Action variables near resonant equilibria

Holger Dullin (Boulder, Colorado, on leave from Loughborough, UK) joint work with Sven Schmidt, Heinz Hanßmann & Richard Cushman (on 1:-2)

Hanoi 2007

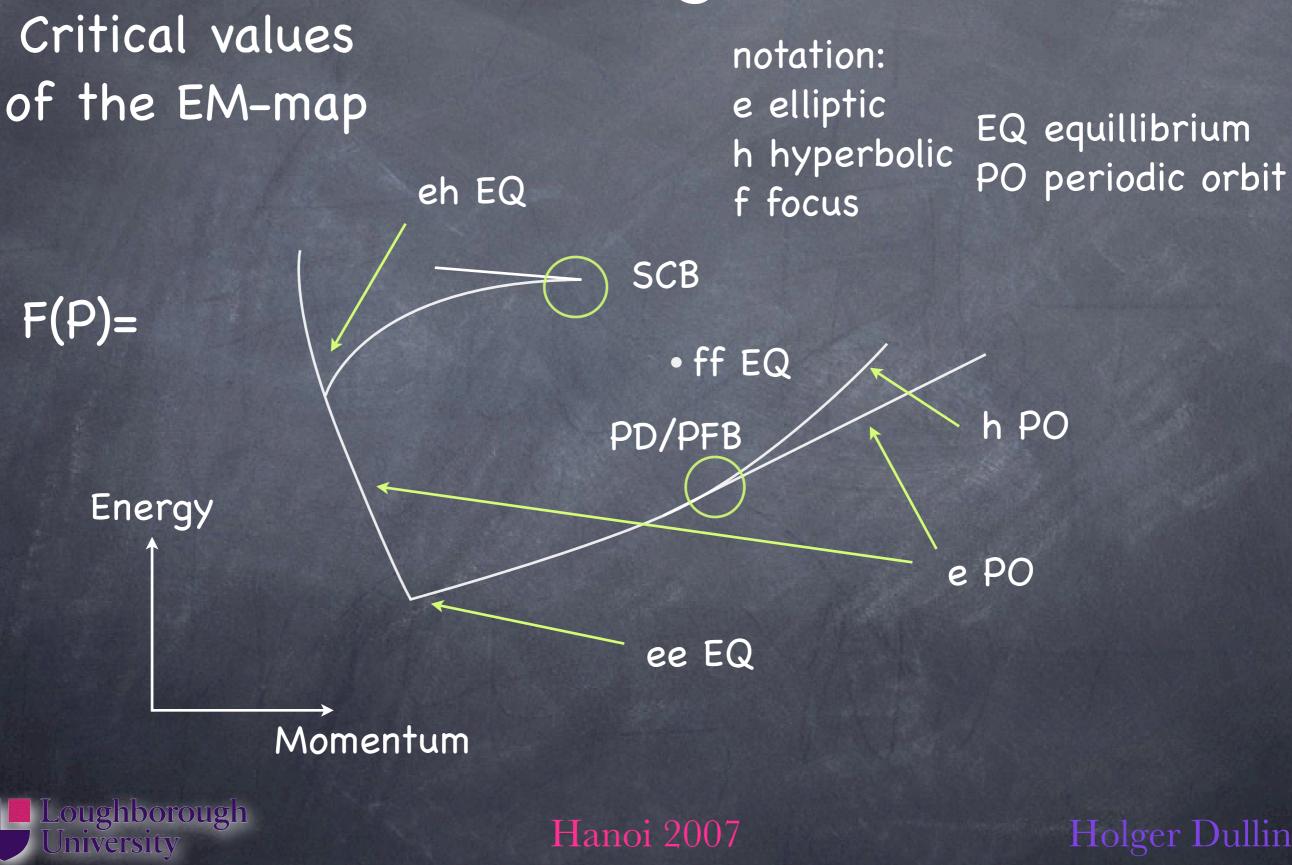
Overview

- Introduction
- Resonant Equilibria, Normal Form
- Singular Reduction
- Image of EM
- Actions, Frequencies, Rotation number

Hanoi 2007

IHS & Momentum Map Integrable Hamiltonian System: Symplectic manifold P, dim P = 4Two smooth a.e. independent functions F₁, F₂ on P Solution Vanishing Poisson bracket $\{F_1, F_2\} = 0$ 𝔅 F=(F₁,F₂) : P → R² is (energy-) momentum map Liouville-Arnold: Generic fibres of F are Tori Study the critical values of F, and singular fibres critical points e.g. when $\nabla F_1 = 0$ oughborough Hanoi 2007 Holger Dullin

The Image of F



Resonant Equilibria

- Hamiltonian H with 2 degrees of freedom
- Equilibrium of X_H, shift to origin, local symplectic coordinates x₁,x₂, y₁,y₂, dx₁ ∧ dy₁ + dx₂ ∧ dy₂
- Solution Assume eigenvalues of linearisation of X_H imaginary
- Assume linearisation semisimple

Loughborough

or resonant if $ω_1$: $ω_2$ = p : q; p, q ∈ ℕ (notation p:±q)

Hanoi 2007

Resonant Equilibria

 \oslash H₂ definite \Rightarrow Lyapunov stable (Dirichlet)

Ø H₂ indefinite
 not 1:-2, 1:-3 and transversality condition on
 frequency map ⇒ Lyapunov stable (Arnold)

H₂ p:-q resonant: instability is possible

Hanoi 2007

Normal Form

O H₂ semisimple by assumption, so is ad_{H2}

Inremoveable terms from symplectic spectrum \Rightarrow Birkhoff Normal form H = H(|z₁|², |z₂|²)

additional unremovable terms $z_1^q z_2^p$ and c.c.

for 1:-2 order p+q < 4!</p>

Loughborough University

Hanoi 2007

Non-resonant Equilibria (EE)

- The foliation is that of the Harmonic Oscillator
- Frequencies: $\Omega_i(I) = \partial H / \partial I_i$
- Frequency map non-degenerate: det D²H ≠ 0 (Kolmogorov non-degeneracy condition for KAM)
- Similarly frequency ratio map R at fixed energy (isoenergetic non-degeneracy condition for KAM)

Loughborough University

Hanoi 2007

Resonant Equilibria: IHS

Flow of H₂: $G^{\Phi}(z_1, z_2) = (e^{ip\Phi} z_1, e^{-iq\Phi} z_2)$ S¹ action, not free at origin

The Leaves H_{p+q} invariant, 2π periodic flow, action H_2

{H₂, H_{p+q}} = 0, independent: Liouville Integrable
 Hamiltonian System, defines Liouville foliation

F = (H₂, H_{p+q}) is momentum map of p:-q resonance oughborough Hanoi 2007
Holger Dullin

Singular Reduction

 \oslash Invariants of the S¹ action G: $\pi_1 = |\mathbf{Z}_1|^2$, $\pi_2 = |\mathbf{Z}_2|^2$, $\pi_3 + i\pi_4 = \mathbf{Z}_1^q \mathbf{Z}_2^p$ \oslash Poisson structure for invariants π_i Relation is Casimir, additionally $H_2 = p\pi_1 - q\pi_2$ \odot reduced phase space: $P(h_2) = H_2^{-1}(h_2) / G$ \oslash Reduced Poisson structure π_1, π_3, π_4 : { π_1, π_3 }=4 π_4, \dots

Loughborough University

Hanoi 2007

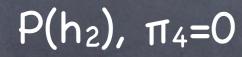
Reduced phase space

Lemma: Singular reduced phase space $P(h_2) = \{\pi_1, \pi_3, \pi_4 : \pi_3^2 + \pi_4^2 = q^{-p}\pi_1^q(p\pi_1 - h_2)^p, \pi_1 > 0, p\pi_1 - h_2 > 0\}$ $\Rightarrow h_2 > 0: P(h_2)$ has singular point of order p-1 $\Rightarrow h_2 = 0: P(h_2)$ has singular point of order p+q-1 $\Rightarrow h_2 < 0: P(h_2)$ has singular point of order q-1

order 0: smooth order 1: conical singularity order > 1: higher order degenerate

LoughboroughUniversity

Hanoi 2007



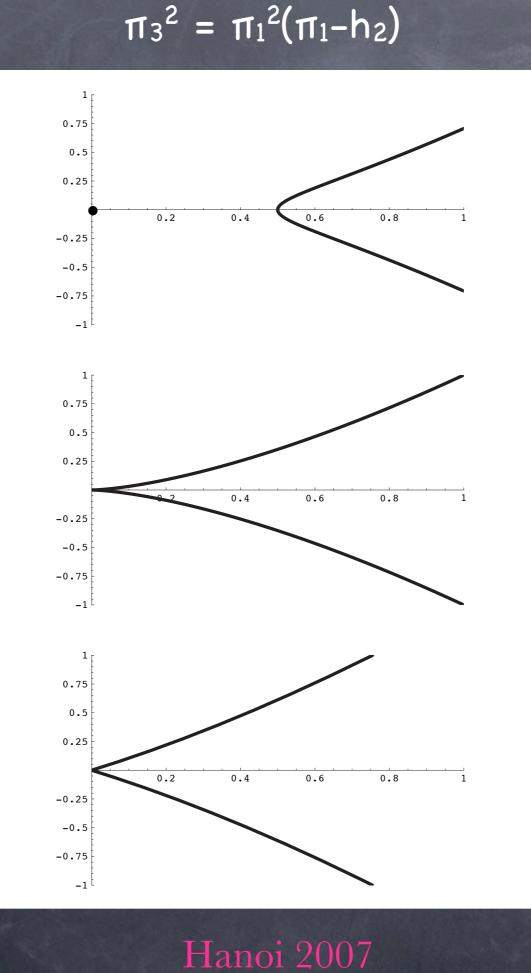
 $h_2 > 0$

 $h_2 = 0$

 $h_2 < 0$

Loughborough

Iniversity



1:-2

 $\begin{array}{c} \Pi_{3} \uparrow \\ \hline \\ \Pi_{1} \end{array}$

Reduced phase space 1:-q

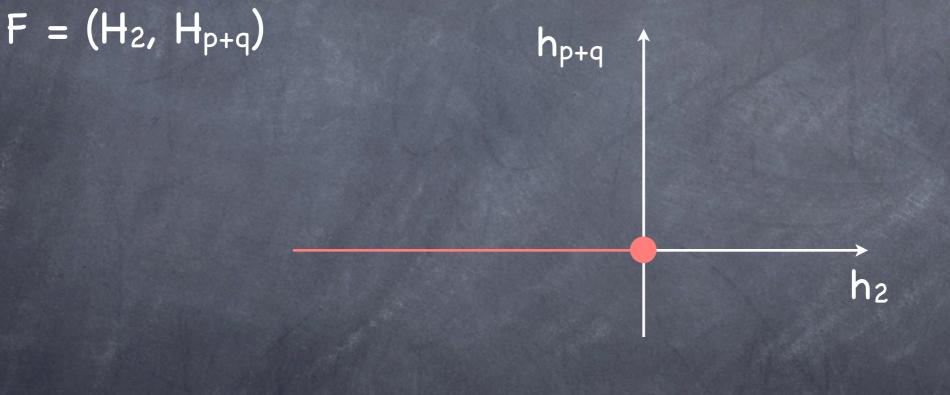
Lemma: Singular reduced phase space
P(h₂) = {π₁, π₃, π₄ : π₃²+π₄² = qπ₁q(π₁-h₂), π₁>0, π₁-h₂>0}
h₂ > 0: P(h₂) is smooth
h₂ = 0: P(h₂) has singular point of order q
h₂ < 0: P(h₂) has singular point of order q-1

order 0: smooth order 1: conical singularity order > 1: higher order degenerate

LoughboroughUniversity

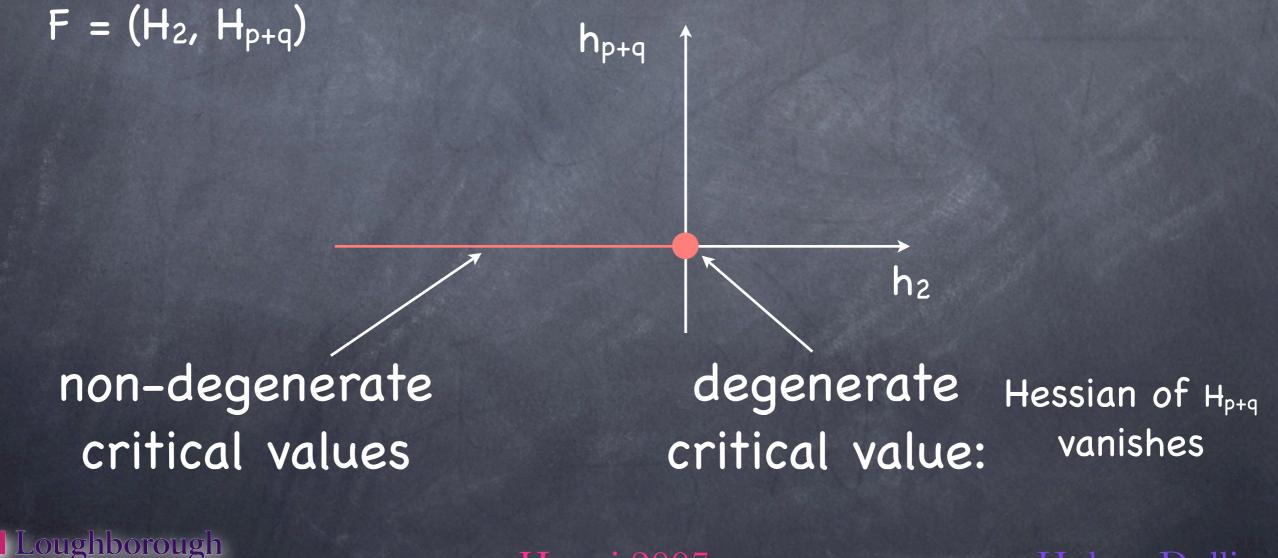
Hanoi 2007

Image of Energy-Momentum Map (1:-q)



: critical values

Hanoi 2007



Hanoi 2007

niversity

Desired Result: Like for Focus-Focus

Vũ Ngọc San: Topology 42 (2003)

 J_2

 $\rightarrow J_1$

Hanoi 2007

Focus-Focus

Momentum map $F=(J_1, J_2)=(x_1y_1+x_2y_2, x_1y_2-x_2y_1)$

 \odot J₂ is an S¹ action

A = Re($\zeta \log \zeta - \zeta$) + smooth higher order terms,
where $\zeta = J_1 + i J_2$

Action of foliation, i.e. $H=J_1$

semiglobal symplectic invariants

• $T = dA/dJ_1 = -\log |\zeta|, R = dA/dJ_2 = \arg \zeta$ singular part of $A = J_1 T - J_2 R$ (Monodromy!)

• Using San's results and $H(J_1, J_2) = aJ_1 + bJ_2 + hot...$

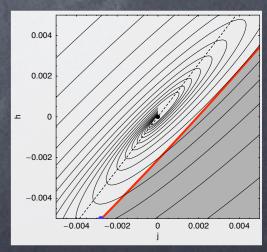
Loughborough University

Hanoi 2007

Focus-Focus Equilibria

Theorem: There is a local diffeomorphism on the image of the Energy-Momentum map in a neighbourhood of a simple focus-focus point which is C^1 at the origin and C^{∞} elsewhere, which maps the level lines of the rotation number to the integral curves of the ODE $d\zeta/ds = -\lambda\zeta, \zeta \in C$. These curves are spirals determined by the eigenvalue λ .

 $\begin{array}{c|c} -\lambda \circ & \circ \lambda \\ \hline -\overline{\lambda} \circ & \circ \overline{\lambda} \end{array}$



HRD und Vũ Ngọc San, Nonlinearity, 17, 1777-86 (2004)

Hanoi 2007

FF continued

In the straightforward to consider the nondegeneracy of the frequency (ratio) map

- Thm: The frequency ratio map is degenerate on a line near non-degenerate focus-focus values
- Thm: The frequency map is non-degenerate near focus-focus values (everywhere!, improving (a little) the result by Nguyen Tien Zung, Phys. Lett. A 215 (1996))

HRD und Vũ Ngọc San, Nonlinearity, 17, 1777-86 (2004)

Hanoi 2007

Resonant Equilibra: Differences

- Origin is not an isolated critical value
- Thus period lattice is not defined in a neighbourhood of the origin
- Solution Flow of F is not linear, technical difficulties
- No Eliasson normal form result, hence formal
- But: the action is still a continuous function on the image of the energy momentum map, even across the singularity

Hanoi 2007

Main Lemma: compare FF: For the momentum map $F=(H_2, H_{1+q})$ $\mathsf{F} = (\mathsf{J}_1, \mathsf{J}_2)$ • Chose $\zeta = h_2 + i h_{1+q}^{2/(q+1)}$, then: $\zeta = J_1 + i J_2$ • Action A = h_{1+q} T - h_2 R $A = J_1 T - J_2 R$ \oslash with period T = f(| ζ |) g(arg ζ) $T = \log|\zeta|$ $f(r) = 1/r^{(q-1)/2}$, smooth, $g(\Phi)$ log-singularity at $\Phi=\pi$ Solution number R = h(arg ζ), smooth R = arg ζ

Hanoi 2007

Loughborough

Steps of the Proof:

• symplectic structure on leaves: $\left\{\pi_2, \cos^{-1}\frac{\pi_3}{\sqrt{\pi_1^2\pi_2}}\right\} = 2$

assume compactness of singular fibres

decompose into singular contribution near critical point and smooth part away from it using Poincare sections transversal to invariant manifolds

find nice coordinates on image of F

Hanoi 2007

Theorem

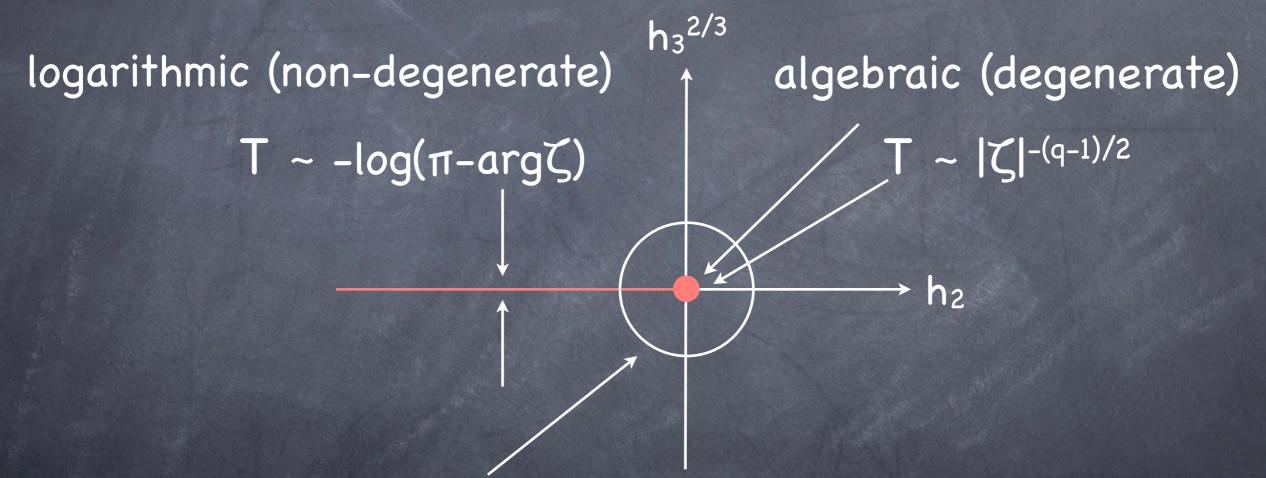
- The action A of the foliation F=(H₂,H_{q+1}) of the 1:-q resonance has fractional monodromy 1/q
- \odot for H = H₂ + C H₃ + ...:

The frequency ratio map is degenerate along the line h3=0, h2>0

The frequency map is non-degenerate (in a sector around h3=0, h2>0)

Hanoi 2007

The Image of F 1:-2 ζ-plane (deformed image of the momentum map)



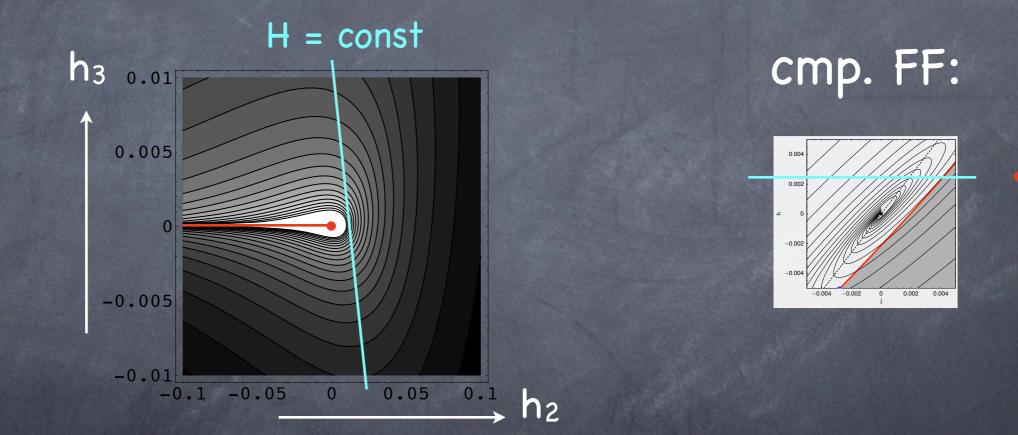
 $R \rightarrow R + 1/2$ upon encircling the origin (H₂, A) \rightarrow (H₂, A + H₂/2) fractional Monodromy

Loughborough University

Hanoi 2007

Contourplot Rotation Number

for $H = H_2 + c H_3$ (not foliation with $H = H_3$)



Hanoi 2007

Conclusion

 degenerate singularities are interesting (Bifurcations!)

fill the image of the momentum map
deform the image of the momentum map

study actions

Hanoi 2007