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0. Content

Link symmetries—integrals of motion in nonholonomic mechanics

Hamiltonian systems:
• Momentum map is conserved for all systems with given symmetry group: has the Noetherian property

[Ortega-Ratiu 2004]

Nonholonomic systems:
• Sometimes symmetries do produce first integrals
• Sometimes they do not
• Sometimes not clear whether first integrals descend from symmetries

In this talk:
• Idea: Noetherianity is an indication of a link symmetry–first integral
• Question: First integrals of a specific nonholomic system with symmetry are Noetherian?
• Answer: I present a method to obtain a (partial) answer, and some (still a little bit incomplete)

aplications.
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1. Example: the ball in a cup — an integrable system

Holonomic system: heavy sphere with center of mass on a cupa

• Q = R
2 × SO(3), dim TQ = 10

• Symmetry group G = S1 × SO(3) × SO(3)
• (Energy–)momentum map gives 5 first integrals
• Motions quasi–periodic on T

3

Nonholonomic system: sphere rolls without sliding in the cup
• Constraint manifold M has now dimension 8
• Symmetry group G = S1 × SO(3)

• Motions quasi–periodic on T
3

... so still 5 first integrals—where from?

Reduction
• Reduced phase space M/G is 4–dimensional
• Reduced system on M/G has 3 first integrals:

• E = energy
• J1, J2 solutions of a linear ODE

• Reduced system has periodic dynamics

a
Cup = convex surface of revolution with vertical axis
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1. Example: the ball in a cup — reconstruction from periodic dynamics

Reconstruction from periodic reduced dynamics Setting:
• Free action of compact connected Lie group G on manifold M
• G–invariant vector field X on M
• Reduced system on M/G has periodic dynamics (with continuous period)

Then, the dynamics (generically) reconstructs to quasi–periodic motions on T
r+1, r = rank G.

[M. Field 1970’s, J. Hermans 1995]

m

Γm
Γ2m

G.m> G

Ball in the cup:
• r = rank SO(3) × S1 = 2

• dim M − (r + 1) = 5 first integrals
Two other first integrals G1, G2 =⇒ Superintegrability.
[J. Hermans 1995, F. and Giacobbe 2006]

Are J1, J2, G1, G2 due to G–action?
• J1, J2 are gauge–momenta in the sense of

Bates, Graumann and MacDonnel [1996]
[Ramos, Sansonetto]

• G1, G2?
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2. Nonholonomic Noether theorem — review of basic theory

Review now the nonholonomic version of Noether theorem.
• Need short review of basis of theory of nonholonomic mechanics.
• Only simplest cases: linear constraints, constant rank, free actions, natural Lagrangian, etc.
• Coordinate treatment wherever sufficient.

Start with a holonomic system:
• Configuration manifold Q, dim Q = n
• Lagrangian L = T − V

Add linear nonholonomic constraints: ∀q ∈ Q
• q̇ ∈ Dq subspace of TqQ

• dim Dq = k
Terminology:
• D = constraint distribution (nonintegrable)
• (L, Q, D) = Nonholonomic (Lagrangian) system

D’Alembert principle: reaction forces R at (q, q̇) annihilate Dq .
Then:
• Eliminate Lagrange multipliers: R = R(q, q̇)

• Get a dynamical system on D ⊂ TQ given by d
dt

∂L
∂q̇

− ∂L
∂q

= R
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2. Nonholonomic Noether theorem — Agostinelli’s (almost) theorem

Versions of Noether theorem for nonholonomic sysems have a long history: ..., Agostinelli 1956, ....,
Arnold-Kozlov-Neishtadt 1980’s, Bloch et Al. 1990’s, Cantrijn, de Leon et al 1990’s, Cushman et al 1990’s, Sniatycki
1998 , ....

Proposition (Agostinelli) Let ξQ be a section of D. Then
F := p · ξQ

is a first integral of (Q, L = T − V, D) iff
• LξQV = 0 in Q

• LξTQT = 0 in D

Here:
• p = ∂L

∂q̇
, thus F is the momentum of the R–action on Q generated by ξQ

• ξTQ = tangent lift of ξQ.

Proof Equations of motion give

Ḟ = ṗ · ξQ + p · ξ̇Q

=
(

∂T
∂q

− ∂V
∂q

+ R
)
· ξQ + ∂T

∂q̇
· ξTQ

q̇

= LξTQT − LξQV

and the last term is q̇–independent.
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Ḟ = ṗ · ξQ + p · ξ̇Q

=
(

∂T
∂q

− ∂V
∂q

+ R
)
· ξQ + ∂T

∂q̇
· ξTQ

q̇

= LξTQT − LξQV

and the last term is q̇–independent.

Noetherian first integralsof nonholonomic systems – p. 6/20



2. Nonholonomic Noether theorem: the simplest case

Agostinelli’s theorem directly implies the following, elementary version of Noether theorem:

Corollary (Elementary version of Noether theorem) Given:
• Nonholonomic system (L = T − V, Q, D)

• R–action ΨQ on Q with infinitesimal generator ηQ and tangent lift ηTQ such that
• LηTQL|D = 0

• ηQ is a section of D

Then Jη := p · ηQ is a first integral of (L, Q, D)

Horizontal symmetries: Consider now a group G which acts on Q and preserve the Lagrangian. If η ∈ g is
such that ηQ ∈ D, then the momentum Jη = p · ηQ is a first integral.

[Bloch et al, Marle, .....]
Thus, only certain infinitesimal generators of a symmetry group of the holonomic system produce conserved
momenta for the nonholonomic system.

The notion of horizontal symmetries has
• Generalization to (sub)group actions
• Extensions to non–lifted actions are also possible (see later)

but horizontal symmetries are rare

Note: Ininfluent for first integrals that action preserves the constraints D.
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2. Nonholonomic Noether theorem: Gauge momenta

Gauge momenta are an extension of horizontal symmetries.
Idea introduced in [Bates, Graumann, MacDonnell 1996], see also [Marle 2003]

Proposition
• G acts on Q
• η1, . . . , ηk basis of g

Assume exist functions f1, . . . , fk : Q → R such that

• ξQ :=
∑

j fjηQ
j is a section of D

• LξTQ (T − V ) = 0

Then p · ξQ =
∑

j fjJηj is first integral of (L = T − V, Q, D).

Variations and generalizations are possible, e.g. to non–lifted actions, but no applications so far.

The notion of gauge momentum makes it possible to link first integrals to symmetry groups in a number of
cases, significantly larger than horizontal symmetries.

As of today, it seems to be the most effective nonholonomic version of Noether theorem.
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2. Nonholonomic Noether theorem: Examples of HS and GM

Nonholonomic oscillator
L = 1

2
(q̇2

x + q̇2
y + q̇2

z − y2)

D = {ż = yẋ}

G = R
2 translations along x, z

• One GM a

Vertical coin
G = R

2 × S1 × S1, translations in the plane, rotations about vertical, rotations about coin’s axis.
• One HS
• One GM

Routh sphere G = R
2 × S1

• Two GM
• One not known if GM

Ball in the cup G = SO(3) × S1

• J1, J2 are GM (HS only in special cases)
• Not known if G1, G2 are GM

a
HS=Horizontal Symmetry. GM=Gauge momentum but not SH
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3. Noetherian first integrals

Consider:
• A manifold Q and a (costant rank) distribution D on Q.
• A Lie group G which acts on Q.
• A function F : D → R

Definition
• F is (G, D)–Noetherian if it is a first integral of any nonholonomic system (L, Q, D) with

G–invariant Lagrangian L.
• Fix T : TQ → R. F is weakly (G, D, T )–Noetherian if it is a first integral of any nonholonomic

system (L = T − V , Q, D) with G–invariant potential V .

Proposition/Remark:
• Horizontal symmetries are Noetherian
• Gauge momenta are weakly Noetherian
• Gauge momenta might be non–Noetherian
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2. Nonholonomic Noether theorem: Examples of HS and GM revisited

Nonholonomic oscillator
L = 1

2
(q̇2

x + q̇2
y + q̇2

z − y2)

D = {ż = yẋ}

G = R
2 translations along x, z.

• One Noetherian GM

Vertical coin
G = R

2 × S1 × S1, translations in the plane, rotations about vertical, rotations about coin’s axis.
• One HS
• One Noetherian GM

Routh sphere G = R
2 × S1

• Two GM — One Noetherian, one not known
• One not known if GM

Ball in the cup
G = SO(3) × S1

• J1, J2 are GM — not (yet) known if Noetherian
• but what about G1, G2? Not even known if they are GM.

Note: Noetherianity can be proved with techniques to be seen later
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3. Noetherian first integrals — Questions

Questions:
• Are GM ‘typically’ also Noetherian? (They need not be)
• Are there ‘many’ Noetherian first integrals besides HS and possibly GM?
• Are there ‘many’ weakly–Noetherian first integrals besides GM?
• Where do G1, G2 of the ball in the cup lie in this diagram?
• Is it possible to apriori compute/bound the number of Noetehrian first integrals?
• And that of the weakly–Noetherian first integrals?

Need geometry.
Mostly for personal preference, pass to the Hamiltonian setting
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3. Hamiltonian formulation

Legendre transform
• Λ : TQ → T ∗Q
• (L = T − V, TQ) 7→ (H = T + V, T ∗Q)

• Constraint manifold M := Λ(D).

There is another distribution, D, along M :

• D(q,p) := {(q̇, ṗ) : q̇ ∈ Dq} 6= T(q,p)M

• Reaction force ∈ D
ω

.

Splitting property:
At points m ∈ M :

TmT ∗Q = D
ω
m ⊕ TmM .

[...., Marle 1995, ...]

Equations of motion: ṁ = XTM
H (m), m ∈ M .

(H, Q, M): Nonholonomic (Hamiltonian) system

NB: XTM
H is section of D ∩ TM .
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3. Hamiltonian formulation — First integrals

Hamiltonian characterization of first integrals.
Sometimes (improperly—given that there is no group action?) called “Nonholonomic Noether theorem”

Proposition A function F : M → R is a first integral of (H, Q, M) if and only if any of the following two
equivalent conditions is fullfilled:

i. ker dF ⊃ (ker dH ∩ D)ω ∩ TM .

ii. One (and hence any) extension F̃ of F off M satisfies

X
F̃

∈ (ker dH ∩ D) ∩ TMω .
in the points of M .

[Condition ii. is due to Sniatycky (1996) and generalizes previous results, e.g. by Cushman et al. 1995]

Proof (i.) LXTM
H

F = 0 ⇐⇒ SpanXTM
H ⊂ ker dF . Using splitting TmT ∗Q = D

ω
m ⊕ TmM gives

SpanXTM
H = (SpanXH + D

ω
) ∩ TM

=
(
(ker dH)ω + D

ω)
∩ TM

= (ker dH ∩ D)ω ∩ TM

(ii.) Use duality.
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4. Weakly Noetherian First Integrals (WNFI)

Our aim: to find an upper bound on the number of WNFI

Setting:
• Fix manifold Q, distribution D on Q, kinetic energy T : TQ → R, and action ΨQ of group G on Q.
• IG := family of all G–invariant functions on Q.

WNFI in Hamiltonian formulation: A weak T–Noetherian first integral is a function F : D → R which is
first integral of (T − V, Q, D) for any V ∈ IG.
Since Λ : TQ → T ∗Q is fixed, M = Λ(D) is fixed.
Hence, F is WNFI iff F ◦ Λ−1 : M → R is first integral of (H = T + V, Q, M) for any V ∈ IG.

From the characterization of FI: F is WNFI iff
ker dF ⊃

(
ker d(T + V ) ∩ D)ω ∩ TM ∀V ∈ IG

namely iff

ker dF ⊃
⋂

V ∈IG

(
ker d(T + V ) ∩ D)ω ∩ TM

Proposition Let
G :=

⋂
V ∈IG

ker d(T + V )

∆ := (G ∩ D)ω ∩ TM
Then F : M → R is WNFI iff

ker dF ⊃ ∆
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4. WNFI — How to bound their number?

Bound on # of WNFI
A WNFI is a first integral of a distribution ∆ on M .
(Existence of WNFI = integrability conditions on ∆)

Number of WNFI can thus be studied:

• Determine G

• Determine ∆ = (G ∩ D)ω ∩ TM
• Determine # of (local) integrals of ∆.

This gives upper bound on (global) WNFI
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4. WNFI – G

Determination of G
Sufficient here to characterize G :=

⋂
V ∈IG

ker d(T + V ) in Darboux coordinates (q, p).

Write
T (q, p) = 1

2
p · B(q)p

TOG = distribution by tangent spaces to G–orbits in Q.

Lemma Assume G acts freely and properly on Q. Then

G(q,p) =
{
(uq, up) : uq ∈ TOG , up ∈ ( ∂T

∂p
)⊥ − ‖Bp‖−2(uq · ∂T

∂q
)Bp

}
if p 6= 0

G(q,p) =
{
(uq, up) : uq ∈ TOG

}
if p = 0

Proof u = (uq, up) ∈ G(q,p) iff d(T + V )u = 0 for all V ∈ IG, namely iff

• ∂V
∂q

uq = 0 for all V ∈ IG

• ∂T
∂q

· uq + ∂T
∂p

· up = 0

namely iff
• uq ∈ TOG (see [Ortega-Ratiu 2004])

• up ∈ ( ∂T
∂p

)⊥ − ‖ ∂T
∂p

‖−2(uq · ∂T
∂q

) ∂T
∂p
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4. WNFI — Estimate of their number

Recall that ∆ is a distribution on M . Denote
• ∆∞ := smallest integrable distribution on M which contains ∆ (“involutive closure” of ∆).
• cm := corankM∆∞

m , m ∈ M .
• M∞

reg := set of regular points of ∆∞.
M∞

reg is open and dense in M .

Proposition For each m ∈ M , there are cm but not cm+1 independent germs of first integrals of ∆.

Proof: Each point m ∈ M∞
reg has a neighbourhood Um in which ∆∞ has constant rank cm.

• In Um there are cm functionally independent first integrals of ∆.
• If in an open set U ⊂ Um there were cm + 1 independent first integral of ∆, then ∆∞ would not be

smallest integrable distribution which contains ∆.
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4. Weakly NFI — Determining ∆
∞

Standard technique for determining ∆∞, if ∆ is real analytic.

• Consider (local) generators X1, . . . , Xr of ∆, so that
∆ = Span{X1, . . . , Xr}.

• Define
∆1 = ∆
∆2 = Span{X1, . . . , Xr, [X1, X2], . . . , [Xr−1, Xr]}

∆3 = Span{X1, . . . , [X1, X2], . . . , [X1, [X1, X2]], . . .}
etc.

Then, ∆∞ = ∆s where s is the smallest positive integer such that ∆s is integrable, that is, ∆s = ∆s+1.

Can be implemented in two ways:
• Work in M , e.g. by using local coordinates M

• Work in T ∗Q using any extension X̂1, . . . , X̂r of X1, . . . , Xr off M . Reason:

[X̃i, X̃j ]|M = [Xi, Xj ]

Convenient, e.g., to use trivializations.
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4. WNFI — The ball in the cup & conclusions

Application:

The two additional integrals G1 and G2 of the ball in the cap are WNFI?

Yes (?) (modulo checking the computations....)

Things to do:
• Check computations for ball in the cup. Try to reproduce G1, G2 with some variants of the GM

method.
• What happens if other SO(3)–action is taken into consideration?
• Develop a similar method to study the Notherianity of FI
• Systematically check WN and N in known cases.
• Explore variants of the gauge method
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