Noetherian first integrals of nonholonomic systems

Francesco Fassò – Università degli studi di Padova

Joint work with A. Giacobbe and A. Sansonetto

Dynamical Integrability, Luminy, November 2006

0. Content

Link symmetries—integrals of motion in nonholonomic mechanics

Hamiltonian systems:

• Momentum map is conserved for all systems with given symmetry group: has the Noetherian property [Ortega-Ratiu 2004]

Nonholonomic systems:

- Sometimes symmetries do produce first integrals
- Sometimes they do not
- Sometimes not clear whether first integrals descend from symmetries

0. Content

Link symmetries—integrals of motion in nonholonomic mechanics

Hamiltonian systems:

• Momentum map is conserved for all systems with given symmetry group: has the Noetherian property [Ortega-Ratiu 2004]

Nonholonomic systems:

- Sometimes symmetries do produce first integrals
- Sometimes they do not
- Sometimes not clear whether first integrals descend from symmetries

In this talk:

- Idea: Noetherianity is an indication of a link symmetry–first integral
- Question: First integrals of a specific nonholomic system with symmetry are Noetherian?
- Answer: I present a method to obtain a (partial) answer, and some (still a little bit incomplete) aplications.

Holonomic system: heavy sphere with center of mass on a cup^a

- $Q = \mathbb{R}^2 \times SO(3)$, dim TQ = 10
- Symmetry group $G = S^1 \times SO(3) \times SO(3)$
- (Energy–)momentum map gives 5 first integrals
- Motions quasi-periodic on \mathbb{T}^3

^aCup = convex surface of revolution with vertical axis

Holonomic system: heavy sphere with center of mass on a cup^a

- $Q = \mathbb{R}^2 \times SO(3)$, dim TQ = 10
- Symmetry group $G = S^1 \times SO(3) \times SO(3)$
- (Energy–)momentum map gives 5 first integrals
- Motions quasi-periodic on \mathbb{T}^3

Nonholonomic system: sphere rolls without sliding in the cup

- Constraint manifold M has now dimension 8
- Symmetry group $G = S^1 \times SO(3)$
- Motions quasi-periodic on \mathbb{T}^3

... so still 5 first integrals—where from?

^aCup = convex surface of revolution with vertical axis

Holonomic system: heavy sphere with center of mass on a cup^a

- $Q = \mathbb{R}^2 \times SO(3)$, dim TQ = 10
- Symmetry group $G = S^1 \times SO(3) \times SO(3)$
- (Energy–)momentum map gives 5 first integrals
- Motions quasi-periodic on \mathbb{T}^3

Nonholonomic system: sphere rolls without sliding in the cup

- Constraint manifold M has now dimension 8
- Symmetry group $G = S^1 \times SO(3)$
- Motions quasi-periodic on \mathbb{T}^3

... so still 5 first integrals—where from?

Reduction

- Reduced phase space M/G is 4-dimensional
- Reduced system on M/G has 3 first integrals:
 - E = energy
 - J_1, J_2 solutions of a linear ODE
- Reduced system has periodic dynamics

^aCup = convex surface of revolution with vertical axis

- Free action of compact connected Lie group G on manifold M
- G-invariant vector field X on M
- Reduced system on M/G has periodic dynamics (with continuous period)

Then, the dynamics (generically) reconstructs to quasi-periodic motions on \mathbb{T}^{r+1} , $r = \operatorname{rank} G$. [*M. Field* 1970's, *J. Hermans* 1995]

- Free action of compact connected Lie group G on manifold M
- G-invariant vector field X on M
- Reduced system on M/G has periodic dynamics (with continuous period)

Then, the dynamics (generically) reconstructs to quasi-periodic motions on \mathbb{T}^{r+1} , $r = \operatorname{rank} G$. [*M. Field* 1970's, *J. Hermans* 1995]

- Free action of compact connected Lie group G on manifold M
- G-invariant vector field X on M
- Reduced system on M/G has periodic dynamics (with continuous period)

Then, the dynamics (generically) reconstructs to quasi-periodic motions on \mathbb{T}^{r+1} , $r = \operatorname{rank} G$. [*M. Field 1970's, J. Hermans 1995*]

Ball in the cup:

- $r = \operatorname{rank} \operatorname{SO}(3) \times S^1 = 2$
- dim M (r + 1) = 5 first integrals

Two other first integrals $G_1, G_2 \implies$ Superintegrability.

[J. Hermans 1995, F. and Giacobbe 2006]

- Free action of compact connected Lie group G on manifold M
- G-invariant vector field X on M
- Reduced system on M/G has periodic dynamics (with continuous period)

Then, the dynamics (generically) reconstructs to quasi-periodic motions on \mathbb{T}^{r+1} , $r = \operatorname{rank} G$. [*M. Field 1970's, J. Hermans 1995*]

Ball in the cup:

- $r = \operatorname{rank} \operatorname{SO}(3) \times S^1 = 2$
- dim M (r + 1) = 5 first integrals

Two other first integrals $G_1, G_2 \implies$ Superintegrability. [J. Hermans 1995, F. and Giacobbe 2006]

- Free action of compact connected Lie group G on manifold M
- G-invariant vector field X on M
- Reduced system on M/G has periodic dynamics (with continuous period)

Then, the dynamics (generically) reconstructs to quasi-periodic motions on \mathbb{T}^{r+1} , $r = \operatorname{rank} G$. [*M. Field 1970's, J. Hermans 1995*]

Ball in the cup:

- $r = \operatorname{rank} \operatorname{SO}(3) \times S^1 = 2$
- dim M (r + 1) = 5 first integrals Two other first integrals $G_1, G_2 \implies$ Superintegrability.

[J. Hermans 1995, F. and Giacobbe 2006]

Are J_1, J_2, G_1, G_2 due to G-action?

- J₁, J₂ are gauge-momenta in the sense of Bates, Graumann and MacDonnel [1996] [*Ramos, Sansonetto*]
- $G_1, G_2?$

2. Nonholonomic Noether theorem — review of basic theory

Review now the nonholonomic version of Noether theorem.

- Need short review of basis of theory of nonholonomic mechanics.
- Only simplest cases: linear constraints, constant rank, free actions, natural Lagrangian, etc.
- Coordinate treatment wherever sufficient.

Review now the nonholonomic version of Noether theorem.

- Need short review of basis of theory of nonholonomic mechanics.
- Only simplest cases: linear constraints, constant rank, free actions, natural Lagrangian, etc.
- Coordinate treatment wherever sufficient.

Start with a holonomic system:

- Configuration manifold Q, dim Q = n
- Lagrangian L = T V

Add linear nonholonomic constraints: $\forall q \in Q$

- $\dot{q} \in D_q$ subspace of $T_q Q$
- dim $D_q = k$

Terminology:

- *D* = *constraint distribution* (nonintegrable)
- (L, Q, D) = Nonholonomic (Lagrangian) system

Review now the nonholonomic version of Noether theorem.

- Need short review of basis of theory of nonholonomic mechanics.
- Only simplest cases: linear constraints, constant rank, free actions, natural Lagrangian, etc.
- Coordinate treatment wherever sufficient.

Start with a holonomic system:

- Configuration manifold Q, dim Q = n
- Lagrangian L = T V

Add linear nonholonomic constraints: $\forall q \in Q$

- $\dot{q} \in D_q$ subspace of $T_q Q$
- dim $D_q = k$

Terminology:

- *D* = *constraint distribution* (nonintegrable)
- (L, Q, D) = Nonholonomic (Lagrangian) system

D'Alembert principle: reaction forces R at (q, \dot{q}) annihilate D_q .

Then:

- Eliminate Lagrange multipliers: $R = R(q, \dot{q})$
- Get a dynamical system on $D \subset T_Q$ given by $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \frac{\partial L}{\partial q} = R$

2. Nonholonomic Noether theorem — Agostinelli's (almost) theorem

Versions of Noether theorem for nonholonomic sysems have a long history: ..., Agostinelli 1956, ..., Arnold-Kozlov-Neishtadt 1980's, Bloch et Al. 1990's, Cantrijn, de Leon et al 1990's, Cushman et al 1990's, Sniatycki 1998, Versions of Noether theorem for nonholonomic sysems have a long history: ..., Agostinelli 1956,, Arnold-Kozlov-Neishtadt 1980's, Bloch et Al. 1990's, Cantrijn, de Leon et al 1990's, Cushman et al 1990's, Sniatycki 1998,

Proposition (Agostinelli) Let ξ^Q be a section of D. Then

 $F := p \cdot \xi^Q$

is a first integral of (Q, L = T - V, D) iff

- $L_{\xi Q}V = 0$ in Q
- $L_{\xi^T Q} T = 0$ in D

Here:

- $p = \frac{\partial L}{\partial \dot{a}}$, thus F is the momentum of the \mathbb{R} -action on Q generated by ξ^Q
- ξ^{TQ} = tangent lift of ξ^Q .

Versions of Noether theorem for nonholonomic sysems have a long history: ..., Agostinelli 1956,, Arnold-Kozlov-Neishtadt 1980's, Bloch et Al. 1990's, Cantrijn, de Leon et al 1990's, Cushman et al 1990's, Sniatycki 1998,

Proposition (Agostinelli) Let ξ^Q be a section of D. Then

 $F := p \cdot \xi^Q$

is a first integral of (Q, L = T - V, D) iff

- $L_{\xi Q}V = 0$ in Q
- $L_{\xi^T Q} T = 0$ in D

Here:

- $p = \frac{\partial L}{\partial \dot{a}}$, thus F is the momentum of the \mathbb{R} -action on Q generated by ξ^Q
- ξ^{TQ} = tangent lift of ξ^Q .

Proof Equations of motion give

$$\begin{split} \dot{F} &= \dot{p} \cdot \xi^Q + p \cdot \dot{\xi}^Q \\ &= \left(\frac{\partial T}{\partial q} - \frac{\partial V}{\partial q} + R\right) \cdot \xi^Q + \frac{\partial T}{\partial \dot{q}} \cdot \xi^{TQ}_{\dot{q}} \\ &= L_{\xi^T Q} T - L_{\xi^Q} V \end{split}$$

and the last term is \dot{q} -independent.

2. Nonholonomic Noether theorem: the simplest case

Agostinelli's theorem directly implies the following, elementary version of Noether theorem:

Corollary (Elementary version of Noether theorem) Given:

- Nonholonomic system (L = T V, Q, D)
- \mathbb{R} -action Ψ^Q on Q with infinitesimal generator η^Q and tangent lift η^{TQ} such that
 - $L_{\eta^{TQ}}L_{|D}=0$
 - η^Q is a section of D

Then $J_{\eta} := p \cdot \eta^Q$ is a first integral of (L, Q, D)

2. Nonholonomic Noether theorem: the simplest case

Agostinelli's theorem directly implies the following, elementary version of Noether theorem:

Corollary (Elementary version of Noether theorem) Given:

- Nonholonomic system (L = T V, Q, D)
- \mathbb{R} -action Ψ^Q on Q with infinitesimal generator η^Q and tangent lift η^{TQ} such that
 - $L_{\eta^{TQ}}L_{|D} = 0$
 - η^Q is a section of D

Then $J_{\eta} := p \cdot \eta^Q$ is a first integral of (L, Q, D)

Horizontal symmetries: Consider now a group G which acts on Q and preserve the Lagrangian. If $\eta \in \mathfrak{g}$ is such that $\eta^Q \in D$, then the momentum $J_{\eta} = p \cdot \eta^Q$ is a first integral.

[Bloch et al, Marle,]

Thus, only certain infinitesimal generators of a symmetry group of the holonomic system produce conserved momenta for the nonholonomic system.

2. Nonholonomic Noether theorem: the simplest case

Agostinelli's theorem directly implies the following, elementary version of Noether theorem:

Corollary (Elementary version of Noether theorem) Given:

- Nonholonomic system (L = T V, Q, D)
- \mathbb{R} -action Ψ^Q on Q with infinitesimal generator η^Q and tangent lift η^{TQ} such that
 - $L_{\eta^{TQ}}L_{|D} = 0$
 - η^Q is a section of D

Then $J_{\eta} := p \cdot \eta^Q$ is a first integral of (L, Q, D)

Horizontal symmetries: Consider now a group G which acts on Q and preserve the Lagrangian. If $\eta \in \mathfrak{g}$ is such that $\eta^Q \in D$, then the momentum $J_{\eta} = p \cdot \eta^Q$ is a first integral.

[Bloch et al, Marle,]

Thus, only certain infinitesimal generators of a symmetry group of the holonomic system produce conserved momenta for the nonholonomic system.

The notion of horizontal symmetries has

- Generalization to (sub)group actions
- Extensions to non–lifted actions are also possible (see later)

but horizontal symmetries are rare

Note: Ininfluent for first integrals that action preserves the constraints *D*.

Gauge momenta are an extension of horizontal symmetries. Idea introduced in [*Bates, Graumann, MacDonnell 1996*], see also [*Marle 2003*]

Proposition

- G acts on Q
- η_1, \ldots, η_k basis of \mathfrak{g}

Assume exist functions $f_1, \ldots, f_k : Q \to \mathbb{R}$ such that

- $\xi^Q := \sum_j f_j \eta_j^Q$ is a section of D
- $L_{\xi^T Q}(T-V) = 0$

Then $p \cdot \xi^Q = \sum_j f_j J_{\eta_j}$ is first integral of (L = T - V, Q, D).

Gauge momenta are an extension of horizontal symmetries. Idea introduced in [*Bates, Graumann, MacDonnell 1996*], see also [*Marle 2003*]

Proposition

- G acts on Q
- η_1, \ldots, η_k basis of \mathfrak{g}

Assume exist functions $f_1, \ldots, f_k : Q \to \mathbb{R}$ such that

- $\xi^Q := \sum_j f_j \eta_j^Q$ is a section of D
- $L_{\xi^T Q}(T-V) = 0$

Then $p \cdot \xi^Q = \sum_j f_j J_{\eta_j}$ is first integral of (L = T - V, Q, D).

Variations and generalizations are possible, e.g. to non-lifted actions, but no applications so far.

The notion of gauge momentum makes it possible to link first integrals to symmetry groups in a number of cases, significantly larger than horizontal symmetries.

As of today, it seems to be the most effective nonholonomic version of Noether theorem.

Nonholonomic oscillator $L = \frac{1}{2}(\dot{q}_x^2 + \dot{q}_y^2 + \dot{q}_z^2 - y^2)$ $D = \{\dot{z} = y\dot{x}\}$ $G = \mathbb{R}^2 \text{ translations along } x, z$

• One GM^a

Vertical coin

 $G = \mathbb{R}^2 \times S^1 \times S^1$, translations in the plane, rotations about vertical, rotations about coin's axis.

- One HS
- One GM

Routh sphere $G = \mathbb{R}^2 \times S^1$

- Two GM
- One not known if GM

Ball in the cup $G = SO(3) \times S^1$

- J_1, J_2 are GM (HS only in special cases)
- Not known if G_1, G_2 are GM

^aHS=Horizontal Symmetry. GM=Gauge momentum but not SH

3. Noetherian first integrals

Consider:

- A manifold Q and a (costant rank) distribution D on Q.
- A Lie group G which acts on Q.
- A function $F: D \to \mathbb{R}$

Definition

- F is (G, D)-Noetherian if it is a first integral of any nonholonomic system (L, Q, D) with G-invariant Lagrangian L.
- Fix T : TQ → ℝ. F is weakly (G, D, T)-Noetherian if it is a first integral of any nonholonomic system (L = T V, Q, D) with G-invariant potential V.

3. Noetherian first integrals

Consider:

- A manifold Q and a (costant rank) distribution D on Q.
- A Lie group G which acts on Q.
- A function $F: D \to \mathbb{R}$

Definition

- F is (G, D)-Noetherian if it is a first integral of any nonholonomic system (L, Q, D) with G-invariant Lagrangian L.
- Fix T : TQ → ℝ. F is weakly (G, D, T)-Noetherian if it is a first integral of any nonholonomic system (L = T V, Q, D) with G-invariant potential V.

Proposition/Remark:

- Horizontal symmetries are Noetherian
- Gauge momenta are weakly Noetherian
- Gauge momenta might be non–Noetherian

Nonholonomic oscillator

$$\begin{split} L &= \frac{1}{2}(\dot{q}_x^2 + \dot{q}_y^2 + \dot{q}_z^2 - y^2) \\ D &= \{\dot{z} = y\dot{x}\} \\ G &= \mathbb{R}^2 \text{ translations along } x, z \end{split}$$

• One Noetherian GM

Vertical coin

 $G = \mathbb{R}^2 \times S^1 \times S^1$, translations in the plane, rotations about vertical, rotations about coin's axis.

- One HS
- One Noetherian GM

Routh sphere $G = \mathbb{R}^2 \times S^1$

- Two GM One Noetherian, one not known
- One not known if GM

Ball in the cup

 $G = \mathrm{SO}(3) \times S^1$

- J_1, J_2 are GM not (yet) known if Noetherian
- but what about G_1, G_2 ? Not even known if they are GM.

Note: Noetherianity can be proved with techniques to be seen later

3. Noetherian first integrals — Questions

Questions:

- Are GM 'typically' also Noetherian? (They need not be)
- Are there 'many' Noetherian first integrals besides HS and possibly GM?
- Are there 'many' weakly–Noetherian first integrals besides GM?
- Where do G_1, G_2 of the ball in the cup lie in this diagram?
- Is it possible to apriori compute/bound the number of Noetehrian first integrals?
- And that of the weakly–Noetherian first integrals?

Need geometry.

Mostly for personal preference, pass to the Hamiltonian setting

Legendre transform

- $\Lambda: TQ \to T^*Q$
- $(L = T V, TQ) \mapsto (H = T + V, T^*Q)$
- Constraint manifold $M := \Lambda(D)$.

Legendre transform

- $\Lambda: TQ \to T^*Q$
- $(L = T V, TQ) \mapsto (H = T + V, T^*Q)$
- Constraint manifold $M := \Lambda(D)$.

There is another distribution, \overline{D} , along M:

- $\overline{D}_{(q,p)} := \{(\dot{q}, \dot{p}) : \dot{q} \in D_q\} \neq T_{(q,p)}M$
- Reaction force $\in \overline{D}^{\omega}$.

Legendre transform

- $\Lambda: TQ \to T^*Q$
- $(L = T V, TQ) \mapsto (H = T + V, T^*Q)$
- Constraint manifold $M := \Lambda(D)$.

There is another distribution, \overline{D} , along M:

- $\overline{D}_{(q,p)} := \{(\dot{q}, \dot{p}) : \dot{q} \in D_q\} \neq T_{(q,p)}M$
- Reaction force $\in \overline{D}^{\omega}$.

Splitting property:

At points $m \in M$: $T_m T^* Q = \overline{D}_m^{\omega} \oplus T_m M.$ [...., Marle 1995, ...]

Legendre transform

- $\Lambda: TQ \to T^*Q$
- $(L = T V, TQ) \mapsto (H = T + V, T^*Q)$
- Constraint manifold $M := \Lambda(D)$.

There is another distribution, \overline{D} , along M:

- $\overline{D}_{(q,p)} := \{(\dot{q}, \dot{p}) : \dot{q} \in D_q\} \neq T_{(q,p)}M$
- Reaction force $\in \overline{D}^{\omega}$.

Splitting property:

At points $m \in M$: $T_m T^* Q = \overline{D}_m^{\omega} \oplus T_m M.$ [...., Marle 1995, ...]

Equations of motion: $\dot{m} = X_H^{TM}(m), m \in M$.

(H,Q,M): Nonholonomic (Hamiltonian) system NB: X_H^{TM} is section of $\overline{D} \cap TM$.

Hamiltonian characterization of first integrals.

Sometimes (improperly—given that there is no group action?) called "Nonholonomic Noether theorem"

Proposition A function $F : M \to \mathbb{R}$ is a first integral of (H, Q, M) if and only if any of the following two equivalent conditions is fullfilled:

- i. ker $dF \supset (\ker dH \cap \overline{D})^{\omega} \cap TM$.
- ii. One (and hence any) extension \tilde{F} of F off M satisfies

 $X_{\tilde{F}} \in (\ker dH \cap \overline{D}) \cap TM^{\omega}.$ in the points of M.

[Condition ii. is due to Sniatycky (1996) and generalizes previous results, e.g. by Cushman et al. 1995]

Hamiltonian characterization of first integrals.

Sometimes (improperly—given that there is no group action?) called "Nonholonomic Noether theorem"

Proposition A function $F : M \to \mathbb{R}$ is a first integral of (H, Q, M) if and only if any of the following two equivalent conditions is fullfilled:

- i. ker $dF \supset (\ker dH \cap \overline{D})^{\omega} \cap TM$.
- ii. One (and hence any) extension \tilde{F} of F off M satisfies $X_{\tilde{F}} \in (\ker dH \cap \overline{D}) \cap TM^{\omega}.$

in the points of M.

[Condition ii. is due to Sniatycky (1996) and generalizes previous results, e.g. by Cushman et al. 1995]

Proof (i.)
$$L_{X_{H}^{TM}}F = 0 \iff \operatorname{Span} X_{H}^{TM} \subset \ker dF$$
. Using splitting $T_{m}T^{*}Q = \overline{D}_{m}^{\omega} \oplus T_{m}M$ gives
 $\operatorname{Span} X_{H}^{TM} = (\operatorname{Span} X_{H} + \overline{D}^{\omega}) \cap TM$
 $= ((\ker dH)^{\omega} + \overline{D}^{\omega}) \cap TM$
 $= (\ker dH \cap \overline{D})^{\omega} \cap TM$
(ii.) Use duality.

Our aim: to find an upper bound on the number of WNFI

Setting:

- Fix manifold Q, distribution D on Q, kinetic energy $T: TQ \to \mathbb{R}$, and action Ψ^Q of group G on Q.
- I_G := family of all *G*-invariant functions on *Q*.

WNFI in Hamiltonian formulation: A weak T-Noetherian first integral is a function $F: D \to \mathbb{R}$ which is first integral of (T - V, Q, D) for any $V \in I_G$. Since $\Lambda: TQ \to T^*Q$ is fixed, $M = \Lambda(D)$ is fixed. Hence, F is WNFI iff $F \circ \Lambda^{-1}: M \to \mathbb{R}$ is first integral of (H = T + V, Q, M) for any $V \in I_G$. Our aim: to find an upper bound on the number of WNFI

Setting:

- Fix manifold Q, distribution D on Q, kinetic energy $T: TQ \to \mathbb{R}$, and action Ψ^Q of group G on Q.
- I_G := family of all *G*-invariant functions on *Q*.

WNFI in Hamiltonian formulation: A weak T-Noetherian first integral is a function $F : D \to \mathbb{R}$ which is first integral of (T - V, Q, D) for any $V \in I_G$. Since $\Lambda : TQ \to T^*Q$ is fixed, $M = \Lambda(D)$ is fixed. Hence, F is WNFI iff $F \circ \Lambda^{-1} : M \to \mathbb{R}$ is first integral of (H = T + V, Q, M) for any $V \in I_G$.

From the characterization of FI: F is WNFI iff $\ker dF \supset (\ker d(T+V) \cap \overline{D})^{\omega} \cap TM \quad \forall V \in I_G$ namely iff

 $\ker dF \supset \bigcap_{V \in I_G} \left(\ker d(T+V) \cap \overline{D} \right)^{\omega} \cap TM$

Our aim: to find an upper bound on the number of WNFI

Setting:

- Fix manifold Q, distribution D on Q, kinetic energy $T: TQ \to \mathbb{R}$, and action Ψ^Q of group G on Q.
- I_G := family of all *G*-invariant functions on *Q*.

WNFI in Hamiltonian formulation: A weak T-Noetherian first integral is a function $F: D \to \mathbb{R}$ which is first integral of (T - V, Q, D) for any $V \in I_G$. Since $\Lambda: TQ \to T^*Q$ is fixed, $M = \Lambda(D)$ is fixed. Hence, F is WNFI iff $F \circ \Lambda^{-1}: M \to \mathbb{R}$ is first integral of (H = T + V, Q, M) for any $V \in I_G$.

From the characterization of FI: F is WNFI iff $\ker dF \supset (\ker d(T+V) \cap \overline{D})^{\omega} \cap TM \quad \forall V \in I_G$ namely iff

 $\ker dF \supset \bigcap_{V \in I_G} \big(\ker d(T+V) \cap \overline{D})^{\omega} \cap TM$

Proposition Let

$$\begin{split} \mathcal{G} &:= \bigcap_{V \in I_G} \ker d(T+V) \\ \Delta &:= (\mathcal{G} \cap \overline{D})^{\omega} \cap TM \\ \text{Then } F : M \to \mathbb{R} \text{ is WNFI iff} \\ \ker dF \supset \Delta \end{split}$$

Bound on # of WNFI A WNFI is a first integral of a distribution Δ on M. (Existence of WNFI = integrability conditions on Δ)

Number of WNFI can thus be studied:

- Determine \mathcal{G}
- Determine $\Delta = (\mathcal{G} \cap \overline{D})^{\omega} \cap TM$
- Determine # of (local) integrals of Δ .

This gives upper bound on (global) WNFI

Determination of \mathcal{G}

Sufficient here to characterize $\mathcal{G} := \bigcap_{V \in I_G} \ker d(T+V)$ in Darboux coordinates (q, p). Write

 $T(q,p) = \frac{1}{2}p \cdot B(q)p$

 TO_G = distribution by tangent spaces to G-orbits in Q.

Determination of \mathcal{G}

Sufficient here to characterize $\mathcal{G} := \bigcap_{V \in I_G} \ker d(T+V)$ in Darboux coordinates (q, p). Write

 $T(q, p) = \frac{1}{2}p \cdot B(q)p$ TO_G = distribution by tangent spaces to G-orbits in Q.

Lemma Assume G acts freely and properly on Q. Then

$$\mathcal{G}_{(q,p)} = \left\{ (u_q, u_p) : u_q \in TO_G, u_p \in (\frac{\partial T}{\partial p})^{\perp} - \|Bp\|^{-2} (u_q \cdot \frac{\partial T}{\partial q}) Bp \right\} \text{ if } p \neq 0$$

$$\mathcal{G}_{(q,p)} = \left\{ (u_q, u_p) : u_q \in TO_G \right\} \text{ if } p = 0$$

Determination of \mathcal{G}

Sufficient here to characterize $\mathcal{G} := \bigcap_{V \in I_G} \ker d(T+V)$ in Darboux coordinates (q, p). Write

 $T(q,p) = \frac{1}{2}p \cdot B(q)p$ TO_G = distribution by tangent spaces to G-orbits in Q.

Lemma Assume G acts freely and properly on Q. Then

$$\mathcal{G}_{(q,p)} = \left\{ (u_q, u_p) : u_q \in TO_G, u_p \in (\frac{\partial T}{\partial p})^{\perp} - \|Bp\|^{-2} (u_q \cdot \frac{\partial T}{\partial q}) Bp \right\} \text{ if } p \neq 0$$

$$\mathcal{G}_{(q,p)} = \left\{ (u_q, u_p) : u_q \in TO_G \right\} \text{ if } p = 0$$

Proof $u = (u_q, u_p) \in \mathcal{G}_{(q,p)}$ iff d(T+V)u = 0 for all $V \in I_G$, namely iff

• $\frac{\partial V}{\partial q}u_q = 0$ for all $V \in I_G$ • $\frac{\partial T}{\partial q} \cdot u_q + \frac{\partial T}{\partial p} \cdot u_p = 0$

namely iff

- $u_q \in TO_G$ (see [Ortega-Ratiu 2004])
- $u_p \in (\frac{\partial T}{\partial p})^{\perp} \|\frac{\partial T}{\partial p}\|^{-2} (u_q \cdot \frac{\partial T}{\partial q}) \frac{\partial T}{\partial p} \blacksquare$

Recall that Δ is a distribution on M. Denote

- Δ^{∞} := smallest integrable distribution on M which contains Δ ("involutive closure" of Δ).
- $c_m := \operatorname{corank}_M \Delta_m^\infty, m \in M.$
- $M_{\text{reg}}^{\infty} :=$ set of regular points of Δ^{∞} .

 $M_{\rm reg}^{\infty}$ is open and dense in M.

Proposition For each $m \in M$, there are c_m but not c_{m+1} independent germs of first integrals of Δ .

Recall that Δ is a distribution on M. Denote

- Δ^{∞} := smallest integrable distribution on M which contains Δ ("involutive closure" of Δ).
- $c_m := \operatorname{corank}_M \Delta_m^\infty, m \in M.$
- $M_{\text{reg}}^{\infty} :=$ set of regular points of Δ^{∞} .

 $M_{\rm reg}^{\infty}$ is open and dense in M.

Proposition For each $m \in M$, there are c_m but not c_{m+1} independent germs of first integrals of Δ .

Proof: Each point $m \in M_{\text{reg}}^{\infty}$ has a neighbourhood U_m in which Δ^{∞} has constant rank c_m .

- In U_m there are c_m functionally independent first integrals of Δ .
- If in an open set $U \subset U_m$ there were $c_m + 1$ independent first integral of Δ , then Δ^{∞} would not be smallest integrable distribution which contains Δ .

Standard technique for determining Δ^{∞} , if Δ is real analytic.

- Consider (local) generators X_1, \ldots, X_r of Δ , so that $\Delta = \text{Span}\{X_1, \ldots, X_r\}.$
- Define

$$\Delta^{1} = \Delta$$

$$\Delta^{2} = \text{Span}\{X_{1}, \dots, X_{r}, [X_{1}, X_{2}], \dots, [X_{r-1}, X_{r}]\}$$

$$\Delta^{3} = \text{Span}\{X_{1}, \dots, [X_{1}, X_{2}], \dots, [X_{1}, [X_{1}, X_{2}]], \dots\}$$

etc.

Then, $\Delta^{\infty} = \Delta^s$ where s is the smallest positive integer such that Δ^s is integrable, that is, $\Delta^s = \Delta^{s+1}$.

Standard technique for determining Δ^{∞} , if Δ is real analytic.

- Consider (local) generators X_1, \ldots, X_r of Δ , so that $\Delta = \text{Span}\{X_1, \ldots, X_r\}.$
- Define

$$\Delta^{1} = \Delta$$

$$\Delta^{2} = \text{Span}\{X_{1}, \dots, X_{r}, [X_{1}, X_{2}], \dots, [X_{r-1}, X_{r}]\}$$

$$\Delta^{3} = \text{Span}\{X_{1}, \dots, [X_{1}, X_{2}], \dots, [X_{1}, [X_{1}, X_{2}]], \dots\}$$

etc.

Then, $\Delta^{\infty} = \Delta^s$ where s is the smallest positive integer such that Δ^s is integrable, that is, $\Delta^s = \Delta^{s+1}$.

Can be implemented in two ways:

- Work in M, e.g. by using local coordinates M
- Work in T^*Q using any extension $\widehat{X}_1, \ldots, \widehat{X}_r$ of X_1, \ldots, X_r off M. Reason: $[\widetilde{X}_i, \widetilde{X}_j]_{|M|} = [X_i, X_j]$

Convenient, e.g., to use trivializations.

Application:

The two additional integrals G_1 and G_2 of the ball in the cap are WNFI?

Application:

The two additional integrals G_1 and G_2 of the ball in the cap are WNFI?

Yes (?) (modulo checking the computations....)

Things to do:

- Check computations for ball in the cup. Try to reproduce G_1, G_2 with some variants of the GM method.
- What happens if other SO(3)-action is taken into consideration?
- Develop a similar method to study the Notherianity of FI
- Systematically check WN and N in known cases.
- Explore variants of the gauge method