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The Pfaff Lattice

Example: sl(4, R) = k ⊕ sp(2, R)

L =











0 1 0 0

∗ b1(t) a1(t) 0

∗ ∗ −b1(t) 1

∗ ∗ ∗ 0











.

The Pfaff lattice hierarchy in L is

∂L

∂tj
= − [Bj , L] for j = 1, 2, 3.

with
Bj = πk(L

j) .
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The Pfaff Lattice

The Lie algebra splitting

sl(2n) ∼= k ⊕ sp(n)

where sp(n) = {X ∈ sl(2n) : σ(X) = X} with the involution
σ(X) := JXTJ . Here the skew symmetric matrix J is

J = diag

((

0 1

−1 0

)

, · · · ,

(

0 1

−1 0

))

.

and

πkX = X− − J(X+)TJ +
1

2
(X0 − JXT

0 J) .

where X± is 2 × 2 upper (lower) block triangular part of X,
X0 is the 2 × 2 block diagonal part of X.
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The Pfaff Lattice

The Lie algebra k is the set of matrices of the form,




















d1 0 0 0 0 0

0 d1 0 0 0 0

∗ ∗ d2 0 0 0

∗ ∗ 0 d2 0 0

∗ ∗ ∗ ∗ d3 0

∗ ∗ ∗ ∗ 0 d3





















.

where
∑n

j=1 dj = 0. The dimension of k is

4 × n(n − 1)

2
+ (n − 1) = 2n2 − n − 1 .
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The Pfaff Lattice

With the pairing 〈x, y〉 = tr(xy) for x, y ∈ sl(2n),

sl(2n)∗ ∼= sp(n)∗ ⊕ k∗ .

where sp(n)∗ = k⊥ and k∗ = sp(n)⊥.

The Lie-Poisson structure on g∗ = sl(2n, R)∗:

{F,G}g∗(L) = 〈L, [∇F,∇G]g〉

where [∇F,∇G]g = [R∇F,∇G] − [∇F,R∇G] with the
R-matrix,

R =
1

2
(πk − πsp) .
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The Pfaff Lattice

The Pfaff lattice is defined with an Sp-invariant function H,

dL

dt
= {H,L}g∗(L) = −[πk∇H,L] ,

We consider the matrix L ∈ sl(2n)∗ in the form,

L = ξ + κ

=











α1 ∗ 0 0

∗ −α1 0 0

∗ ∗ α2 ∗
∗ ∗ ∗ −α2











+











β1 0 0 0

0 β1 a1 0

0 0 −β1 0

−a1 0 0 −β1











.

with ξ ∈ sp(n)∗, κ ∈ k∗ = sp⊥. Note 〈κ, [sp⊥, sp⊥]〉 = 0.
dim(sp(n)∗) = 2n2 + n and the number |κ| = 2 × (n − 1).
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The Pfaff Lattice

The Lax matrix L is given by (Adler-van Moerbeke et al):

L =





















0 1 0 0 0 0

∗ b1 a1 0 0 0

∗ ∗ −b1 1 0 0

∗ ∗ ∗ b2 a2 0

∗ ∗ ∗ ∗ −b2 1

∗ ∗ ∗ ∗ ∗ 0





















.

Note [Bk, L]2i−1,2i = 0 and
∑2i−1

j=1 [Bk, L]j,j = 0 for i = 1, . . . , n.

L has 2n2 + n − 2 free variables, i.e.

dim(sp(n)∗) + |κ| − (2n) = (2n2 + n) + (2n − 2) − (2n).
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The Pfaff Lattice

The SR factorization:

Let L(0) be an initial matrix of L, and

et1L(0) = Q(t1)
−1P (t1) , with Q ∈ Gk, P ∈ Sp(n) ,

where Lie(Gk) = k. Then the solution L(t1) is given by

L(t1) = AdQ(t1)L(0) = AdP (t1)L(0) .

The Pfaff lattice hierarchy is

∂L

∂tj
= −[πk∇Hj , L] , Hj =

1

j + 1
tr(Lj+1) ,

for j = 1, 2, . . . , 2n − 1.
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Integrability

An Sp-invariant curve on CP
2:

FL(x, y, z) = det[(x − y)L + yJLTJ − zI] = 0 .

FL(1, 0, z) is the characteristic polynomial generating Hj.

The curve has an involution ι : (x, y, z) → (x, x − y,−z).

FL(x, y, z) =
2n
∑

r=0

[r/2]
∑

k=0

Fr,k(L)ϕ(r,k)(x, y, z) .

{

ϕ(2r,k)(x, y, z) = x2(r−k)(y(x − y))kz2(n−r),

ϕ(2r+1,k)(x, y, z) = x2(r−k)(2y − x)(y(x − y))kz2(n−r)−1.

Those are invariant under the involution.
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Integrability

The total number of Fr,k(L) is n2 + 2n − 1.
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Integrability

The total number of Fr,k(L) is n2 + 2n − 1. However they are

not all independent. Define an algebraic variety,

C(L) = {[x : y : z] : FL(x, y, z) = 0} ⊂ CP 2

The variety C(L) is singular at x = 0,

FL(0, 1, z) = det
(

−L + JLT J − zI
)

=
[

pf
(

−JL − LTJ − zJ
)]2

.

For generic L, C(L) has n double points over x = 0, and

there are n relations among {Fk,[k/2](L) : k = 1, . . . , 2n}.
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Integrability

The solution L(t) is given by the coadjoint action Ad∗g(L
0),

L(t) = Ad∗g(t)(L
0) = πsp∗(Pξ0P−1) + πk∗(Qκ0Q−1) ,

with g(t) = etL0

= Q(t)−1P (t) and L0 = ξ0 + κ0. From this,

one finds that there are Casimirs Ck(L) for k = 1, . . . , n:

FL(2, 1, z) = z2n +
n
∑

k=1

Ck(L)z2n−2k .

There are n Casimirs,

Ck(L) =
k
∑

j=0

22jF2k,j(L) k = 1, . . . , n .
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Integrability

Proposition:

We have n2 − 1 independent Hamiltonians in {Fr,k}, i.e.

n2 − 1 = (n2 + 2n − 1) − (n) − (n) .

Theorem:

The Pfaff lattice is a completely integrable Hamiltonian
system with n2 − 1 Hamiltonians and n Casimirs.

Proof: Construct the angle variables conjugate to Fr,k.
The curve C(L) has genus g(L) = 2n2 − 4n + 1. The angles
are defined by the differentials on the curve.

(Deift, Li and Tomei (1989) for the generalized Toda lattice)
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Matrix Factorizations and τ -Functions

Let us define

θ(t,X) =

2n−1
∑

j=1

tjX
j .

With the SR-factorization eθ(t,L0) = Q(t)−1P (t), we define

M(t) := eθ(t,L0)Jeθ(t,L0)T

= Q(t)−1JQ(t)−T .

Skew-symmetric matrix M is called the moment matrix,

and M = Q−1JQ−T is a Cholesky-type factorization.

Using L0Ψ0 = Ψ0Cγ with Ψ0 ∈ Gk, and Cγ is the companion
matrix of L0, we write
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Matrix Factorizations and τ -Functions

M(t) = eθ(t,L0)Jeθ(t,L0)T

= Ψ0e
θ(t,Cγ)Ψ−1

0 JΨ−T
0 eθ(t,Cγ)ΨT

0

= Ψ0M̃(t)ΨT
0

where

M̃(t) = eθ(t,Cγ)B̃eθ(t,Cγ)T

, B̃ = Ψ−1
0 JΨ−T

0

Alos note CγV = V Λ with the Vandermonde matrix V,

and Λ = diag(z1, . . . , z2n),

eθ(t,Cγ) = V eθ(t,Λ)V −1 = E(t,Λ)V −1 .

where eθ(t,Λ) = diag(E1(t), . . . , E2n(t)) with Ek = eθ(t,zk).
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Matrix Factorizations and τ -Functions

Then E(t,Λ) is given by the Wronskian matrix,

E(t,Λ) =













E1 E2 · · · E2n

E′
1 E′

2 · · · E′
2n

...
... . . . ...

E
(2n−1)
1 E

(2n−1)
2 · · · E

(2n−1)
2n













.

The moment matrix M = Ψ0M̃ΨT
0 is given by

M̃(t) = E(t,Λ)BE(t,Λ)T .

where B = V −1B̃V −T , and gives the initial data for the Pfaff
lattice.

Geometry of the Pfaff Lattices – p. 6/17



Matrix Factorizations and τ -Functions

Summary: With L(0)Ψ0 = Ψ0Cγ and eθ(t,L(0)) = Q−1P ,

L(0)
cγ−−−→ B̃ = Ψ−1

0 JΨ−T
0

AdQ(t)





y





y

L(t)
cγ−−−→ M̃(t) = eθ(t,Cγ)B̃eθ(t,Cγ)T

The map cγ is the companion embedding.

Now we define the τ -functions,

τ2k = pf(M̃2k) ,

where M̃2k is the principal 2k × 2k submatrix of M̃ .
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Matrix Factorizations and τ -Functions

The QMQT = J defines skew-orthogonal polynomials:
Write

M = V MV T

Then each entry mi,j of M can be written by

mi,j = 〈zi−1, zj−1〉M =
∑

1≤k,l≤2n

zi−1
k zj−1

l µk,l .

The skew-othogonal polynomials pi(z) of deg(pi(z)) = i are

PMPT = J, P := QV = (pi−1(zj))1≤i,j≤2n .

Those polynomials are given by Pfaffians.
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Matrix Factorizations and τ -Functions

τ2k = pf(M̃2k) =
∑

Ik

(−1)σmi1,j1mi2,j2 · · ·mik,jk
.

where Ik = {1 = i1 < i2 < · · · < ik, is < js, s = 1, . . . , k} and
the σ(i1, j1, . . . , ik, jk) is the length of the permutation. E.g.

τ2 = m1,2,

τ4 = m1,2m3,4 − m1,3m2,4 + m1,4m2,3.

From the bi-vector Ω2 :=
∑

1≤i<j≤2n

mi,jei ∧ ej ,

τ2k = 〈∧kΩ2, e1 ∧ · · · ∧ e2k〉 .
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Matrix Factorizations and τ -Functions

Lemma: (Ishikawa-Wakayama, 1995)

τ2k =
∑

1≤i1<···<i2k≤2n

pf(i1, . . . , i2k)E(i1, . . . , i2k) .

where E(i1, . . . , i2k) is the det of 2k× 2k submatrix of E(t,Λ),
pf(i1, . . . , i2k) is the Pfaffian of the submatrix of the B-matrix.
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Matrix Factorizations and τ -Functions

Lemma: (Ishikawa-Wakayama, 1995)

τ2k =
∑

1≤i1<···<i2k≤2n

pf(i1, . . . , i2k)E(i1, . . . , i2k) .

where E(i1, . . . , i2k) is the det of 2k× 2k submatrix of E(t,Λ),
pf(i1, . . . , i2k) is the Pfaffian of the submatrix of the B-matrix.

Remark: For all real and distinct eigenvalues {zi},

{Ei = eθ(t,zi) : i = 1, . . . , 2n} gives a basis for R
2n.

{E(i, j) : 1 ≤ i < j ≤ 2n} forms a basis for ∧2
R

2n.

In general, {E(i1, . . . , i2k)} forms a basis for ∧2k
R

2n.

So τ2k represents a vector in ∧2k
R

2n.
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Matrix Factorizations and τ -Functions

Example: n = 2 with bi,j = 1 and (z1, . . . , z4) = (−2,−1, 0, 3)

Graphs of b1 = ∂
∂t1

ln(τ2) in the t1t2 plane for t3 = −10, 0, 10.

0 40-40 80

0

50

-50

t 3 =-10 t 3 = 0 t 3 =10

0 0

0 0

40-40 -40 40-80

50 50

-50 -50

t 2

t 1

t 2

t 1t 1

t 2

{1,2} {1,2}
{1,2}

{3,4}
{3,4}

{3,4}

{1,4} {1,4}{1,4}

{2,3} {2,3}{2,3}

{1,3} {2,4}

Each set {i, j} represents the dominant exponential in that
region, that is,

b1 = zi + zj = {i, j} .
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Matrix Factorizations and τ -Functions

The τ -functions satisfy a coupled KP (or DKP) equation,
(

−4D1D3 + D4
1 + 3D2

2

)

τ2k · τ2k = 24τ2k−2τ2k+2 ,

where τ0 = 1, and Dk is the Hirota derivative (Hirota-Ota,
1991). If the RHS=0, it gives the KP equation.

Remark:

The DKP equation appeared (implicitly) in (Jimbo-Miwa,
1983).

The partition functions for GOE and GSE random
matrix models (Adler-van Moerbeke, Kakei, 1999-).

The charged BKP equation (Kac-van de Leur, 1999).
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Fixed points of the Pfaff flow

The entries of L(t) are given by τ2k(t) functions.
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Fixed points of the Pfaff flow

The entries of L(t) are given by τ2k(t) functions.

Problem: the lower (2 × 2)-block entries of L(t) blow up
as t1 → ±∞.
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Fixed points of the Pfaff flow

The entries of L(t) are given by τ2k(t) functions.

Problem: the lower (2 × 2)-block entries of L(t) blow up
as t1 → ±∞.

Do an SDR-Factorization:

exp(t1L
0) = Q−1P = Q̂−1HP
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Fixed points of the Pfaff flow

The entries of L(t) are given by τ2k(t) functions.

Problem: the lower (2 × 2)-block entries of L(t) blow up
as t1 → ±∞.

Do an SDR-Factorization:

exp(t1L
0) = Q−1P = Q̂−1HP

Here diag2(Q̂) = diag(I2, . . . , I2) (cf. Q ∈ Gk), and

H = diag (h1I2, . . . , hnI2) I2 =

(

1 0

0 1

)

with
∏n

k=1 hk = 1. Note τ2k =
∏k

j=1 h2
j .
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Fixed Points of the Pfaff flow

Define
L̂ = HLH−1 = Q̂L(0)Q̂−1 .

For the case with n = 2,

L̂ =











0 1 0 0

∗ b1(t) 1 0

∗ ∗ −b1(t) 1

∗ ∗ ∗ 0











We have assumed that ak(0) = 1 for all k. Note that

ak =

√
τ2k−2τ2k+2

τ2k
, bk =

∂

∂t1
ln τ2k .
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Fixed Points of the Pfaff flow

Entries qi,j of Q̃ := Q̂Ψ0 are given by (Adler-van Moerbeke)















q2k,2k−j(t) =
Sj(−∂̃)τ2k(t)

τ2k(t)

q2k+1,2k−j(t) =
[Sj+1(−∂̃) + ∂1Sj(−∂̃)]τ2k(t)

τ2k(t)
.

where Sk(−∂̃) denotes Sk(−∂1,−1
2∂2,−1

3∂3, . . .), and

exp





∞
∑

j=1

tjz
j



 =
∞
∑

k=0

Sk(t1, . . . , tk)z
k .

L̂ = Q̃CγQ̃−1, and Q̃ is invariant under the scaling of τ2k.
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Fixed Points of the Pfaff flow

As t1 → −∞ the L̂(t) approaches L̂− which has the
following block form:

L̂− =











0 1 0 0

−z1z2 z1 + z2 1 0

0 0 z3 + z4 1

0 0 −z3z4 0











Note that the diagonal blocks have eigenvalues (z1, z2) and
(z3, z4), i.e.

b1 → z1 + z2 as t1 → −∞ .

(Compare with the figure for n = 2.)
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Fixed Points of the Pfaff flow

As t1 → ∞ the order is reversed:

L̂+ =











0 1 0 0

−z3z4 z3 + z4 1 0

0 0 z1 + z2 1

0 0 −z1z2 0











Theorem: As t1 → ±∞, L̂ → diag(L̂±
0,0, . . . , L̂

±
n−1,n−1) + ǫ,

L̂−
k,k =

(

−σ1(2k) 1

− (σ1(2k) + z2k+1) (σ1(2k) + z2k+2) σ1(2k + 2)

)

L̂+
k,k = L̂−

n−k−1,n−k−1 with σ1(m) =
∑m

j=1 zj and σ1(2n) = 0.
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Fixed Points of the Pfaff flow

The set of the fixed points can be represented by

Fix(L) = { ({zi1, zi2}, . . . , {zi2n−1 , zi2n
}) : i2k−1 < i2k } .

We have an isomorphism,

Fix(L) ∼= WP = S2n/WP , WP = 〈s1, s3, . . . , s2n−1〉 .

and

|Fix(L)| =
(2n)!

2n
.

F ix(L) is parametrized by the set of minimal reps of WP .

WP = {e, s2, s1s2, s3s2, s1s3s2, s2s1s3s2}, (n = 2).

Geometry of the Pfaff Lattices – p. 8/17



Fixed Points of the Pfaff flow

The fixed points for the case of n = 2:

(1001)

(1100)

(0110)

(0011)

{1,4}

{2,3}

{1,2} {1,3}

(0101)

(1010)

e = (1100), s2 = (1010), s1s2 = (0110), s3s2 = (1001),
s1s3s2 = (0101), s2s1s3s2 = (0011).
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Geometry of the Pfaff lattice

Recall Ishikawa-Wakayama formula,

τ2k =
∑

1≤i1<···<i2k≤2n

pf(i1, . . . , i2k)E(i1, . . . , i2k) .
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Geometry of the Pfaff lattice

Recall Ishikawa-Wakayama formula,

τ2k =
∑

1≤i1<···<i2k≤2n

pf(i1, . . . , i2k)E(i1, . . . , i2k) .

The set {E(i1, . . . , i2k)} gives a basis for
∧2k

R
2n.
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Geometry of the Pfaff lattice

Recall Ishikawa-Wakayama formula,

τ2k =
∑

1≤i1<···<i2k≤2n

pf(i1, . . . , i2k)E(i1, . . . , i2k) .

The set {E(i1, . . . , i2k)} gives a basis for
∧2k

R
2n.

τ2k is a vector in this basis.
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Geometry of the Pfaff lattice

Recall Ishikawa-Wakayama formula,

τ2k =
∑

1≤i1<···<i2k≤2n

pf(i1, . . . , i2k)E(i1, . . . , i2k) .

The set {E(i1, . . . , i2k)} gives a basis for
∧2k

R
2n.

τ2k is a vector in this basis.

L̂ = Q̂L(0)Q̂−1 is represented by (τ2, τ4, . . . , τ2n−2).
Furthermore, Q̂ depends only τ2k ∈ P(∧2k

R
2n).
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Geometry of the Pfaff lattice

Recall Ishikawa-Wakayama formula,

τ2k =
∑

1≤i1<···<i2k≤2n

pf(i1, . . . , i2k)E(i1, . . . , i2k) .

The set {E(i1, . . . , i2k)} gives a basis for
∧2k

R
2n.

τ2k is a vector in this basis.

L̂ = Q̂L(0)Q̂−1 is represented by (τ2, τ4, . . . , τ2n−2).
Furthermore, Q̂ depends only τ2k ∈ P(∧2k

R
2n).

Consider a moment map:

µ : P(∧2k
R

2n) −→ h∗R
∼= R

2n−1
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The Moment Map

This is a convex map (Gel’fand-Sarganova, 1987),

µ(τ2k) =

∑

Ik

|pf(i1, . . . , i2k)Ei1 · · ·Ei2k
|2(Li1 + · · · + Li2k

)

∑

Ik

|pf(i1, . . . , i2k)Ei1 · · ·Ei2k
|2

.

where Ik = {1 ≤ i1 < · · · < i2k ≤ 2n}. Here h∗
R

is the dual
space of Cartan subalgebra of sl(2n, R),

h∗R = SpanR

{

L1, . . . ,L2n :
2n
∑

i=1

Li = 0

}

,

with the weights Lk.
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The Moment Map

The moment map can be extended to

µ : RP
2n−1 × · · · × P(∧2n−2

R
2n) → h∗

R

(τ2, . . . , τ2n−2) 7→
n−1
∑

k=1

µ(τ2k)

Theorem: The image of the map is a convex polytope
whose vertices are the fixed points of the Pfaff lattice.

Remark: The polytope is a tensor product rep of SL(2n), i.e.
Γ0,1,0,...,1,0, and each fixed point is marked by the weight

(α1, . . . , α2n) :=
2n
∑

k=1

αkLk αk ∈ {0, 1, . . . , n − 1} .
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The Moment Polytope

Example of n = 2: The τ -function is given by

τ2 =
∑

1≤i,j≤4

bi,jE(i, j).

(1001)

(1100)

(0110)

(0011)

(0101)

(1010)

Each vertex (α1, α2, α3, α4)
represents the weight vector
∑4

j=1 αjLj.

The Moment polytope in this
case is the representation
with highest weight L1+L2 =
(1100).
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The Moment Polytope

Example of n = 2: The τ -function is given by

τ2 =
∑

1≤i,j≤4

bi,jE(i, j).

(1001)

(1100)

(0110)

(0011)

(0101)

(1010)

The Pfaff orbit in the generic
case (i.e. all bk,l 6= 0) can be
described by a curve inside
of the polytope approaching
the vertex (1100) as t1 → −∞
and (0011) as t1 → ∞.

A non-generic flow with only
b1,4b2,3 6= 0 is given by a
curve in blue.
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Foliation by the integrals Fr,k(L)

The isospectral variety of the Pfaff lattice is

ZR(γ) =

{

L ∈ sl(2n)∗ : Hj =
1

j + 1
tr(Lj+1) = γj ∈ R

}

The variety is foliated by additional integrals:

Proposition: With pf(B) = 1,

FL(x, y, z) = det ((x − y)ΛB − yBΛ − zB) .

where Λ = diag(z1, . . . , z2n). Thus

Fr,k(L) are expressed in terms of {zk} and the B-matrix.

{Fr,0(L)} gives {Hj} and they do not depend on B.
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Foliation by the integrals Fr,k(L)

Other integrals Fr,k(L) with k 6= 0 give a foliation of ZR(γ):

Example of n = 2: With tr(L) = z1 + z2 + z3 + z4 = 0,

F2,1 = 2(b12b34(z1 + z2)
2 − b13b24(z1 + z3)

2 + b14b23(z1 + z4)
2)

F3,1 = 0

F4,1 = −b12b34(z1 + z2)
2(z1z2 + z3z4) + b13b24(z1 +

z3)
2(z1z3 + z2z4) − b14b23(z1 + z4)

2(z1z4 + z2z3)

F4,2 = F 2

2,1/2

For example, if only b14b23 6= 0, then the flow contains a
non-generic leaf (cf. previous figure).
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Random matrix models

The partition function of the GOE matrix model has the
form:

ZN =

∫

SN

exp (tr(V (X))) dX

=

∫

· · ·
∫

(

∏

i<j

(zi − zj)

)

exp

(

N
∑

k=1

V (zk)

)

dz1 . . . dzN

where SN is the set of real symmetric matrices, and

V (z) = −1

2
z2 +

2m
∑

i=1

tiz
i
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Random matrix models

The partition function of the GSE matrix model has the
form:

ZN =

∫

QN

exp (tr(V (X))) dX

=

∫

· · ·
∫

(

∏

i<j

(zi − zj)
4

)

exp

(

N
∑

k=1

V (zk)

)

dz1 . . . dzN

where QN is the set of self-dual Hermitian matrices with
quartanion entries.
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GOE Example

Take bk,l = sgn(l − k). Then the moment matrix is

mi,j =
∑

1≤k<l≤2n

(zkzl)
i−1(zj−i

l − zj−i
k )EkEl .

The τ -function (2k < 2n) is given by

τ2k = pf(M2k×2k)

=
∑

1≤i1<···<i2k≤2n





∏

j<l

(zil − zij)



Ei1 . . . Ei2k
.

This is a finite version of the GOE partition function.
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GSE Example

Take

b2k−1,2k = −b2k,2k−1 =
1

z2k − z2k−1

and bi,j = 0 for all other (i, j).

Consider the limit z2k → z2k−1, and relabel z2k−1 → zk.

The moment matrix is:

mij = (j − i)
n
∑

k=1

zi+j−3
k E2

k .
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GSE Example

The τ -functions are given by

τ2k =
∑

1≤i1<i2<···<ik≤n





∏

j<l

(zil − zij)
4



E2
i1 . . . E2

ik .

This is a finite version of the GSE partition function.

Example: n = 3

τ2 = E2
1 + E2

2 + E2
3

τ4 = (z1 − z2)
4E2

1E2
2 + (z1 − z3)

2E2
1E2

3 + (z2 − z3)
4E2

2E2
3
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GSE Example

Graphs of bk(t1, t2, t3) = ∂
∂t1

ln τ2k for k = 1, 2.

{1,3}

{2,3}

τ4

-30

0

30

300-30

{1,2}
{1,3}

{2,3}

{3}

τ2

30

-30

0

300-30

{1}

{2}
{3}

t1 t1

t 2t 2

The sets {i} represent the values of b1, i.e. b1 = zj.

The sets {i, j} represent the values of b2, i.e. b2 = zi + zj .
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GSE Example

The moment polytope is given by the irreducible rep of
SL(3) with the highest weight 2L1 + L2 = (210):

{3}

({1},{1,2})

({3},{2,3})

({1},{1,3})

({2},{2,3})

({2},{1,2}) ({3},{1,3})(012)

(102)(201)

(210)

(120) (021)

s1s2s1

s1

s2

The right figure is the combined graphs of b1 and b2.

The sets ({i}, {j, k}) represent the pair of values (b1, b2),
and the boundaries correspond to the permutations (i.e. the
polytope is the permutahedron of S3).
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