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Liouville Integrability

Consider a symplectic manifold (M2n, ω),

a smooth Hamiltonian H : M2n → R and

the corresponding Hamiltonian system

dx

dt
= XH(x) = ω−1dH(x).

Definition. This system is called Liouville integrable

if it admits n commuting independent first integrals

f1, . . . , fn.

Very often: the number of integrals is > n but they do

not commute.



Non-commutative Integrability

Definition. A Hamiltonian system is integrable in non-

commutative sense if it admits an algebra F of first

integrals satisfying the following condition:

at a generic point x ∈ M , the subspace K in T ∗xM gen-

erated by df(x), f ∈ F, is coisotropic.

Coisotropy condition: K̃ ⊂ K,

where K̃ = {l ∈ T ∗xM | ω−1(l, K) = 0}.



Non-commutative Liouville theorem.
(Nekhoroshev, Mischenko, Fomenko, Brailov)
Consider a common level of the integrals

Xf = {f1(x) = c1, f2(x) = c2, . . . , fk(x) = ck}.
If Xf is regular, compact and connected, then Xf is a
torus of dimension 2n−k with quasi periodic motion on
it.

Relationship: commutative and non-commutative

{Commutative integrability} ⊂
{Non-commutative integrability}

The converse is true at least locally:

{Non-commutative integrability} −→
{Commutative integrability}



Explanation:
Let f1, . . . , fk be local generators of F, then

{fi, fj} = hij(f1, . . . , fk)

This formula defines a Poisson structure on the image
of the ”momentum mapping” Φ : M → Rk given by the
first integrals Φ(x) = (f1(x), f2(x), . . . , fk(x)).

Darboux-Weinstein theorem: there is a canonical coor-
dinate system h1, . . . , hs, p1, . . . , pr, q1, . . . , qr (k = s+2r)
such that hi are Casimirs and

{pi, pj} = {qi, qj} = 0, {pi, qj} = δij
h, p, q ← diffeo → f1, . . . , fk

Then h1, . . . , hs, p1, . . . , pr is a desired set of commuting
integrals for the original system.



Mischenko-Fomenko conjecture

Non-commutative integrability always implies classical

commutative integrability in the same class of integrals

(smooth, analytic, polynomial,...).

The image of the momentum mapping Φ : M → Rk

can be considered as a (singular) Poisson manifold X.

If g1, . . . , gm is a complete commutative set of functions

on X with respect to the reduced Poisson structure,

then g1 ◦ Φ, . . . , gm ◦ Φ is a complete commutative set

of integrals for the original system.

Problem. Given a symplectic (Poisson) manifold X,

does there exist any integrable Hamiltonian system on

it?



”Trivial” examples:
Symplectic vector space (R2n, ω), cotangent bundles
T ∗N , etc.

First non-trivial example: coadjoint orbits of Lie groups
or, equivalently, dual spaces of Lie algebras g∗ with Lie-
Poisson bracket.

Mischenko-Fomenko conjecture (1981). For any finite-
dimensional Lie algebra g, there is an integrable Hamil-
tonian system on g∗ with polynomial integrals.

Algebraic reformulation. The Lie-Poisson algebra P (g)
of a finite-dimensional Lie algebra g always admits a
complete commutative subalgebra F ⊂ P (g) such that
tr.deg.F = 1

2(dimG + indG).



Relation to Hamiltonian Reduction

Consider a Hamiltonian system invariant with respect

to a Hamiltonian action of a Lie group G. Then each

element ξ ∈ g generates a first integral Hξ in such a way

that {Hξ, Hη} = H[ξ,η]. Assume that these integrals

are functionally independent and coisotropy condition

holds:

dim g + ind g = dimM = 2n

Mischenko-Fomenko conjecture. Under above condi-

tions, the Hamiltonian system is integrable in classical

sense, i.e., there exist independent commuting integrals

h1, . . . , hn. Moreover, these integrals are polynomials in

Hξ’s.



Semisimple Lie algebras (Mischenko-Fomenko, 1978)

Nilpotent Lie algebras (Vergne, 1972) and

Solvable algebraic Lie algebras

Semi-direct sums g +ρ V , with g semisimple and V

abelian (many types, many authors)

General case (Sadetov 2003)

Theorem. Mischenko-Fomenko conjecture holds for

any finite-dimensional Lie algebra over an arbitrary field

of zero characteristic.



Main idea is induction by dimension: we reduce the
problem for g to the same problem for a certain Lie
algebra f of smaller dimension step by step until we get
either trivial, or semisimple Lie algebra.

Linear algebra:
Integrable system = maximal isotropic subspace

How to construct a maximal isotropic subspace U in
a vector space L endowed with a skew-symmetric
bilinear form β (by induction)?

Take an arbitrary subspace V ⊂ L and consider

Ṽ = {l ∈ L : β(l, V ) = 0}. (1)

If A ⊂ V is maximal isotropic in V and Ã ⊂ Ṽ is maximal
isotropic in Ṽ , then A + Ã is maximal isotropic in L.



Non-linear case:
Let M be a manifold endowed with a Poisson bracket.
How to construct an integrable Hamiltonian system on
it?

Take an arbitrary subalgebra F in C∞(M) and consider
F̃ = {f ∈ C∞(M) : {f,F} = 0}.

Assume that at a generic point x ∈ M , we have the
same condition as in linear case:
the subspaces V, Ṽ ⊂ T ∗xM generated by the differentials
of functions from F and F̃ respectively satisfy (1).

If A is a complete commutative subalgebra in F and
Ã is a complete commutative subalgebra in F̃, then
A+Ã is a complete commutative subalgebra in C∞(M)
(i.e., an integrable system on M).



In the case of a Lie algebra:

How to construct a complete commutative subalgebra

in P (g)?

Take an arbitrary subalgebra h ⊂ g and let

F = P (h) ⊂ P (g).

Consider F̃ = Ann (h) = {f ∈ P (g) : {f, h} = 0 ∀h ∈ h}.
Equivalently, Ann (h) can be defined as the algebra of

invariants of the coadjoint action of H on g∗.

If (1) holds (this happens very often), then a complete

commutative subalgebra in P (g) can be obtained as

A+B, where A and B are certain complete commutative

subalgebras in P (h) and Ann (h) respectively.



What is the problem? No problem with P (h). But
Ann (h) may have a very complicated algebraic struc-
ture.
Problem. How to find h in such a way that Ann (h) has
a nice algebraic structure?

Lemma 1. Any finite-dimensional Lie algebra g over K
satisfies at least one of the following conditions:

(1) g is semisimple;

(2) g = g0 ⊕K, and g0 is semisimple;

(3) there is a commutative ideal h (which is not one-
dimensional center as in (2));

(4) there is an ideal h isomorphic to the Heisenberg
algebra.



Cases (1) and (2) are simple.

Case (3).

h is a commutative ideal in g; G naturally acts on h∗.

St (h) ⊂ g

the stationary subalgebra for h ∈ h∗;

Ψ : h∗ → g

a rational map s.t. Ψ(h) ∈ St (h) for any h;

fΨ : g∗ → K
the function defined by fΨ(x) = 〈x,Ψ(π(x))〉.

Lemma 2. fΨ ∈ Ann (h).



L = {the set of all Ψ};

FL = {the set of all fΨ} ⊂ Ann h;

L −→ FL, Ψ → fΨ homomorphism of Lie algebras

Main observation: All these objects are defined not

only over K, but also over the field K(h∗) of rational

functions on h∗. Moreover, L and FL become finite-

dimensional over K(h∗).

Lemma 3. If MF conjecture holds for FL (over the

new field K(h∗)), then MF conjecture holds g (over K).



Case (4).

h ⊂ g is an ideal isomorphic to Heisenberg algebra:

h = 〈p1, . . . , pk, q1, . . . , qk, e〉 and [pi, qi] = e.

Lemma 4. There is a subalgebra b ⊂ g such that

(1) b ∩ h = 〈e〉
(2) b acts on V = 〈p1, . . . , pk, q1, . . . , qk, 〉 by symplectic

transformations.

Let β ∈ b. Consider fβ : g∗ → K of the form

fβ(x) = β(x) +
〈ω−1(ad∗βπ(x)), x〉

2 e(x)

Lemma 5. fβ ∈ Ann (h).



Lemma 6. β → fβ is a monomorphism from b to

Ann (h). The functions fβ generates Ann (h).

Lemma 7. If MF conjecture holds for b, then MF

conjecture holds g.

Conclusion:

We can always either reduce the dimension of the given

Lie algebra g or (if g is semisimple) construct a complete

commutative subalgebra in P (g).

Theorem is proved by induction.



Open questions

Q1. Completeness in the sense of flows.

Q2. Singular orbits.

Q3. Other important polynomial Poisson algebras

like Ann h.
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