
SIMPLE MEROMORPHIC FUNCTIONS ARE

ALGEBRAIC

GUY CASALE

Résumé. Nous montrons que certains germes de fonctions méromorphes
en deux variables sont des germes de fonctions algébriques.

Abstract. We exhibit a class of meromorphic functions in two
variables conjugated to algebraic functions using the geometry of
the foliation by level curves.

We are interested in the following problem :
Let F be a germ of holomorphic foliation on (C2, 0). Does there exist

an algebraic surface S and a point p ∈ S such that F is the germ at p
of an algebraic foliation on S ?

Such germs of foliation will be said to be algebraizable. In [6], Y.
Genzmer and L. Teyssier proved the existence of a non algebraizable
germ of saddle-node foliation. After them the problem splits in two
parts:

Problem. Give an example of non algebraizable germ of singularity.

Problem. Identify algebraizable singularities.

We give an answer to the second problem in a very particular case
following first pages of [4] (see also [9]).

Since Mather and Yau [13], it is known that a germ of holomorphic
function with isolated singularity is finitely determined thus algebraiz-
able. Such result was extended by Cerveau and Mattei [3] to germs of
meromorphic functions. A consequence of the result of this paper is to
get an example of a germ of algebraic meromorphic function which is
not finitely determined.

This paper is concerned with holomorphic foliations of (C2, 0) with
a dicritical singularity at 0. Such germs of foliations have infinitely
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many analytic invariant curves going through 0. Basic examples of
dicritical foliations are foliations given by level sets of a meromorphic
function on (C2, 0) having indeterminacy point at 0. Among all these
singularities with a meromorphic first integral, we are interested in the
simplest ones i.e. those smooth after one blow-up and such that a

unique leaf is tangent to the exceptional divisor with tangency order
one. These singularities will be called simple singularities.

Example (Basic example: the cusp). The dicritical cusp is given by

the rational function y2
−x3

x2 :

−−−−−−−−→
blow-up

Figure 1.

After one blow-up one gets the function t2 − x defining the foliation

on the chart t = y/x.

Example (Susuki’s example [16, 3]). This is the germ of singularity

given by

(y3 + y2 − xy)dx− (2xy2 + xy − x2)dy

It is topologically equivalent to the previous example. The topological

closure of a leaf contains 0 and is analytic. But its ‘less transcendental’

first integral is
x

y
e

y(y+1)
x .

It does not admit meromorphic first integral in any neighborhood of 0.

Theorem 1. If F is a simple dicritical foliation of (C2, 0) with a mero-

morphic first integral then there exist an algebraic surface S, a rational

function H on S and a point p ∈ S such that F is biholomorphic to

the foliation given level curves of H in a neighborhood of p.

Corollary 2. If F is a germ of meromorphic function on (C2, 0) with

a simple type indeterminacy point at 0 then it is the germ of a rational

function on a surface.
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Proof of the Corollary. – After a change of coordinates given by
Theorem 1, the level curves of F coincide with those of a rational
function H on an algebraic surface at some point 0 such that F = f(H)
for some function f defined on some ramified covering of P1. On the
exceptional divisor obtained by blowing-up 0, F and H are rational
functions so f is algebraic and F is a germ of rational function on a
surface. �

Analytic invariant of simple singularities and basic constructions are
given in §1. In §2 a proof of Theorem 1 is given. Last section contains
some comments.

1. The analytic invariant of simple singularities

Following M. Klughertz [10], the description of a simple singularity
up to analytic change of coordinates is done by a germ of involution at
a point of P1 up to the action of PGL2(C). Let F be a germ of simple
dicritical foliation of (C2, 0). The blow-up of (C2, 0) is denoted by M ,
the exceptional divisor by E and the strict transform of F by F−1.
Because F−1 is smooth and has a unique leaf tangent to E at order one
at some point p, leaves passing through a point in the neighborhood of
p on E must cut E in another point. This gives us a germ of involution
ι on the projective line. This is the holonomy of F on E.

The germ of involution of two analytically conjugated foliations are
the same up to conjugation by an element of PGL2(C). Conversally if
two germs of foliations with simple singularities have the same involu-
tion then they are analytically conjugated. To complete M. Klughertz’
theorems, some finite determinacy properties and normal forms are
obtained in [1, 15].

Let (M, E) be a pair of analytic surface and smooth rational curve
E ⊂ M with self-intersection E · E = k. A neighborhood of E in M
will still be denoted by M and called a k-neighborhood of P1.

Lemma 3. Assume k ≤ 0. Any germ of involution on P1 can be

realized as the holonomy of a smooth holomorphic foliation of a k-

neighborhood of P1. Two such realizations of the same involution are

biholomorphic. For a involution ι, any such realization is called a k-

realization of ι and denoted by Fk(ι).

Proof. – The proof is an illustration of the gluing trick of [12]. Let
ι be such an involution on a disc Dt(r) with coordinate t and radius r
and ϕ be defined by ϕ(t) = t−ι(t). The involution ι is the holonomy of
the foliation of Dt(r)×Dx(r

′) given by level curves of ϕ(t)2−x. Let r′

be small enough then U = {t ∈ Dt(r) | |ϕ(t)2| ≤ r′} ⊂⊂ Dt(r). Leaves
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←−−−−−−−−−−
blow-down

Figure 2. From Fk to Fk−1

of the foliation by level curves of ϕ(t)2 − x on (Dt − U)×Dx intersect

Dt − U in a single point. For this reason the function
√

ϕ(t)2 − x is
well defined on (Dt − U)×Dx.

Let M be the manifold obtained by gluing Dt×Dx with (P1−U)u×Dy

by

u = ϕ−1
(√

ϕ(t)2 − x
)

and y = xt−k.

The foliation given by d(ϕ(t)2−x) = 0 on the first chart and du = 0
on the second is well defined, transverse to E the divisor given by
x = 0 and y = 0 but in a single point t = 0. The holonomy is ι by
construction. When k ≤ 0, Grauert’s theorems [5, 8] give unicity of
the germ of neighborhood built. �

Remark 4. The contraction of the exceptional divisor in the (−1)-
realization of ι gives a dicritical foliation of (C2, 0) with invariant ι.

Remark 5. By blowing-up a point of the projective line which is not

the fixed point of the involution ι, Fk(ι) is transformed in Fk−1(ι).

Remark 6. If one glues a node d(xy) = 0 to Fk−1(ι) in such a way

that a separatrix of the node is glued with a leaf of Fk−1(ι) in a rational

curve of self-intersection (−1) then the contraction of this leaf gives

Fk(ι) .

Remark 7. The involution ι has a rational first integral, i.e. R ∈
C(P1) such that R◦ ι = R, if and only if Fk(ι) has a meromorphic first

integral.

2. Proof of Theorem 1

The strategy is to normalized a 0-realization of the involution of a
dicritical singularity with a meromorphic first integral, and to prove
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that the meromorphic first integral of the dicritical foliation is trans-
formed in an algebraic first integral of the 0-realization. By remarks
4–7 this is enough to prove the Theorem. Let F−1(ι) be a blow-up of
a simple dicritical singularity with a meromorphic first integral and F0

be a 0-realization of the involution. It is defined on D × P1 where D
is a small disc around 0 in C. Let y be a coordinate on P1 and x be a
coordinate on D. Such a foliation is given by a differential equation

dy

dx
=

P3(y)

P1(y)

where Pi ∈ C{x}[y] is of degree i in y. By changing y, we can rectify
three trajectories passing through p1, p2 and p3 at x = 0 on straight
lines y =∞, y = 1 and y = −1 and the equation becomes

dy

dx
= h(x)

y2 − 1

y − λ(x)
.

Because the foliation is not singular, h(0) 6= 0. Furthermore p1, p2 and
p3 can be choosen such that λ(0) 6= 0. Then the trajectory passing
through 0 ∈ P1 at x = 0 is the graph of a biholomorphism and can be
used as a new coordinate on the disc. The foliation F0 in these new
coordinates is given by the equation

x2 − 1

x− λ(x)

dy

dx
=

y2 − 1

y − λ(x)

for a germ of analytic function λ (different from the previous one) whose
graph is the locus of verticality of leaves. Its phase plane is given in
figure 3.

Let H(x, y) ∈ C({x})(y) be a meromorphic first integral of F0 and d
be its degree in y. LetR(d) be the variety of degree d rational functions
on P1. This is a dimension 2d + 1 algebraic variety. By restriction to
vertical fibers, H gives a germ of curve γ : D → R(d) defined by
γ(x) = H|fiber above x.

To prove that H is an algebraic function one has to prove that γ is
included in an algebraic curve in C × R(d). To do so one will prove
that

• γ is an integral curve of a rational vector fields ~V on an algebraic
ramified covering of C×R(d),

• ~V has 2d + 1 algebraically independent rational first integrals.
Then integral curves of ~V are algebraic.

Equations of the deformation of a rational function in the way de-
scribed by the drawing of F0 can be written down explicitely. Let us
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Figure 3. The foliation F0

parameterize R(d) by the zeros and the poles of fractions :

R(y) = ℓ
Π(y − ai)

Π(y − bi)
.

Let R̃ be the ramified covering of R(d) where all the critical points

are well-defined i.e. R̃ is the Galoisian covering of R(d) built from
the covering of R(d) defined by the equation

∑
1

p−ai
−

∑
1

p−bi
= 0 in

R(d)×C with p the coordinate on C.
The vector field

~V =
x2 − 1

x− λ

∂

∂x
+

∑ a2
i − 1

ai − λ

∂

∂ai

+
∑ b2

i − 1

bi − λ

∂

∂bi

where λ is the coodinate function in C(R̃) of a critical point, describes
particular deformation of rational functions along a parameter x. If
ai(x), bi(x) and ℓ(x) parameterize an analytic integral curve of this
vector field then the meromorphic function

H(x, y) = ℓ(x)
Π(y − ai(x))

Π(y − bi(x))

is a first integral of

x2 − 1

x− λ(x)

dy

dx
=

y2 − 1

y − λ(x)

where λ(x) is the restriction of λ to the integral curve.
Thus 0-realization of involutions with meromorphic first integrals of

degree d in y are exactly described by trajectories of ~V on C×R̃. One
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will denote by Hγ the meromorphic function in C{x}(y) given by an

integral curve γ of ~V. Remark that trajectories realizing Hγ and g(Hγ)
for g ∈ PSL2(C) are different but describe the same 0-realization of
the same involution.

The 2n + 1 independent algebraic first integrals of ~V are buit in the
following way.

Let us consider the critical values of rational functions as 2n − 2
rational functions on R̃:

c1, . . . , c2d−2.

The restrictions of these functions on an integral curve γ give the
critical values of Hγ with respect to y as functions of x. One can assume
that c2d−2(γ) = λ. The 2n − 3 remaining functions give the values of
Hγ on leaves where Hγ ramifies so they are constant on integral curves

of ~V.
The values of Hγ on the leaves y =∞, y = 1, y = −1 and y = x are

constant hence the evaluations function e∞(x, R) = R(∞), e1(x, R) =
R(1), e−1(x, R) = R(−1) and ex(x, R) = R(x) are 4 rational functions

on D × R̃ which are constant on integral curves of ~V.
In coordinates these functions are :

• ck(...ai...bi...ℓ) = ℓ
Πi(pk − ai)

Πi(pk − bi)
for all pk 6= λ such that

∑
1

pk−ai
−

∑
1

pk−bi
= 0,

• e∞(...ai...bi...ℓ) = ℓ,

• e1(...ai...bi...ℓ) = ℓ
Πi(1− ai)

Πi(1− bi)
,

• e−1(...ai...bi...ℓ) = ℓ
Πi(−1− ai)

Πi(−1− bi)
,

• ex(...ai...bi...ℓ) = ℓ
Πi(x− ai)

Πi(x− bi)
,

These 2n+1 funtions are algebraically independent because there is
only a finite number of rational maps from P1 to P1 with fixed critical
values c1, . . . , c2d−2 and fixed values at −1, 1,∞. These maps are given
by the choice of the monodromies around critical values in the group of
permutation of {1, 2, . . . , d}. Thus the functions c1, . . . , c2d−2, e1, e−1, e∞
are independent on R̃ and so are c1, . . . , c2d−3, e1, e−1, e∞ on D × R̃.
These functions are x-independent so are independent of ex. This
proves the functional independence of 2n + 1 rational first integrals
of ~V a vector field on a dimension 2n+2 algebraic variety. The Lemma
proved at the end of the section gives the algebraicity of integral curves
of ~V.
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Let S be an algebraic curve such that γ is defined on. The function
H extends to a rational function on S × P1. By blowing-up a point on
0 × P

1 and blowing-down the strict transform of 0 × P
1 one gets the

dicritical singularity with rational first integral and ι as invariant.
This proves that a simple dicritical foliation given by a meromorphic

function can be extended (in good coordinates) in a algebraic foliation
with a rational first integral. �

The following lemma is a well-known fact but it is not easy to find
a reference.

Lemma 8. If a vector field ~V on a dimension n algebraic variety has

n− 1 rational first integrals functionally independent then all trajecto-

ries are algebraic curves.

Proof. – For rational functions, H1, . . . , Hk, functional indepen-
dence (dH1 ∧ . . . ∧ dHk 6= 0) and algebraic independance coincide.

Let K be the field of rational first integrals of ~V. It is a transcendence
degree n−1 field. Let H1, . . .Hn−1 be a transcendence basis. Then, out
of the dependency set {dH1 ∧ . . .∧ dHn−1 = 0} and the indeterminacy
sets of H ’s, integral curves are algebraic.

Let S be a ~V-invariant irreducible hypersurface on which dH1∧ . . .∧
dHn−1 = 0. One wants to find n − 2 elements of K whose restrictions
on S are algebraically independent.

Let x ∈ S be a generic point and f a local holomorphic ireducible
equation of S at x. One defines d : K∗ → Z by H = fd(H) P

Q
with P and

Q holomorphic function not identically zero on S. There exists F ∈ K
such that d(K∗) = d(F )Z.

Assume one gets F1, . . . , Fk−1 whose restrictions to S are function-
nally independent. For H ∈ K one defined ℓ(H) such that dH ∧ dF1 ∧
. . . ∧ dFk−1 = F ℓ(H)ω with ω|S a rational form in the neighborhood of
S non zero on S. If such a ℓ does not exist, it is defined to by −∞.
If k − 1 < n − 2 there exists H ∈ K such that F, F1, . . . , Fk−1 and H
are functionnally independent and these functions are holomorphic at
x then ℓ(K) ∩ N is not empty.

Let Fk ∈ K such that ℓ(Fk) is minimal in ℓ(K)∩N. If ℓ(Fk) = 0 then
the lemma is proved.

If ℓ(Fk) > 0 then let R(F1|S, . . . , Fk|S) be the minimal polynomial of

Fk|S over C(F1|S, . . . Fk−1|S) and considere F̃k = R(F1,...,Fk)
F

. This func-
tion is holomorphic at x because d(F ) si smaller than d(R(F1, . . . , Fk)).

One has dF̃k∧dF1∧. . .∧dFk−1 = ( 1
F

∂R
∂Fk

dFk + R
F 2 dF )∧dF1∧. . .∧dFk−1.

Since R is the minimal polynomial of Fk|S ∂R
∂Fk

can not vanish on S if R
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is not zero. One has 0 ≤ ℓ(F̃k) < ℓ(Fk) which is a condradiction then
R = 0 and the lemma is proved. �

3. Comments

3.1. Cerveau-Mattei finite determinacy theorem. For special kind
of functions there exists an algebraization result proved by D. Cerveau
and J.-F. Mattei in [3]. Let f1, . . . , fp be germs of irreducible holomor-
phic functions in (Cn, 0), α1, . . . , αp be complex numbers. Considere
the multivalued function

H = fα1
1 . . . fαp

p .

Let ω be the form f1 . . . fp

∑
αi

dfi

fi
and X be the hypersurface f1 . . . fp =

0.

Definition 9. The small critical locus of H is a subset C ′(H) of

Zero(ω) ∪ X of point p such that if p ∈ X germs at p of f ’s are

reducible or (X, p) is not a normal crossing germ of hypersurface.

The function H is said to be finitely determined at order k if for every

g1, . . . gp with jk(fi−gi) = 0 there is a diffeomorphism u of (Cn, 0) such

that

H ◦ u = g
αp

1 . . . gαp

p

Theorem 10 (Cerveau-Mattei [3] théorème 4.2. p 163). A function

H as above is finitely determined if and only if C ′(H) ⊂ {0}.
In our situation, n = 2, αi ∈ Z, finite determinacy implies conju-

gation to a rational function with same ‘order k jet’ at 0. There is
a rational function which is not finitely determined i.e. such that a
meromorphic function with the same order k jets of numerator and de-
nominator is not conjugated to the previous rational functions. Such
an example can be build using previous description of simple dicritical
foliations.

Let ι be the germ of involution at 0 ∈ P
1 defined by

h ◦ ι = h

for some rational function h with a double zero at 0. For instance
h(t) = t2((t − 1)2 + 1). The (−1)-realization of ι has a meromorphic
first integral H extending h to the (−1)-neighborhood of P1 following
F−1(ι). By blowing-down this function, one gets a germ of meromor-
phic function on (C2, 0) with simple indeterminacy point.

By Cerveau-Mattei theorem such a function is finitely determined if
and only if its small critical locus is contained in {0}. But the critical
set of H is contained in Zero(ω) and coincides with it out of the zero
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and polar locus of H . If the small critical locus is included in {0} then
Zero(ω) is included in the zero and polar locus of H . This is not the

case for the function built from h. This H is f0f1+if1−i

f4
∞

where fp is an

equation of the leaves having slope p at 0. Its critical set is given by
three leaves with slopes 3/4 + i

√
5/4, 3/4− i

√
5/4 and ∞ at 0.

To prove that H is algebraizable by means of this finite determinacy
theorem, one only needs to find a rational function f such that f ◦H
is finitely determinate. Critical values of f ◦H are critical values of f
and the image by f of those of H . If f ◦H satisfies the hypothesis of
the finite determinacy theorem, these critical values must be 0 and∞.
Such a f would be a (non ramified) covering of P1−{0,∞} by P1−D
where D is a finite set containing critical values of H . If #D ≥ 3 this
is not possible. It is the case for our special H coming from h where
D ⊃ {0, h(3/4 + i

√
5/4), h(3/4− i

√
5/4),∞} and for this reason there

is no f such that f ◦H is finitely determined.
Nevertheless by our theorem, this function is a germ of algebraic

function in suitable coordinates.

3.2. The λ is not unique. If one fixes the involution ι and three
points on P1 then the function λ given by the normalisation of a 0-
realization F0 is unique. So λ is an invariant of the marked involution
(ι, p−1, p1, p∞) on P1. The involution ι itself is an invariant.

If four differents leaves are normalized on y = ∞, y = −1, y = 1
and y = x one gets a new function λ∗. Let us explain this change
of λ. Let u1(x), u−1(x), u∞(x) be three solutions of F0 and u0 be the
solution such that the crossratio of (u∞(0), u−1(0), u0(0), u1(0)) equals
the cross-ration of (∞,−1, 0, 1). The change of variables






x∗ =
u1 − u∞

u0 − u∞

+
u0 − u1

u−1 − u∞

y∗ =
u1 − u∞

y − u∞

+
y − u1

u−1 − u∞

rectifies the u’s on the four lines y∗ =∞, y∗ = 1, y∗ = −1 and y∗ = x∗

and gives another normalisation of the 0-realization of ι. The involution
of this realisation is ι∗ defined by

ι∗
(

u1(0)− u∞(0)

y − u∞(0)
+

y − u1(0)

u−1(0)− u∞(0)

)
=

u1(0)− u∞(0)

ι(y)− u∞(0)
+

ι(y)− u1(0)

u−1(0)− u∞(0)
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If λ∗ is the function given by the verticality locus of this new diffferential
equation then one gets

λ∗

(
u1 − u∞

u0 − u∞

+
u0 − u1

u−1 − u∞

)
=

u1 − u∞

λ− u∞

+
λ− u1

u−1 − u∞
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