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We derive necessary conditions for integrability in the Liouville sense of classical Hamiltonian systems
with homogeneous potentials of degree zero. We obtain these conditions through an analysis of the
differential Galois group of variational equations along a particular solution generated by a non-zero
solution d ∈ C

n of nonlinear equation grad V (d) = d. We prove that when the system is integrable the
Hessian matrix V ′′(d) has only integer eigenvalues and is diagonalizable.
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1. Introduction

In this Letter we consider classical Hamiltonian systems with n
degrees of freedom for which the Hamiltonian function is of the
form

H = 1

2

n∑
i=1

p2
i + V (q), (1.1)

where q := (q1, . . . ,qn), p := (p1, . . . , pn) are the canonical coordi-
nates, and V is a homogeneous function of degree k ∈ Z. Although
systems of this form arising from physics and applied sciences are
generally understood to involve only real variables, we will as-
sume (1.1) is defined on the complex symplectic manifold M = C

2n

equipped with the canonical symplectic form

ω =
n∑

i=1

dqi ∧ dpi .

Thus, Hamilton’s equations have the canonical form

d

dt
q = p,

d

dt
p = −V ′(q), (1.2)

where V ′ denotes the gradient of V . Moreover, in our setting the
time variable t is complex.

Assume the system of equations

V ′(q) = q, where V ′(q) := grad V (q), (1.3)
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has a non-zero solution d ∈ C
n . Then d is called a proper Darboux

point of the potential and defines a two-dimensional plane

Π(d) := {
(q, p) ∈ C

2n
∣∣ (q, p) = (qd, pd), (q, p) ∈ C

2}, (1.4)

which is invariant with respect to system (1.2). Eqs. (1.2) restricted
to Π(d) have the form

q̇ = p, ṗ = −qk−1. (1.5)

For k ∈ Z
� , the phase curves of this one degree of freedom Hamil-

tonian system are

Γk,ε :=
{
(q, p) ∈ C

2
∣∣∣ 1

2
p2 + 1

k
qk = ε

}
⊂ C

2, ε ∈ C. (1.6)

Thus, a solution (q, p) = (q(t), p(t)) of (1.5) gives rise a solution
(q(t), p(t)) := (qd, pd) of Eqs. (1.2) with the corresponding phase
curve

Γ k,ε := {
(q, p) ∈ C

2n
∣∣ (q, p) = (qd, pd), (q, p) ∈ Γk,ε

} ⊂ Π(d).

(1.7)

In [15] J.J. Morales-Ruiz and J.P. Ramis analyzed the integrability
of Hamiltonian systems of this form. Specifically, they investigated
the linearized equation of (1.2) along the phase curves Γ k,ε for
ε �= 0 and proved the following theorem.

Theorem 1.1 (Morales–Ramis). Assume the Hamiltonian system defined
by (1.1), in which the potential function V ∈ C(q) is homogeneous of
degree k ∈ Z

� , satisfies the following conditions:

1. there exists a non-zero d ∈ C
n such that V ′(d) = d; and

2. the system is integrable in the Liouville sense with first integrals
which are meromorphic in a connected neighborhood of Γ k,ε , with
ε ∈ C

� .
/j.physleta.2009.11.018
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Then for each eigenvalue λ of the Hessian matrix V ′′(d), the pair (k, λ)

corresponds to one of the cases within the table

Case k λ

1. ±2 arbitrary

2. k p + k

2
p(p − 1)

3. k
1

2

(
k − 1

k
+ p(p + 1)k

)
4. 3 − 1

24
+ 1

6
(1 + 3p)2, − 1

24
+ 3

32
(1 + 4p)2

− 1

24
+ 3

50
(1 + 5p)2, − 1

24
+ 3

50
(2 + 5p)2

5. 4 − 1

8
+ 2

9
(1 + 3p)2

6. 5 − 9

40
+ 5

18
(1 + 3p)2, − 9

40
+ 1

10
(2 + 5p)2

7. −3
25

24
− 1

6
(1 + 3p)2,

25

24
− 3

32
(1 + 4p)2

25

24
− 3

50
(1 + 5p)2,

25

24
− 3

50
(2 + 5p)2

8. −4
9

8
− 2

9
(1 + 3p)2

9. −5
49

40
− 5

18
(1 + 3p)2,

49

40
− 1

10
(2 + 5p)2

(1.8)

in which p is an integer.

The above theorem is one of the most beautiful applications
of the differential Galois approach to the integrability studies—the
so-called Morales–Ramis theory, see [2–5,12–14].

Systematic investigations of the integrability of homogeneous
potentials were initiated by H. Yoshida [17,18]. He applied the
Ziglin theory [19,20]. A substantial part of the proof of Theorem 1.1
is based on his ideas and results. Let us remark that Theorem 1.1
can be proved without differential Galois theory; such a proof was
given by S.L. Ziglin in [21]. It is based on an analysis of the mon-
odromy group of the variational equations.

The aim of this Letter is to find necessary conditions for the in-
tegrability of homogeneous potentials with degree of homogeneity
k = 0 which are excluded by assumptions of Theorem 1.1.

Our main result is the following theorem.

Theorem 1.2. Assume V ∈ C(q) in (1.1) is homogeneous of degree k = 0
and that the following conditions are satisfied:

1. there exists a non-zero d ∈ C
n such that V ′(d) = d; and

2. the system is integrable in the Liouville sense with rational first in-
tegrals.

Then:

1. all eigenvalues of V ′′(d) are integers; and
2. the matrix V ′′(d) is diagonalizable.

The fact that new obstructions to integrability appear when the
Hessian matrix V ′′(d) is not diagonalizable was observed recently
in [8], where the following theorem was proved.

Theorem 1.3 (Duval, Maciejewski). Let V (q) be a homogeneous poten-
tial of degree k ∈ Z \ {−2,0,2} having the property that there exists
a non-zero solution d ∈ C

n of equation V ′(d) = d. If the Hamiltonian
system generated by (1.1) is integrable in the Liouville sense with first
integrals which are meromorphic in a connected neighborhood of Γ k,ε ,
Please cite this article in press as: G. Casale et al., Physics Letters A (2009), doi:10.1016
with ε ∈ C
� , then the Hessian matrix V ′′(d) satisfies the following con-

ditions:

1. For each eigenvalue λ of V ′′(d), the pair (k, λ) belongs to table (1.8).
2. The matrix V ′′(d) does not have an elementary Jordan block of size

m � 3.
3. If V ′′(d) admits an elementary Jordan block of size m = 2 with cor-

responding eigenvalue λ, then (k, λ) satisfies the conditions in one
of cases 3–9 of table (1.8).

By an elementary Jordan block of size m with eigenvalue λ we
mean a Jordan block of the form

B(λ,m) :=

⎡⎢⎢⎢⎢⎢⎣
λ 0 0 · · · · · · 0

1 λ 0 · · · · · · 0

0 1 λ · · · · · · 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 λ

⎤⎥⎥⎥⎥⎥⎦ ∈ M(m,C), (1.9)

where M(m,C) denotes the set of m × m complex matrices.
In the next section we derive the variational equations. The

proof of Theorem 1.2 is contained in Sections 3 and 4, where
we investigate the differential Galois groups of subsystems of the
variational equations. The last section gives an application of The-
orem 1.2 to two-dimensional potentials.

2. Variational equations

Let us assume that a non-zero d ∈ C
n satisfies V ′(d) = d, and

k = 0. Then, Π(d) defined by (1.4) is invariant with respect to the
system (1.2). However, for k = 0, the phase curve corresponding
to a solution (q, p) = (q(t), p(t)) of one degree of freedom Hamil-
tonian system (1.5) is not algebraic. In fact, for k = 0, the phase
curves of (1.5) are given by

Γε :=
{
(q, p) ∈ C

2
∣∣∣ 1

2
p2 + ln q = ε

}
, ε ∈ C. (2.1)

A particular solution (q, p) = (q(t), p(t)) of (1.5) which lies on Γε

gives a particular solution (q(t), p(t)) := (qd, pd) ∈ Π(d) of (1.2)
which lies on the phase curve

Γ ε := {
(q, p) ∈ C

2n
∣∣ (q, p) = (qd, pd), (q, p) ∈ Γε

} ⊂ Π(d).

(2.2)

The variational equations along Γ ε have the form

d

dt
x = y,

d

dt
y = − 1

q2
V ′′(d)x,

or simply

d2

dt2
x = − 1

q2
V ′′(d)x. (2.3)

We can make a variable substitution x = C z so that the matrix
Λ = C−1 V ′′(d)C appearing in the transformed equations

d2

dt2
z = −q−2Λz (2.4)

is the Jordan form of V ′′(d).
From now on we work with a fixed value ε ∈ C. In order to

apply the differential Galois theory we have to introduce an ap-
propriate differential field of functions defined on Γε . We assume
that the considered first integrals are rational functions, i.e., ele-
ments of the field C(q, p). This is why we choose as our base field
the restriction of field C(q, p) to Γ ε . The restriction of C(q, p) to
/j.physleta.2009.11.018
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Π(d) gives a field C(q, p), which together with derivation d
dt de-

fined by

d

dt
q = p,

d

dt
p = −1

q
, (2.5)

is a differential field. The restriction of C(q, p) to Γε gives the field

C
(
exp

(
ε − p2/2

)
, p

) � C
(

p,exp
(

p2/2
))

.

This field equipped with derivation ṗ = −e−ε exp(p2/2) is our
base differential field. For the remainder of the paper q denotes
exp(ε − p2/2).

Recall that according to the main theorem of the Morales–
Ramis theory, if the system is integrable in the Liouville sense,
then the differential Galois group of the variational equations along
a particular solution is virtually Abelian, i.e. the identity compo-
nent of this group is Abelian. Thus, we have to check whether the
differential Galois group G over the field C(q, p) of system

d2

dt2
z = − 1

q2
Λz, (2.6)

is virtually Abelian. Notice that for each eigenvalue λ of V ′′(d), the
above system contains as a subsystem equation of the form

d2

dt2
x = − λ

q2
x, (2.7)

and, if Λ has a Jordan block with the corresponding eigenvalue λ,
then it contains the following subsystem

d2

dt2
x = − λ

q2
x, (2.8)

d2

dt2
y = − λ

q2
y − 1

q2
x. (2.9)

To make the above observations useful we invoke the following
fact: the differential Galois group of a subsystem is a quotient of
the differential Galois group of the system. This implies that if the
differential Galois group of a system is virtually Abelian, then the
differential Galois group of its subsystem is virtually Abelian, see
Section 1.4 in [8]. Thus, to find obstructions to the integrability
of the considered systems it is enough to investigate the above
subsystems.

It is convenient to give another form of (2.7) and (2.8). We take
p as independent variable in those systems. We have

d

dt
= ṗ

d

dp
and

d2

dt2
= p̈

d

dp
+ ṗ2 d2

dp2
.

Thus, using (2.5) we obtain

d2

dt2
= p

q2

d

dp
+ 1

q2

d2

dp2
.

So, Eq. (2.7) transforms into

x′′ + px′ + λx = 0, (2.10)

where prime denotes derivation with respect to p. System (2.8)–
(2.9) transforms into

x′′ + px′ + λx = 0,

y′′ + py′ + λy + x = 0.

}
(2.11)

We need to emphasize that when considering both of the above
systems we have to determine their differential Galois groups over
the field C(q, p), not over C(p)!
Please cite this article in press as: G. Casale et al., Physics Letters A (2009), doi:10.1016
3. Rank 2 subsystems

Let G denotes the differential Galois group of Eq. (2.10) over
(C(p), d

dp ). We show the following.

Proposition 3.1. If λ /∈ Z, then G = GL(2,C). If λ ∈ Z, then G = C
∗
�C.

Proof. Let z = −p2/2. Then, after this change of independent vari-
able, Eq. (2.10) is of the form

z
d2x

dz2
+ (c − z)

dx

dz
+ ax = 0 where c = 1

2
, a = −λ

2
. (3.1)

This is the confluent hypergeometric equation in the Kummer
form [9]. Its differential Galois group over C(z) was investigated
in [16], see also [6,7]. From those investigations we know that

• if λ /∈ Z, then the Galois group is GL(2,C),
• if λ ∈ Z, then Galois group is C

∗
� C.

This result gives the Galois group of Eq. (2.10) over the field
C(p2), hence over C(p). �

For an integer λ we can characterize solutions of Eq. (2.10) in
the following proposition.

Proposition 3.2. Let λ ∈ Z. Then

xλ :=
{

qHλ−1(p), for λ � 1,

H−λ(−ip), for λ � 0,
(3.2)

where Hn is the Hermite polynomial of degree n, is a solution of
Eq. (2.10). Its other solution is given by

x̃ := xλ

∫
q

x2
λ

dp.

Proof. If we put x = qy, then Eq. (2.10) transforms into

y′′ − py′ + ny = 0 where n = λ − 1.

This is the Hermite differential equation which has for integer n =
λ − 1 polynomial solution Hn(p). If λ � 0 we make transformation
p 	→ −ip, which transforms Eq. (2.10) into the Hermite equation
with n = −λ. The formula for the second solution is standard. �

Note that the Hermite polynomials Hn used in this Letter are
denoted by Hen in [1].

Now, we investigate the differential Galois group Ĝ of Eq. (2.10)
over our base field C(q, p). More precisely we determine its di-
mension. Let us recall that according to the Kolchin theorem the
dimension of the differential Galois group of an equation is equal
to the transcendence degree of the Picard–Vessiot extension of the
field solving the equation. Knowing the dimension we can decide
whether the group is virtually Abelian.

Lemma 3.3. If λ /∈ Z, then Ĝ is not virtually Abelian. If λ ∈ Z, then Ĝ is
virtually Abelian.

Proof. Let K be the Picard–Vessiot extension of C(p) solving the
linear system{

x′′ + px′ + λx = 0,

u′ + pu = 0,
(3.3)

so

K := C
(

p, u, x1, x2, x′ , x′ ),

/j.physleta.2009.11.018
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for a basis of solutions. Let K1 be the subextension of K/C(p)

generated by u, i.e., K1 = C(p, u), and K2 be the differential subex-
tension of K/C(p) generated by x1 and x2, i.e.,

K2 := C
(

p, x1, x2, x′
1, x′

2

)
.

Note, that according to our notation K1 = C(p, u) = C(p,

exp(−p2/2)) � C(q, p).
We have two towers of extensions

C(p) ⊂ K1 ⊂ K , (3.4)

and

C(p) ⊂ K2 ⊂ K . (3.5)

Our aim is to determine the transcendence degree tr.deg(K/K1) of
extension K/K1. This number is the dimension of the differential
Galois group Ĝ .

Using basic properties of the transcendence degree, see, e.g.
Chapter 8 in [10], from the first tower (3.4) we obtain

tr.deg
(

K/C(p)
) = tr.deg(K/K1) + tr.deg

(
K1/C(p)

)
. (3.6)

We know that tr.deg(K1/C(p)) = 1 because u = exp(−p2/2) is
transcendental over C(p). Thus, we need to determine
tr.deg(K/C(p)). But from the tower (3.5) we have

tr.deg
(

K/C(p)
) = tr.deg(K/K2) + tr.deg

(
K2/C(p)

)
,

and this gives us

tr.deg(K/K1) = tr.deg(K/K2) + tr.deg
(

K2/C(p)
) − 1. (3.7)

Two cases have to be distinguished:

• If λ is not integer, then by Proposition 3.1, the transcendence
degree of K2/C(p) is 4. So the transcendence degree of K/K1
must be greater or equal to 3. The Galois group of this ex-
tension is a dimension 3 subgroup of GL(2,C), so it is not
virtually Abelian.

• If λ is integer, then by Proposition 3.2, q ∈ K2. Thus, the
transcendence degree of K/K2 is 0. As, by Proposition 3.1,
tr.deg(K2/C(p)) = 2, the transcendence degree of K/K1 is 1.
The Galois group of the variational equation is virtually
Abelian. �

Corollary 3.4. If an eigenvalue of V ′′(d) at a Darboux point is not an
integer, then the Hamiltonian system (1.2) is not integrable.

4. Rank 4 subsystems

In this section we investigate the differential Galois group over
C(q, p) of system (2.8)–(2.9) under assumption that λ ∈ Z. At first
we show the following.

Proposition 4.1. If λ ∈ Z, then Eq. (2.8) has a solution in C(p,q), and
its differential Galois group over C(p,q) is the additive group Ga .

Proof. If we take p as an independent variable in Eq. (2.8), then
it becomes Eq. (2.10). Now, by Proposition 3.2 its solution xλ ∈
C(q, p). We know from the proof of Lemma 3.3 that the dimension
of the Galois group is 1, and this proves the second statement. �
Proposition 4.2. If λ ∈ Z, and the differential Galois group over C(q, p)

of system (2.8)–(2.9) is virtually Abelian, then there exists a ∈ C such
that the integral

R :=
∫ (

a
1

x2
λ

− 1

q2
x2
λ

)
dt = a

∫
q

x2
λ

dp −
∫

x2
λ

q
dp, (4.1)

belongs to C(q, p).
Please cite this article in press as: G. Casale et al., Physics Letters A (2009), doi:10.1016
Proof. By Proposition 4.1, the differential Galois group of Eq. (2.8)
is the additive group Ga. So, we can apply point 2 of Theorem 2.3
from [8]. The condition (α) in this theorem is, in our case, R ∈
C(q, p), for a certain a ∈ C. �
Lemma 4.3. For any a ∈ C the integral R(q, p) does not belong to the
field C(p,q).

Proof. We prove our lemma by a contradiction. Let us assume that
there exists a ∈ C such that R(q, p) ∈ C(p,q).

At first we consider the case λ � 1. In this case the solution
of Eq. (2.8) in C(p,q) is xλ = qHλ−1(p) (see Proposition 3.2), and
thus

R =
∫ (

a
1

q

1

Hλ−1(p)2
− qHλ−1(p)2

)
dp. (4.2)

As a rational function of the transcendent q = exp(ε − p2/2) with
coefficients in C(p), R can be written in the form

R =
m∑

l=0

αlq
l + N(p,q)

D(p,q)
,

where αk ∈ C(p), N and D are elements of C(p)[q], and degq(N) <

degq(D). Moreover, this decomposition is unique. Differentiating
both sides of (4.1) we obtain

a
1

q

1

H2
λ−1

− qH2
λ−1 =

m∑
l=0

(
α′

l − lpαl
)
ql +

(
N(p,q)

D(p,q)

)′
. (4.3)

As

0 > ordq
N

D
:= degq N − degq D � ordq

(
N

D

)′
,

we must have m = 1, because the decomposition in both sides of
(4.3) is unique. In particular, we have

α′
1 − pα1 = −H2

λ−1. (4.4)

Because this equation is regular, α1 ∈ C[p], and it can be written
as a linear combination of Hermite polynomials

α1 =
N∑

n=0

γn Hn, where γn ∈ C.

Hermite polynomials satisfy the following relation

Hn+1(p) = pHn(p) − H ′
n(p),

so we have

α′
1 − pα1 =

N∑
n=0

γn
(

H ′
n − pHn

) = −
N∑

n=0

γn Hn+1.

Thus, we can rewrite (4.4) in the form

H2
λ−1 =

N∑
n=0

γn Hn+1,

and so
∞∫

−∞
e−p2/2 H2

λ−1(p)dp =
N∑

n=0

γn

∞∫
−∞

e−p2/2 Hn+1(p)dp.

But this gives a contradiction
√

2π(λ − 1)! = 0,

because
/j.physleta.2009.11.018
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∞∫
−∞

e−p2/2 Hn+1(p)dp =
∞∫

−∞
e−p2/2 Hn+1(p)H0(p)dp = 0,

for n � 0. For λ � 1 our lemma is proved.
In the case λ � 0 the solution of Eq. (2.8) in C(p,q) is xλ =

Hλ(−ip), so integral (4.1) reads

R =
∫ (

aq

H−λ(−ip)2
− 1

q
H−λ(−ip)2

)
dp. (4.5)

If we set

v = ip, u = eε−v2/2 = e2ε/q,

λ̃ = 1 − λ, and ã = ae4ε, (4.6)

then we transform the considered integral into the following one

R = ie−2ε

∫ (
ã

uH λ̃−1(v)2
− uH λ̃−1(v)2

)
dv. (4.7)

But this integral, after renaming variables, is proportional to that
one already considered for λ � 1, see (4.2). So, it is not rational
and this finishes the proof. �

As corollaries we have:

Corollary 4.4. If λ ∈ Z, then the differential Galois group over C(q, p) of
system (2.8)–(2.9) is not virtually Abelian.

Corollary 4.5. If V ′′(d) at a Darboux point has an elementary Jordan
block with integer eigenvalue, then Hamiltonian system (1.2) is not inte-
grable.

Now, our main result given by Theorem 1.2 follows directly
from Corollaries 3.4 and 4.5.

5. Examples

We will consider the case n = 2 in detail. Our aim is to charac-
terize those homogeneous potentials V ∈ C(q1,q2) of degree k = 0
which satisfy the necessary conditions of Theorem 1.2.

Darboux points of V are non-zero solutions of equations

∂V

∂q1
= q1,

∂V

∂q2
= q2. (5.1)

As it was explained in [11] it is convenient to consider Darboux
points as points in the projective line CP

1. Let z = q2/q1, q1 �= 0,
be the affine coordinate on CP

1. Then, we can rewrite system (5.1)
in the form

v ′(z)z = −q2
1, v ′(z) = zq2

1, (5.2)

where v(z) := V (1, z). From the above formulae it follows that z�

is a Darboux point of V , if and only if z� ∈ {−i, i}, and v ′(z�) �= 0.
Thus, the location of Darboux points does not depend on the form
of potential!

If z� is the affine coordinate of a Darboux point d of V , then the
Hessian matrix V ′′(d) expressed in this coordinate has the form

V ′′(d) =
[ −v ′′(z�)x−2

� − 2 −[v ′(z�) + z�v ′′(z�)]x−2
�−[v ′(z�) + z�v ′′(z�)]x−2

� v ′′(z�)x−2
�

]
(5.3)

where

x2
� = −v ′(z�)z� = v ′(z�)/z�.
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Vector d is an eigenvector of V ′′(d) with corresponding eigenvalue
λ = −1. As Tr V ′′(d) = −2, λ = −1 is the only eigenvalue of V ′′(d).
Thus the first condition of Theorem 1.2 is satisfied. If V ′′(d) is di-
agonalizable, then it is diagonal. Hence the second condition of
Theorem 1.2 is satisfied iff

v ′(z�) + z�v ′′(z�) = 0. (5.4)

Let us apply the above criterion for potential

V = q2

q3
1

(q2 − aq1)(q2 − bq1) where a �= b,

assuming that it has two Darboux points with affine coordinates
±i. An easy calculation shows that condition (5.4) is satisfied for
z� = ±i iff

V = q2

q3
1

(
9q2

1 + q2
2

)
.

We did an explicit search for first integrals which are polynomi-
als in the momenta of degree at most four. None were found, but
of course this does not prove non-integrability for the associated
Hamiltonian system. Readers must keep in mind that Theorem 1.2
gives necessary conditions for integrability, but makes no claim re-
garding sufficiency.
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