Non-commutative integrability and Mischenko-Fomenko conjecture

Alexey Bolsinov Loughborough University, UK A.Bolsinov@lboro.ac.uk Geometry of Integrable Systems Hanoi National University of Education Hanoi, Vietnam

April 12, 2007

Liouville Integrability

Consider a symplectic manifold (M^{2n}, ω) , a smooth Hamiltonian $H : M^{2n} \to \mathbb{R}$ and the corresponding Hamiltonian system

$$\frac{dx}{dt} = X_H(x) = \omega^{-1} dH(x).$$

Definition. This system is called *Liouville integrable* if it admits n commuting independent first integrals f_1, \ldots, f_n .

Very often: the number of integrals is > n but they do not commute.

Non-commutative Integrability

Definition. A Hamiltonian system is *integrable in noncommutative sense* if it admits an algebra \mathcal{F} of first integrals satisfying the following condition:

at a generic point $x \in M$, the subspace K in T_x^*M generated by df(x), $f \in \mathcal{F}$, is coisotropic.

Coisotropy condition: $\tilde{K} \subset K$, where $\tilde{K} = \{l \in T_x^*M \mid \omega^{-1}(l, K) = 0\}.$

Non-commutative Liouville theorem.

(Nekhoroshev, Mischenko, Fomenko, Brailov) Consider a common level of the integrals

$$X_f = \{f_1(x) = c_1, f_2(x) = c_2, \dots, f_k(x) = c_k\}.$$

If X_f is regular, compact and connected, then X_f is a torus of dimension 2n-k with quasi periodic motion on it.

Relationship: commutative and non-commutative

 $\{Commutative \ integrability\} \subset$

{Non-commutative integrability}

The converse is true at least locally:

{Non-commutative integrability} \longrightarrow

{Commutative integrability}

Explanation:

Let f_1, \ldots, f_k be local generators of \mathcal{F} , then

$$\{f_i, f_j\} = h_{ij}(f_1, \dots, f_k)$$

This formula defines a Poisson structure on the image of the "momentum mapping" $\Phi : M \to \mathbb{R}^k$ given by the first integrals $\Phi(x) = (f_1(x), f_2(x), \dots, f_k(x))$.

Darboux-Weinstein theorem: there is a canonical coordinate system $h_1, \ldots, h_s, p_1, \ldots, p_r, q_1, \ldots, q_r$ (k = s+2r) such that h_i are Casimirs and

$$\{p_i, p_j\} = \{q_i, q_j\} = 0, \quad \{p_i, q_j\} = \delta_{ij}$$

$$h, p, q \leftarrow \text{diffeo} \rightarrow f_1, \dots, f_k$$

Then h_1, \ldots, h_s , p_1, \ldots, p_r is a desired set of commuting integrals for the original system.

Mischenko-Fomenko conjecture

Non-commutative integrability always implies classical commutative integrability in the same class of integrals (smooth, analytic, polynomial,...).

The image of the momentum mapping $\Phi : M \to \mathbb{R}^k$ can be considered as a (singular) Poisson manifold X. If g_1, \ldots, g_m is a complete commutative set of functions on X with respect to the reduced Poisson structure, then $g_1 \circ \Phi, \ldots, g_m \circ \Phi$ is a complete commutative set of integrals for the original system.

Problem. Given a symplectic (Poisson) manifold X, does there exist any integrable Hamiltonian system on it?

"Trivial" examples:

Symplectic vector space $(\mathbb{R}^{2n}, \omega)$, cotangent bundles T^*N , etc.

First non-trivial example: coadjoint orbits of Lie groups or, equivalently, dual spaces of Lie algebras \mathfrak{g}^* with Lie-Poisson bracket.

Mischenko-Fomenko conjecture (1981). For any finitedimensional Lie algebra \mathfrak{g} , there is an integrable Hamiltonian system on \mathfrak{g}^* with polynomial integrals.

Algebraic reformulation. The Lie-Poisson algebra $P(\mathfrak{g})$ of a finite-dimensional Lie algebra \mathfrak{g} always admits a complete commutative subalgebra $\mathcal{F} \subset P(\mathfrak{g})$ such that tr.deg. $\mathcal{F} = \frac{1}{2}(\dim G + \operatorname{ind} G)$.

Relation to Hamiltonian Reduction

Consider a Hamiltonian system invariant with respect to a Hamiltonian action of a Lie group G. Then each element $\xi \in \mathfrak{g}$ generates a first integral H_{ξ} in such a way that $\{H_{\xi}, H_{\eta}\} = H_{[\xi,\eta]}$. Assume that these integrals are functionally independent and coisotropy condition holds:

$$\dim \mathfrak{g} + \operatorname{ind} \mathfrak{g} = \dim M = 2n$$

Mischenko-Fomenko conjecture. Under above conditions, the Hamiltonian system is integrable in classical sense, i.e., there exist independent commuting integrals h_1, \ldots, h_n . Moreover, these integrals are polynomials in H_{ξ} 's.

Semisimple Lie algebras (Mischenko-Fomenko, 1978) Nilpotent Lie algebras (Vergne, 1972) and Solvable algebraic Lie algebras Semi-direct sums $\mathfrak{g} +_{\rho} V$, with \mathfrak{g} semisimple and Vabelian (many types, many authors)

General case (Sadetov 2003)

Theorem. Mischenko-Fomenko conjecture holds for any finite-dimensional Lie algebra over an arbitrary field of zero characteristic. Main idea is induction by dimension: we reduce the problem for \mathfrak{g} to the same problem for a certain Lie algebra \mathfrak{f} of smaller dimension step by step until we get either trivial, or semisimple Lie algebra.

Linear algebra:

Integrable system = maximal isotropic subspace

How to construct a maximal isotropic subspace U in a vector space L endowed with a skew-symmetric bilinear form β (by induction)?

Take an arbitrary subspace $V \subset L$ and consider

$$\tilde{V} = \{l \in L : \beta(l, V) = 0\}.$$
(1)

If $A \subset V$ is maximal isotropic in V and $\tilde{A} \subset \tilde{V}$ is maximal isotropic in \tilde{V} , then $A + \tilde{A}$ is maximal isotropic in L.

Non-linear case:

Let M be a manifold endowed with a Poisson bracket. How to construct an integrable Hamiltonian system on it?

Take an arbitrary subalgebra \mathcal{F} in $C^{\infty}(M)$ and consider $\tilde{\mathcal{F}} = \{f \in C^{\infty}(M) : \{f, \mathcal{F}\} = 0\}.$

Assume that at a generic point $x \in M$, we have the same condition as in linear case: the subspaces $V, \tilde{V} \subset T_x^*M$ generated by the differentials of functions from \mathcal{F} and $\tilde{\mathcal{F}}$ respectively satisfy (1).

If \mathcal{A} is a complete commutative subalgebra in \mathcal{F} and $\tilde{\mathcal{A}}$ is a complete commutative subalgebra in $\tilde{\mathcal{F}}$, then $\mathcal{A} + \tilde{\mathcal{A}}$ is a complete commutative subalgebra in $C^{\infty}(M)$ (i.e., an integrable system on M).

In the case of a Lie algebra:

How to construct a complete commutative subalgebra in $P(\mathfrak{g})$?

Take an arbitrary subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and let $\mathcal{F} = P(\mathfrak{h}) \subset P(\mathfrak{g}).$

Consider $\tilde{\mathcal{F}} = \operatorname{Ann}(\mathfrak{h}) = \{f \in P(\mathfrak{g}) : \{f, h\} = 0 \ \forall h \in \mathfrak{h}\}.$ Equivalently, Ann(\mathfrak{h}) can be defined as the algebra of invariants of the coadjoint action of H on \mathfrak{g}^* .

If (1) holds (this happens very often), then a complete commutative subalgebra in $P(\mathfrak{g})$ can be obtained as $\mathcal{A}+\mathcal{B}$, where \mathcal{A} and \mathcal{B} are certain complete commutative subalgebras in $P(\mathfrak{h})$ and Ann (\mathfrak{h}) respectively.

What is the problem? No problem with $P(\mathfrak{h})$. But Ann (\mathfrak{h}) may have a very complicated algebraic structure.

Problem. How to find \mathfrak{h} in such a way that Ann (\mathfrak{h}) has a nice algebraic structure?

Lemma 1. Any finite-dimensional Lie algebra \mathfrak{g} over \mathbb{K} satisfies at least one of the following conditions:

(1) \mathfrak{g} is semisimple;

(2) $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathbb{K}$, and \mathfrak{g}_0 is semisimple;

(3) there is a commutative ideal \mathfrak{h} (which is not onedimensional center as in (2));

(4) there is an ideal $\mathfrak h$ isomorphic to the Heisenberg algebra.

Cases (1) and (2) are simple.

Case (3). \mathfrak{h} is a commutative ideal in \mathfrak{g} ; G naturally acts on \mathfrak{h}^* .

St $(h) \subset \mathfrak{g}$ the stationary subalgebra for $h \in \mathfrak{h}^*$;

 $\Psi : \mathfrak{h}^* \to \mathfrak{g}$ a rational map s.t. $\Psi(h) \in St(h)$ for any h;

 $f_{\Psi} : \mathfrak{g}^* \to \mathbb{K}$ the function defined by $f_{\Psi}(x) = \langle x, \Psi(\pi(x)) \rangle$.

Lemma 2. $f_{\Psi} \in Ann(\mathfrak{h})$.

 $L = \{ \text{the set of all } \Psi \};$

 $\mathcal{F}_L = \{ \text{the set of all } f_{\Psi} \} \subset \operatorname{Ann} \mathfrak{h};$

 $L \longrightarrow \mathcal{F}_L$, $\Psi \to f_{\Psi}$ homomorphism of Lie algebras

Main observation: All these objects are defined not only over \mathbb{K} , but also over the field $\mathbb{K}(\mathfrak{h}^*)$ of rational functions on \mathfrak{h}^* . Moreover, L and \mathcal{F}_L become finitedimensional over $\mathbb{K}(\mathfrak{h}^*)$.

Lemma 3. If MF conjecture holds for \mathcal{F}_L (over the new field $\mathbb{K}(\mathfrak{h}^*)$), then MF conjecture holds \mathfrak{g} (over \mathbb{K}).

Case (4). $\mathfrak{h} \subset \mathfrak{g}$ is an ideal isomorphic to Heisenberg algebra: $\mathfrak{h} = \langle p_1, \dots, p_k, q_1, \dots, q_k, e \rangle$ and $[p_i, q_i] = e$.

Lemma 4. There is a subalgebra $\mathfrak{b} \subset \mathfrak{g}$ such that (1) $\mathfrak{b} \cap \mathfrak{h} = \langle e \rangle$ (2) \mathfrak{b} acts on $V = \langle p_1, \ldots, p_k, q_1, \ldots, q_k, \rangle$ by symplectic transformations.

Let $\beta \in \mathfrak{b}$. Consider $f_{\beta} : \mathfrak{g}^* \to \mathbb{K}$ of the form

$$f_{\beta}(x) = \beta(x) + \frac{\langle \omega^{-1}(\mathrm{ad}_{\beta}^{*}\pi(x)), x \rangle}{2 e(x)}$$

Lemma 5. $f_{\beta} \in Ann(\mathfrak{h})$.

Lemma 6. $\beta \to f_{\beta}$ is a monomorphism from \mathfrak{b} to Ann (\mathfrak{h}). The functions f_{β} generates Ann (\mathfrak{h}).

Lemma 7. If MF conjecture holds for \mathfrak{b} , then MF conjecture holds \mathfrak{g} .

Conclusion:

We can always either reduce the dimension of the given Lie algebra \mathfrak{g} or (if \mathfrak{g} is semisimple) construct a complete commutative subalgebra in $P(\mathfrak{g})$.

Theorem is proved by induction.

Open questions

- Q1. Completeness in the sense of flows.
- Q2. Singular orbits.
- Q3. Other important polynomial Poisson algebras like Ann \mathfrak{h} .

Bolsinov, A. V.: Complete commutative families of polynomials in Poisson-Lie algebras: A proof of the Mischenko-Fomenko conjecture // In book: Trudy seminara po vect. i tenz. analizu, Vol. 26, 2005, pp. 87–109. (*Russian*).

Mishchenko, A. S. and Fomenko, A. T.: Euler equations on finitedimensional Lie groups // Math. USSR Izv. 12 (1978), No. 2, pp. 371–389.

Mishchenko, A. S. and Fomenko, A. T.: Generalized Liouville method of integration of Hamiltonian systems// Funct. Anal. Appl. 12 (1978), pp. 13–121.

Mishchenko, A. S. and Fomenko, A. T.: Integration of hamiltonian systems with non-commutative symmetries // In.: Trudy seminara po vect. i tenz. analizu, Vol. 20 ,1981, pp. 5–54 (*Russian*).

Nekhoroshev, N. N.: Action-angle variables and their generalization//Trans. Mosc. Math. Soc. 26(1972), pp. 180–198 (1972).

Sadetov, S.T.: Proof of the Mischenko-Fomenko conjecture (1981) // Doklady RAN, 2003.

Vergne M.: La structure de Poisson sur l'algèbre symétrique d'une algèbre de Lie nilpotente// Bull. Soc. Math. France, 100(1972), pp. 301–335.