(e) = A−1σq(e) =
[
− 2a1
t+a1

−1

]
is non C(t)-colinear with e.

Moreover, we have:

Φ2
A(e) = A−1

[
− 2a1
qt+a1

−1

]

=

[
2a1(a0(1+q)t

2+(1+2a0a1+q)t−2a1)
(t+a1)(qt+a1)(a0t+1)
a0qt

2+(a0a1+q)t−3a1
(qt+a1)(a0t+1)

]

= −a0(1 + q)t2 + (1 + 2a0a1 + q)t− 2a1

(qt+ a1)(a0t+ 1)
ΦA(e)− t+ a1

qt+ a1
e.
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Hence:

L = σ2
q +

a0(1 + q)t2 + (1 + 2a0a1 + q)t− 2a1

(qt+ a1)(a0t+ 1)
σq +

t+ a1

qt+ a1

= σ2
q + α(t)σq + β(t)

is a q-difference operator associated to (5). In order to prove that L is irreducible over C(t), we
follow closely the method presented in [1]. Assume at the contrary that L is reducible over C(t)
i.e. that there exist r and s in C(t)× such that :

L = (σq − s)(σq − r).

Then we have:
r(qt)r(t) + α(t)r(t) + β(t) = 0. (6)

According to [1], r can be decomposed as follows :

r = λ
u(t)
v(t)

c(qt)
c(t)

for some λ ∈ C∗ and some unitary polynomials u, v, c ∈ C[t] \ {0} such that:

a) ∀n ∈ N, u(t) ∧ v(qnt) = 1;

b) u(t) ∧ c(t) = 1;

c) v(t) ∧ c(qt) = 1;

d) c(0) 6= 0.

Then equation (6) becomes:

λ2u(qt)u(t)
v(qt)v(t)

c(q2t)
c(t)

+ λα(t)
u(t)
v(t)

c(qt)
c(t)

+ β(t) = 0 (7)

and, clearing the denominators, we get:

λ2(qt+ a1)(a0t+ 1)u(qt)u(t)c(q2t)
+λ(a0(1 + q)t2 + (1 + 2a0a1 + q)t− 2a1)u(t)v(qt)c(qt)
+(a0t+ 1)(t+ a1)v(t)v(qt)c(t) = 0. (8)

We see that u is a unitary polynomial dividing (a0t+1)(t+a1) and that v is a unitary polynomial
dividing (t+a1)(a0q

−1t+ 1). Moreover, we claim that we necessary have deg(u) = deg(v). Indeed,
if deg(u) > deg(v) (the case that deg(u) < deg(v) is similar), then we would have the following
inequalities:

deg(λ2(qt+ a1)(a0t+ 1)u(qt)u(t)c(q2t))
= 2 + 2 deg(u) + deg(c)
> 2 + deg(u) + deg(v) + deg(c)
= max{deg(λ(a0(1 + q)t2 + (1 + 2a0a1 + q)t− 2a1)u(t)v(qt)c(qt)),

deg((a0t+ 1)(t+ a1)v(t)v(qt)c(t))}
≥ deg(−λ(a0(1 + q)t2 + (1 + 2a0a1 + q)t− 2a1)u(t)v(qt)c(qt)

−(a0t+ 1)(t+ a1)v(t)v(qt)c(t))

contradicting (8). Hence, the only possibilities for (u, v) are (1, 1), (t+a−1
0 , t+a1), (t+a−1

0 , t+qa−1
0 ),

(t+a1, t+a1), (t+a1, t+ qa−1
0 ) and ((t+a−1

0 )(t+a1), (t+a1)(t+ qa−1
0 )). Properties a) - d) listed

above allow us to reduce the possibilities for (u, v) to (1, 1), (t+ a−1
0 , t+ a1) and (t+ a1, t+ qa−1

0 ).
We now consider each case separately.
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- Case (u, v) = (1, 1). Considering equation (7) at t = ∞, we obtain λ2q2deg(c) + λqdeg(c)(1 +
1
q ) + 1

q = 0 i.e. λ = −q−deg(c) or −q−deg(c)−1. On the other hand, evaluating (7) at t = 0 we
obtain λ2 − 2λ+ 1 = 0 i.e. λ = 1. So −1 belongs to the q−N : contradiction.

- Case (u, v) = (t+a−1
0 , t+a1). As above we have λ = −q−deg(c) or −q−deg(c)−1. On the other

hand, evaluating (7) at t = 0 we obtain λ2( 1
a0a1

)2 − 2λ 1
a0a1

+ 1 = 0 i.e. λ = a0a1. Hence
a0a1 belongs to −q−Z : contradiction.

- Case (u, v) = (t+a1, t+qa−1
0 ). As above we have λ = −q−deg(c) or −q−deg(c)−1. On the other

hand, evaluating (7) at t = 0 we obtain λ2(q−1a0a1)2 − 2λq−1a0a1 + 1 = 0 i.e. λ = 1
q−1a0a1

.
Hence a0a1 belongs to −q−Z : contradiction.

Third observation: G ⊂ SL2(C). Indeed, this is a direct application of Proposition 4.2 since the
determinant A is equal to 1.

Hence, G is a connected algebraic subgroup of SL2(C) acting irreducibly on C2. The only
possibility is G = SL2(C).
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[21] B. Malgrange – Le groupöıde Galois d’un feuilletage. Ghys, Étienne (ed.) et al., Es-
says on geometry and related topics. Mémoires dédiés à André Haefliger. Vol. 2. Genève:
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