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Liouville Integrability

Consider a symplectic manifold (M?2",w),
a smooth Hamiltonian H : M?" — R and
the corresponding Hamiltonian system

d
d—f = Xp(z) = w LdH (x).

Definition. This system is called Liouville integrable
if it admits n commuting independent first integrals

fl?"')fn-

Very often: the number of integrals is > n but they do
not commute.



Non-commutative Integrability

Definition. A Hamiltonian system is integrable in non-
commutative sense if it admits an algebra F of first
integrals satisfying the following condition:

at a generic point x € M, the subspace K in T;M gen-
erated by df(x), f € F, is coisotropic.

Coisotropy condition: K C K,
where K ={le T:M | w1(I,K) = 0}.



Non-commutative Liouville theorem.
(Nekhoroshev, Mischenko, Fomenko, Brailov)
Consider a common level of the integrals

Xf — {fl(x) — Cl7f2(x) — €2, .. 7fk($) — Ck}'

If Xf IS regular, compact and connected, then Xf IS a

torus of dimension 2n — k with quasi periodic motion on
it.

Relationship: commutative and non-commutative

{Commutative integrability} C
{Non-commutative integrability}

The converse is true at least locally:

{Non-commutative integrability} —
{Commutative integrability}



Explanation:
Let f1,...,fr be local generators of F, then

{fi, f;} = his (1,05 fie)

This formula defines a Poisson structure on the image
of the "momentum mapping” ¢ : M — RF given by the

first integrals ®(x) = (f1(x), fo(x),..., fi(x)).

Darboux-Weinstein theorem: there is a canonical coor-
dinate system h1q,...,hs, P1,---,0r, q1,---,qr (k = s+27)
such that h; are Casimirs and

{pi,pj} =12, 41 =0, {pi,q;} = d;
h,p,q «— diffeo — f1,..., fx

Then hq,...,hs, p1,...,pr IS a desired set of commuting
integrals for the original system.



Mischenko-Fomenko conjecture

Non-commutative integrability always implies classical
commutative integrability in the same class of integrals
(smooth, analytic, polynomial,...).

The image of the momentum mapping ® : M — Rk
can be considered as a (singular) Poisson manifold X.

If g1,...,9m is @ complete commutative set of functions
on X with respect to the reduced Poisson structure,
then gy oPd,...,gm o P is a complete commutative set

of integrals for the original system.

Problem. Given a symplectic (Poisson) manifold X,
does there exist any integrable Hamiltonian system on
it?



"Trivial’ examples:
Symplectic vector space (R2™ w), cotangent bundles
T*N, etc.

First non-trivial example: coadjoint orbits of Lie groups
or, equivalently, dual spaces of Lie algebras g* with Lie-
Poisson bracket.

Mischenko-Fomenko conjecture (1981). For any finite-
dimensional Lie algebra g, there is an integrable Hamil-
tonian system on g* with polynomial integrals.

Algebraic reformulation. The Lie-Poisson algebra P(g)
of a finite-dimensional Lie algebra g always admits a
complete commutative subalgebra F C P(g) such that
tr.deg.F = 3(dim G 4 ind G).



Relation to Hamiltonian Reduction

Consider a Hamiltonian system invariant with respect
to a Hamiltonian action of a Lie group G. Then each
element £ € g generates a first integral Hé: in such a way
that {H¢, Hy} = Hye 1. Assume that these integrals
are functionally independent and coisotropy condition
holds:

dimg+indg=dimM = 2n

Mischenko-Fomenko conjecture. Under above condi-
tions, the Hamiltonian system is integrable in classical
sense, i.e., there exist independent commuting integrals
h1,...,hn. Moreover, these integrals are polynomials in
Hg’s.



Semisimple Lie algebras (Mischenko-Fomenko, 1978)
Nilpotent Lie algebras (Vergne, 1972) and

Solvable algebraic Lie algebras

Semi-direct sums g +, V, with g semisimple and V
abelian (many types, many authors)

General case (Sadetov 2003)
Theorem. Mischenko-Fomenko conjecture holds for

any finite-dimensional Lie algebra over an arbitrary field
of zero characteristic.



Main idea is induction by dimension: we reduce the
problem for g to the same problem for a certain Lie
algebra { of smaller dimension step by step until we get
either trivial, or semisimple Lie algebra.

Linear algebra:
Integrable system = maximal isotropic subspace

How to construct a maximal isotropic subspace U in
a vector space L endowed with a skew-symmetric
bilinear form g (by induction)?

Take an arbitrary subspace V C L and consider

V={leL: pBUV)=0}. (1)

If A C V is maximal isotropicin V and A C V is maximal
isotropic in V, then A+ A is maximal isotropic in L.



Non-linear case:

Let M be a manifold endowed with a Poisson bracket.
How to construct an integrable Hamiltonian system on
it?

Take an arbitrary subalgebra F in C°°(M) and consider
F=A{rec>W): {f,F7}=0}

Assume that at a generic point x € M, we have the
same condition as in linear case:

the subspaces V,V C T M generated by the differentials
of functions from F and F respectively satisfy (1).

If A is a complete commutative subalgebra in F and
A is a complete commutative subalgebra in F, then
A+ A is a complete commutative subalgebra in C°(M)
(i.e., an integrable system on M).



In the case of a Lie algebra:
How to construct a complete commutative subalgebra

in P(g)?

Take an arbitrary subalgebra h C g and let
F = P(h) C P(g).

Consider F = Ann(h) ={f € P(g) : {f,h} =0Vhchl.
Equivalently, Ann (h) can be defined as the algebra of
invariants of the coadjoint action of H on g*.

If (1) holds (this happens very often), then a complete
commutative subalgebra in P(g) can be obtained as
A+B, where A and B are certain complete commutative
subalgebras in P(h) and Ann (h) respectively.



What is the problem? No problem with P(h). But
Ann (h) may have a very complicated algebraic struc-
ture.

Problem. How to find § in such a way that Ann (h) has
a nice algebraic structure?

Lemma 1. Any finite-dimensional Lie algebra g over K
satisfies at least one of the following conditions:

(1) g is semisimple;
(2) g =90 @K, and gg is semisimple;

(3) there is a commutative ideal h (which is not one-
dimensional center as in (2));

(4) there is an ideal h isomorphic to the Heisenberg
algebra.



Cases (1) and (2) are simple.

Case (3).
h is a commutative ideal in g; G naturally acts on h*.

St(h) Cyg
the stationary subalgebra for h € h*;

Viht—g
a rational map s.t. W(h) € St(h) for any h;

fuig"—K
the function defined by fy(z) = (z, V(7w (x))).

Lemma 2. fy € Ann(h).



L = {the set of all W},
Fr, = {the set of all fy} C Annb;
L — F;, V— fy homomorphism of Lie algebras

Main observation: All these objects are defined not
only over K, but also over the field K(h*) of rational
functions on b*. Moreover, L and F; become finite-
dimensional over K(h*).

Lemma 3. If MF conjecture holds for F; (over the
new field K(h*)), then MF conjecture holds g (over K).



Case (4).
h C g is an ideal isomorphic to Heisenberg algebra:
h — <p17°°'7pk7q:|.7"'7Qk7€> and [pu%] — €.

Lemma 4. There is a subalgebra b C g such that

(1) bNh = (e)
(2) b actson V = (p1,...,P%,q91,---,9k,) DY symplectic
transformations.

Let 3 € b. Consider fg:g* — K of the form

(w_l(ad;w(w)),aﬁ
2e(x)

fp(x) = B(z) +

Lemma 5. fg € Ann(h).



Lemma 6. [ — fﬁ IS @ monomorphism from b to
Ann (h). The functions fg generates Ann (h).

Lemma 7. If MF conjecture holds for b, then MF
conjecture holds g.

Conclusion:

We can always either reduce the dimension of the given
Lie algebra g or (if g is semisimple) construct a complete
commutative subalgebra in P(g).

Theorem is proved by induction.



Open questions

Q1. Completeness in the sense of flows.

Q2. Singular orbits.

Q3. Other important polynomial Poisson algebras
like Annb.
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