Feuille d'exercices 6

Exercice 1. On suppose que le nombre de pièces sortant d'une usine donnée en l'espace d'une semaine est une variable aléatoire d'espérance 50.

- 1. Estimer le probabilité que la production de cette semaine dépasse 75 pièces.
- 2. On sait que la variance de la production hebdomadaire est de 25. Estimer la probabilité que la production de la semaine prochaine soit comprise entre 40 et 60 pièces.

Exercice 2. On considère une variable aléatoire X suivant une loi uniforme sur $\{1, \dots, 9\}$. Calculer son espérance et sa variance.

Majorer $\mathbb{P}(|X-5|>4)$ grace à l'inégalité de Tchebychev. Pouvez-vous faire mieux ?

Exercice 3. Soient X et Y deux variables aléatoires définies sur le même espace probabilisé et vérifiant $\mathbb{E}(X) = 75$, $\mathbb{E}(Y) = 75$, Var(X) = 10, Var(Y) = 12 et Cov(X,Y) = -3. Donner des majorations de $\mathbb{P}(|X-Y| > 15)$, $\mathbb{P}(X > Y + 15)$ et $\mathbb{P}(Y > X + 15)$

Exercice 4. On lance 100 fois une pièce équilibrée. Majorer la probabilité d'avoir plus de 70 faces ou moins de 30 faces à l'issue des lancers.

Exercice 5. On considère la fonction f donnée par $f(t) = \frac{1}{4}t^{k+2} \mathbbm{1}_{[0,2]}(t)$.

1. Déterminer k pour que f soit une densité de probabilité.

Soit X une variable aléatoire de densité f.

- 2. Calculer l'espérance et la variance de X.
- 3. Minorer $\mathbb{P}(X \ge 1)$ en utilisant l'inégalité de Tchebychev.
- 4. Calculer $\mathbb{P}(X > 1)$.

Exercice 6. Soit $(X_k)_{k\in N}$ une suite de variable aléatoire ayant chacune une espérance et une variance. Supposons que $Var(\sum_{k=1}^{n} X_k) = o(n^2)$.

1. En utilisant l'inégalité de Tchebychev, montrer que la suite de variable aléatoires $(Y_n)_{n\in\mathbb{N}}$ définie par

$$Y_n = \frac{X_1 + \ldots + X_n}{n} - \frac{\mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n)}{n}$$

converge en probabilité vers 0.

2. En supposant que la suite $\left(\frac{1}{n}\sum_{k=1}^{n}\mathbb{E}(X_{k})\right)_{n\in\mathbb{N}}$ converge, donner la limite en probabilité de $\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}\right)_{n\in\mathbb{N}}$.

Exercice 7. Pour $n \in \mathbb{N}_{\geq 1}$, on considère une variable aléatoire X_n suivant la loi uniforme sur $\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$. Montrez que $X_n \stackrel{\mathcal{L}}{\longrightarrow} X$ où X suit une loi uniforme sur [0, 1].

Exercice 8. Soit $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ un espace probabilisé tel que $\Omega = \Omega_1 \cup \Omega_2$ avec $\Omega_1 \cap \Omega_2 = \emptyset$ et $\mathbb{P}(\Omega_1) = \mathbb{P}(\Omega_2)$. Pour $n \in \mathbb{N}$, on considère les variables aléatoires suivantes $X_{2n} = \mathbb{1}_{\Omega_1}$ et $X_{2n+1} = \mathbb{1}_{\Omega_2}$.

- 1. Pour $n \in \mathbb{N}$, donner la loi de X_n . En déduire que $X_n \stackrel{\mathcal{L}}{\to} X_1$.
- 2. Pour $n \in \mathbb{N}$, calculer $\mathbb{P}(|X_{2n} X_1| \ge 1)$. En déduire que $X_n \not\stackrel{\mathbb{P}}{\to} X_1$.

Exercice 9. Une particule radioactive a une durée de vie T qui suit une loi exponentielle de paramètre $\lambda > 0$. On considère n particules dont les durée de vies sont indépendantes et notées T_1, T_2, \ldots, T_n . On note S_n le temps de vie de la première particule se désintégrant et R_n celui de la dernière.

- Donner les fonctions de répartitions de S_n et R_n .
- Etudier la convergence en loi des suites $(nS_n)_{n\geq 1}$ et $(\frac{R_n}{n})_{n\geq 1}$.
- Montrer que la suite $(\overline{T}_n)_{n\geq 1}$ définie par $\overline{T}_n = \frac{1}{n}\sum_{k=1}^n T_k$ converge en probabilité vers la variable aléatoire constante égale à $\frac{1}{\lambda}$.

Exercice 10. On considère une variable aléatoire X suivant une loi binomiale B(1000, 0.03).

- 1. Calculer $\mathbb{P}(X \leq 20)$ avec votre calculatrice.
- 2. Approcher la loi de *X* par une loi de Poisson, en déduire une approximation de $\mathbb{P}(X \leq 20)$.
- 3. Approcher la loi de X par une loi Normale, en déduire une approximation de $\mathbb{P}(X \leq 20)$.

Exercice 11. Supposons que vous ayez en moyenne deux accrochages par an. Devez-vous prévoir plus de trois constats à l'amiable pour les prochains 18 mois?

Exercice 12. On lance un dé jusqu'à ce que la somme des points obtenus soit supérieur à 300. Utiliser le théorème central limite pour estimer la probabilité qu'il faille plus de 80 lancers.

Exercice 13. Dans une population de N=30.000.000 individus la proportion d'individus présentant le caractère c est p=0,4. On interroge un échantillon de n=1.600 personnes . Pour chaques échantillons possible ω , on note $S_n(\omega)$ le nombre de personnes présentant le caractère c.

- Décrire S_n comme une variable aléatoire.
- Minorer les probabilités des événements suivants :

$$\mathbb{P}(0, 3n \le S_n \le 0, 5n)$$
 $\mathbb{P}(0, 35n \le S_n \le 0, 45n)$ $\mathbb{P}(0, 38n \le S_n \le 0, 42n)$

– Donner un intervalle de longueur I le plus petit possible tel que $\mathbb{P}(\frac{S_n}{n} \in I) \approx 0.95$.