4 Transformée en z

4.1 Définitions et notations.

Définition 1 La transformée en z d'une suite $(a_n)_{n\in\mathbb{N}}$ est la somme de la série :

$$A(z) = \sum_{n=0}^{+\infty} a_n \frac{1}{z^n}.$$

Si le rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$ est R>0; en posant $x=\frac{1}{z}$,

A(z) est bien définie pour tout $z \in \mathbb{C}$ tel que $\left|\frac{1}{z}\right| < R$ soit $|z| > \frac{1}{R}$.

Le fonction A(z) est aussi notée $\mathscr{Z}[a_n]$. On appelle $(a_n)_n$ l'original de A(z).

Exemple 1 Si $a_n = 1$ pour tout n alors le rayon de convergence de $\sum_{n \geq 0} x^n$ est 1. Pour z > 1 on a

$$A(z) =$$

Définition 2 Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction nulle sur $\mathbb{R}_{<0}$ (signal causal) et $T_e \in \mathbb{R}_{>0}$. L'échantillonnage de f de période T_e est la suite

$$(f(nT_e))_n =$$

La transformée en z d'un échantillonage $(f(nT_e))_n$ est la somme de la série :

$$F(z) =$$

lorsqu'elle existe.

On la note F(z), $\mathscr{Z}[f(nT_e)]$ ou $\mathscr{Z}[f]$ si T_e est explicite.

4.2 Exemples fondamentaux.

4.2.1 Échelon unité

Le signal est

$$U(t) = \begin{cases} 1 \text{ si } t \ge 0\\ 0 \text{ si } t < 0 \end{cases}$$

Son échantillonage à la période T_e est la suite de terme général

$$U(nT_e) = .$$

Sa transformée en z :

$$\mathscr{Z}[U(nT_e)] =$$

4.2.2 Suite de Dirac

La suite est définie par

$$\begin{array}{rcl} \delta(0) & = & 1 \\ \delta(nT_e) & = & 0 \text{ pour tout } n \in \mathbb{N}_{>0}. \end{array}$$

Sa transformée en z :

$$\mathscr{Z}[\delta(nT_e)] =$$

4.2.3 Suite exponentielle

Le signal est

$$f(t) = a^t = \exp(t \ln a).$$

Son échantillonage à la période T_e est la suite de terme général

$$f(nT_e) = a^{nT_e}$$
.

Sa transformée en z :

$$\mathscr{Z}[a^{nT_e}] =$$

$$\mathbf{pour}\ z \in \mathbb{C}\ \mathbf{tel}\ \mathbf{que}\ \left|\frac{a^{T_e}}{z}\right| < 1\ \textit{i.e.}\ |z| > |a|^{T_e}.$$

En particulier si
$$T_e = 1$$
: $\mathscr{Z}[a^n] = \frac{z}{z-a}$ pour $|z| > |a|$.

4.3 Propriétés.

4.3.1 Linéarité

Théorème 1 Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ deux suites et λ , μ deux nombres. Alors

$$\mathscr{Z}[\lambda u_n + \mu v_n] = \lambda \mathscr{Z}[u_n] + \mu \mathscr{Z}[v_n].$$

$$Preuve. - \dots$$

Exemples 1 Calculons $\mathscr{Z}[\cos(\omega n)]$ et $\mathscr{Z}[\sin(\omega n)]$.

4.3.2 Retard

Théorème 2 (du retard) Soit $(v_n)_{n\in\mathbb{N}}$ une suite; notons $(w_n)_{n\in\mathbb{N}}$ la suite retardée donnée par

$$\begin{array}{rcl} w_n & = & v_{n-p} & si \ n \geq p > 0 \\ w_n & = & 0 & si \ n$$

Alors

$$\mathscr{Z}[w_n] = \frac{1}{z^p} \mathscr{Z}[v_n].$$

L'égalité du théorème se réécrit

$$\mathscr{Z}[U(n-p)v_{n-p}] = z^{-p}\mathscr{Z}[v_n].$$

Preuve. -

4.3.3 Avance

Théorème 3 (de l'avance) $Soit(v_n)_{n\in\mathbb{N}}$ une suite; notons $(w_n)_{n\in\mathbb{N}}$ la suite avancée donnée par $w_n = U(n)v_{n+1}$. Alors

$$\mathscr{Z}[w_n] = z(\mathscr{Z}[v_n] - v_0).$$

On peut généraliser ce théorème par récurrence :

$$\mathscr{Z}[U(n)v_{n+p}] = z^p \left(\mathscr{Z}[v_n] - \sum_{k=0}^{p-1} \frac{v_k}{z^k} \right).$$

4.3.4 Multiplication par n.

Proposition 1 Soit $(v_n)_{n\in\mathbb{N}}$ une suite. Alors

$$\mathcal{Z}[nv_n] = -z \frac{d}{dz} \mathcal{Z}[v_n].$$

Preuve. -

4.3.5 Multiplication par a^n , $a \in \mathbb{C}$.

Proposition 2 Soit $(v_n)_n \in \mathbb{N}$ une suite. Alors

$$\mathscr{Z}[a^n v_n](z) = \mathscr{Z}[v_n]\left(\frac{z}{a}\right).$$

4.4 Transformée d'un signal périodique

Théorème 4 Soient $T_e \in \mathbb{R}_{>0}$ et f un signal mT_e -périodique. Notons f_0 le signal

$$f_0(t) = \begin{cases} f(t) & si \ t \in [0, mT_e[\\ 0 & sinon. \end{cases}$$

Alors

$$\mathscr{Z}[f(nT_e)] = \frac{z^m}{z^{m-1}} \mathscr{Z}[f_0(nT_e)],$$

ou avec d'autres notations :

$$F(z) = \frac{z^m}{z^m - 1} F_0(z).$$

pour
$$z \in \mathbb{C}$$
 tel que $|z| > 1$.

4.5 Valeur initiale et valeur finale

Théorème 5 (de la valeur initiale) $Soit(a_n)_{n\in\mathbb{N}}$ une suite et A(z) sa transformée en z. Si la limite existe on a:

$$\lim_{|z| \to +\infty} A(z) = a_0.$$

Preuve. -

Théorème 6 (de la valeur finale) Soit $(a_n)_{n\in\mathbb{N}}$ une suite et A(z) sa transformée en z. Si les limites existent on a:

$$\lim_{|z| \to +\infty} A(z) \left(1 - \frac{1}{z}\right) = \lim_{n \to +\infty} a_n.$$

Transformée en z et convolution 4.6

Rappels

1. Si f et g sont deux fonctions nulles sur $\mathbb{R}_{<0}$, on note

$$(f*g)(x) = \int_{\tau=0}^{\tau=x} f(\tau)g(x-\tau)d\tau$$
 le **produit de convolution** de f et g .

2. Si $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont deux suites, on note

$$(a*b)_n = \sum_{k=0}^{k=n} a_k b_{n-k}$$
 le **produit de convolution** de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$.

Compatibilité

Soit T_e une période d'échantillonnage, $(a_n)_{n\in\mathbb{N}} \text{ est l'échantillonnage de } f$ $(b_n)_{n\in\mathbb{N}} \text{ est l'échantillonnage de } g$ alors $((a*b)_n)_{n\in\mathbb{N}}$ est l'échantillonnage de (f*g).

Théorème 7 Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites. On a

$$\mathscr{Z}[(a*b)_n] = \mathscr{Z}[a_n] \cdot \mathscr{Z}[b_n].$$

Soient f et g deux signaux casaux et F(z) et G(z) leurs transformées en z de période d'échantillonnage T_e . On a

$$\mathscr{Z}[f*g] = F(z) \cdot G(z).$$

Preuve. – $\mathscr{Z}[(a*b)_n] =$

En remplaçant n-k par m:

4.7 Transformée inverse & Applications

Comment retrouver l'original d'une transformée en z? **Exemple 2** On cherche une suite $(a_n)_{n\in\mathbb{N}}$ telle que $\begin{cases} 2a_{n+1}+a_n=U(n)\\ a_0=0 \end{cases}$.

La transformée en z étant linéaire on obtient

Le théorème de l'avance donne

et on a donc

c'est-à-dire
$$\mathscr{Z}[a_n] =$$

Comment obtenir a_n ?

Soit A(z) une fonction d'une variable complexe z. Existe-t-il $(a_n)_{n\in\mathbb{N}}$ telle que $A(z)=\mathscr{Z}[a_n]$?

Première méthode : Développer A(z) en série entière de $x=\frac{1}{z}$ en utilisant les tables de séries entières.

Deuxième méthode : Si A(z) est une fraction rationnelle, on la décompose en éléments simples puis on utilise les propriétés de la TZ et les tables de transformées usuelles.

Exemple 3 (fin de l'exemple précédent)

Prenons

$$A(z) = \frac{z}{(z-1)(2z+1)} =$$

Or d'après ce que nous avons déjà vu :

$$\mathscr{Z}[U(n)] = et \mathscr{Z}[(-1/2)^n U(n)] =$$

Nous avons donc

4.8 Suite définies par une récurrence double linéaire.

$$\alpha \ a_{n+2} + \beta \ a_{n+1} + \gamma \ a_n = b_n$$

 α, β, γ étant des constantes et $(b_n)_{n \in \mathbb{N}}$ une suite donnée et $(a_n)_{n \in \mathbb{N}}$ est la suite inconnue qu'on cherche à déterminer.

En utilisant la linéarité et le théorème d'avance, on obtient

Exemple 4 Trouver une suite $(y_n)_{n\in\mathbb{N}}$ telle que $\begin{cases} y_{n+2} - 5y_{n+1} + 6y_n = \delta \\ y_0 = 1 \quad y_1 = 0 \end{cases} .$

Comparer avec l'exemple de la fin du chapitre sur les suites