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Unitary integrals & combinatorics
Object of interest:

N
m(t.s) = /U( o (ZTr(tij stj)) dM
n

j=1

» U(n) unitary group

» dM Haar measure

> tj, sj “time variables”
Basic examples:

lt) = / Sl THM-HM ) Gy
U(n)

Tn(t) = / et TrM? M%) gy
u(n)



Example 1: increasing subsequences

(1990)
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» Sy permutations of {1,2,... k}
» /(m) length of the longest increasing subsequence of ©
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Example 1: increasing subsequences

(1990)
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Example 2: odd permutations
(1998);

/ esTr(M2+M i
U(n)

k=0

k

1. S99d permutations o of {—k,...,—1,1,...,k} with
o(=i) = —o(i)

2. Py uniform probability on Sdd

3. ¢(m) length of the longest increasing subsequence of

Pox(m € S99 | ¢(7) < n



Example 2: odd permutations
(1998);

5 ce 2 2k
/U( )eSTI‘(MZ-H\/I 2) dM = Z (\/_S) P2k(7T = Sggd | f(ﬂ') < n)
n

ee

k!
k=0

. S99 permutations o of {—k,...,—1,1,...,k} with

o(=i) = —a(i)
P2k uniform probability on S8
¢(m) length of the longest increasing subsequence of

. In the case of

S%¢4 = odd permutations of {-k,...,~1,0,1,...,k}
the unitary integral involves

el Tr(M4+M~1)£s Tr(M2+M—2)
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Unitary integrals & integrable systems

n(t,8) = /u( )exp (ZTr (GM! — s;M )) dm
n

[=1L

an inner product on functions on the circle
(bi-)orthogonal polynomials

an integrable system C 2-Toda lattice
recursion relations
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Unitary integrals & integrable systems
N
n(t,s) :/ exp (ZTr(tjMi sti)) dm
U(n) j=1

an inner product on functions on the circle
dz N
= —_ -1 h J_ . _j
(f,9)s s /Sl 5= 1(2)9(z7") exp JE_l(t,z siz7) | dz
_ |
mit,s) = det<<z z>s’t>

(bi-)orthogonal polynomials p,ﬂl)(t, S;2), p,ﬂz)(t, S;2)

1) (2 Tny1(t,S)
(PP ) = dum =

an integrable system C 2-Toda lattice
recursion relations

0<k,I<n-1



The Toeplitz lattice

The constant coefficients of the bi-orthogonal polynomials

Xn(t,s) = p{(t,5:0)  ya(t,s) = pP(t,s;0)

satisfy fori = 1, ..., N the differential equations
dxy oH®  dyq oH
s S 1 _ | S l _ |
at (1 — XkYk) Y at (1 — XkYk) B,
and
dx oH® dy oH®

ds (1 — Xk Yk)

i K o i
oy ds; (1= Xc¥k) OX



The Toeplitz lattice

The constant coefficients of the bi-orthogonal polynomials

Xn(t,s) = p{(t,5:0)  ya(t,s) = pP(t,s;0)

satisfy fori = 1, ..., N the differential equations
dxy aHY) dy oHM
s S 1 _ | S l _ |
at (1 — XkYk) Y at (1 — XkYk) B,
and
dx oH® dy oH®
i ! T l _ | - l _ |
e (1 — XkYk) By’ i (1 — XkYk) ;.

» almost standard Poisson structure {xy,y;} = (1 — xxY)du
> all H®) and Hj(') are in involution, {H{, Hj(')} =0
> Hi(l) = —%Tr L' and Hi(z) = —%Tr M



The Toeplitz matrices

—X1Yo 1-x1y1 O 0

—X2Yo —X2Y1 1-xy, O
L=| —XsYo —Xsy1 —X3Y2 1—X3ys

—XaYo —XaY1 —X4Y2 —X4Y3

—XoY1 —XoY2 —XoY3 —XoYa
1-—X1y1 —X1y2 —X1Y3 —X1Ya
M = 0 1-Xxay2 —Xoy3 —X2Y4
0 0 1—X3ys —XsYa

o0 o0
TrLl=—> Xy, TrM=-=> Xy
i=0 i=0



The first Toeplitz vector field(s)

dx d

K = (- XYk )Xkt D —(1 — XkYK)Yk—1
gtl gtl

2K Yk

= = - _ ko _(1-—

ds; (1 = XicYi)Xk-1 dsy (1 — XYk )Yk+1

dua“ty: Xj <—>yi L« MT {’} — _{’} Si PN _ti
self-dual: x;=y; L=MT {-,}=? s = —t;



The first Toeplitz vector field(s)

dx d

= (1= XY )X k —(1 — XkYK)Yk—1
Xk Yk

X = _ _ hel .S [

wEn (1 — XYk )Xk—1 ds, (1 — XYk)Yk+1

duality: X <y LoMT {3 o —{ ) sie —f
self-dual: x;=y; L=MT {-,}=? s = —t;

The first self-dual Toeplitz vector field

dx
d—tk = (1 —xZ)(Xk+1 — Xk—1)
Similar to, but different from, the Kac-van Moerbeke lattice
ka

K X (Xieaq — Xie
= k(X1 — Xk—1)



The recursion relations

(X )xen @nd (Y ))ken also satisfy a recursion relation 'y = Ag =0
(k =1,2,...). In the self-dual case:

2 N

e = ka —

i . -
It (L|k+1,k+1 + Lik — 2LL+1,k>

X
ko



The recursion relations

(X )xen @nd (yx )ken also satisfy a recursion relation 'y = Ay =0
(k =1,2,...). In the self-dual case:

1-x2 &L i i
Me = kxg — ” k thi (LL+1,k+1 + Li(,k - 2L:<+ll,k)

< il
—X1Xo 1-x% 0 0
—XoXo —XoXg 1-x3 0
L= | —XsXo —XsX1 —Xgxp 1-—x2

—XgXg —XgX1  —XgXo  —XgX3



The recursion relations

(X )xen @nd (Y ))ken also satisfy a recursion relation 'y = Ag =0
(k =1,2,...). In the self-dual case:

2 N
k i i i i—1
M = kxg — Xe Z'tl (Lk+1,k+1 + Lk — 2Lk+1,k>
i=
> [ is a polynomial in Xy N, Xk —N+1,--- s Xks - - -, Xken (ONly!)

» [ is of degree 1 in Xy N
» (2N + 1)-step recursion relation X, = Fn(Xn_1,.-.,Xn—_2N)



The recursion relations

(X )xen @nd (Y ))ken also satisfy a recursion relation 'y = Ag =0
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The recursion relations

(X )xen @nd (Y ))ken also satisfy a recursion relation 'y = Ag =0
(k =1,2,...). In the self-dual case:

2 N
Mk = kxy — Xe . Z'ti (L|k+1,k+1 + Lk — 2LL+11,k>
i=
> [ is a polynomial in Xy N, Xk —N+1,--- s Xks - - -, Xken (ONly!)
» [ is of degree 1 in Xy N
» (2N + 1)-step recursion relation X, = Fn(Xn_1,.-.,Xn—_2N)

Example (Borodin, N = 1):
kxg +t(1 — X2) (X1 + Xk—1) =0
Example (Adler-van Moerbeke, N =2, v; :=1 — xiz):

KXk Vi (X 41Xk —1) +2SVi (X 2Vio1 Xk —2Vi—1 =Xk (Xk+1+Xk—1)2) = O



Main result

Theorem (Adler, van Moerbeke and V.)

The recursion relations 'y, = Ax = 0 have the singularity
confinement property (in its strongest form).
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Singularity confinement:

» weak form: there exist formal Laurent solutions (xk (€))ken that
only blow up for a few k

» stronger form: such a solution exists, depending on
(2N + 1) — 1 = 2N free parameters

» strongest form: for every k there exists such a solution with at
least x, blowing up (and depending on 2N free parameters)



Main result

Theorem (Adler, van Moerbeke and V.)

The recursion relations 'y, = Ax = 0 have the singularity
confinement property (in its strongest form).

Singularity confinement:

» weak form: there exist formal Laurent solutions (xk (€))ken that
only blow up for a few k

» stronger form: such a solution exists, depending on
(2N + 1) — 1 = 2N free parameters

» strongest form: for every k there exists such a solution with at
least x, blowing up (and depending on 2N free parameters)

In a sense: discrete version of the Kowalevski-Painlevé property



The examplesN =1and N =2

» Singularity confinement and integrability seem to go hand in
hand ...

» ... but the precise relation is not properly undertood



The examplesN =1and N =2

» Singularity confinement and integrability seem to go hand in
hand ...

» ... but the precise relation is not properly undertood

ForN =1
kxg +t(1— sz)(Xk_,_l +Xk_1)=0

invariant (first shown by Borodin):
n
Pn(y,2) = (1-y?)(1 - 2%) - 1yz

invariance:
O (Xn+1> Xn) = CDn(Xn, Xn—l)



The examplesN =1and N =2

» Singularity confinement and integrability seem to go hand in
hand ...
» ... but the precise relation is not properly undertood

ForN =2
KXk + Vi (X1 + Xk —1) +
25V (Xi+2Vk+1 + Xk—2Vk—1 — Xk (Xkt1 + Xk—1)?) =0
invariant:
®n(x,y,2,u) =nyz — (1 —y?)(1 - 2%)(t +2s(x(u —y) —z(u +y)))
invariance:

Pn(Xn+3, Xn+2, Xnt+1, Xn) = Pn(Xn+2, Xnt1, Xn, Xn—1)



The examplesN =1and N =2

» Singularity confinement and integrability seem to go hand in
hand ...
» ... but the precise relation is not properly undertood

ForN =2
KXk + Vi (X1 + Xk —1) +
25V (Xi+2Vk+1 + Xk—2Vk—1 — Xk (Xkt1 + Xk—1)?) =0
invariant:
®n(X,Y,Z,u) = nyz — (L —y?)(1 - 2®)(t +2s(x(u —y) —z(u+Y)))
invariance:
®n(Xn+3, Xn+2, Xn+1,Xn) = Pn(Xn+2,Xn+1,Xn, Xn-1)

Conjecture: there is for any N an invariant (self-dual case and
general case)
The theorem is in support of this conjecture



The theorem: outline of the proof

Theorem
The recursion relations 'y, = Ag = 0 satisfy the singularity
confinement property (in its strongest form).

Setup:
1. bi-infinite Toeplitz lattice (semi-infinite: x; = y; = dig fori < 0)
2. L and M becomes bi-infinite matrices

general Toeplitz lattice

{ X = (L =X¥i) (X1 — Xk—1) Kez
Yo = (1 —XeYi)(Yk+1 — Ye—1)

recursion relations 'y = Ay =0, kez
self-dual Toeplitz lattice

Xk = (l = X|(2)(Xk+1 = Xk—l) kez

recursion relations 'y = 0, k ez



The theorem: outline of the proof

Theorem
The recursion relations 'y = Ax = 0 satisfy the singularity
confinement property (in its strongest form).

Setup:
1. bi-infinite Toeplitz lattice (semi-infinite: x; = y; = dig fori < 0)
2. L and M becomes bi-infinite matrices

idea: construct singular solutions for the recursion relations from
principal balances for the Toeplitz lattice

principal balances: formal Laurent solutions depending on many
free parameters



Step 1: Invariant manifold

Theorem

Let M be the submanifold, defined by 'y (x,y) = Ax(x,y) = 0.
Then M is an invariant submanifold for the (first) Toeplitz flow(s) of
the Toeplitz lattice.

Proof.
The recursion relations satisfy differential equations.
General case:

Me = (L= XeYi)(Mka1 — Mee1) + (Xerr — Xe—1) (X Ak — Yielk),
Av = (1 —%Y)(Drr1 — Ak-1) — (Vkr — Y1) (X Ak — YiTk)-

Self-dual case: I, = (1 — X2) (M1 — Mk—1)- O

Corollary : every formal power series solution to Toeplitz that
starts out on M stays on M.



Step 2: Painleveé analysis for the Toeplitz lattice

A few extra features wrt standard Painlevé analysis
» not weight-homogeneous
» infinite number of variables (? how many free parameters)
» existence of all terms, rather than convergence



Step 2: Painleveé analysis for the Toeplitz lattice

dx
d—tk =(1—%)(+1 —Xk—1) keZ

Theorem

For any n € Z, the self-dual Toeplitz lattice admits a formal Laurent
solution x(t), with only xs(t) having a pole, given by

x(t) = 1 (ak + (1 —a2)(akr1 — ak_1)t + O(t2)> , |k—=n|>2,
Xna1(t) = 1 (qﬁl +4ast +4a:(2ans, F (a- +ay))t® + O(t3)> ;
Xn(t) = —% <1+(a+—a_)t+%((a+—a_)2

+4(ajaniz —a-ano+1—2a.a )’ + O(t3)) ;

where a;,a_ and all a;, withi € Z\ {n —1,n,n + 1} are arbitrary
free parameters; also, 12 = 1.



Step 2': Painlevé analysis for the Toeplitz lattice
For the general Toeplitz lattice:
X = (1= XieYi) (K1 — Xe—1) Kez
Yo = (1—xYi)(Yk+1 —Yk-1)

Features
» not weight-homogeneous
» 200 — 1 # 2(co — 1) free parameters
» Xn and y, have a pole at the same time (n arbitrary)



Step 3: Tangency of the Laurent solutions

In the self-dual case, recall [, = (1- xk)(rk+1 — k1)

Theorem
Let I'(t) := I'(x(t)), where x(t) is the above formal Laurent
solution. Then, as formal series in t,

() = rd+o(), k eZz\{n},
1 0 0 0
M(t) = Ze(Ths — M2y + T +0().

Moreover, I (t) = 0 as a formal series in t, for all k € Z, as soon
as x(t) is such that

I'(ko) =0, forallk € Z.



Step 3': Tangency of the Laurent solutions

Theorem
Let I'(t) := I'(x(t),y(t)), where (x(t),y(t)) is the above formal
Laurent solution. Then, as a formal series in t, Ik (t) = I'l((o) + O(t)

and Ag(t) = Al((o) + O(t) fork € Z\ {n}. Also

M(t) = 1 (r, - a2 A<°))+1r(‘1)+0(1)
" B a_(an_1 — any1)°t? -1 niTn-t t " 7
_ 8nt18n-1 © 2 A@ Y, 1A
M) = s e (ri2 /a2 — Al ) + 2409 + o),

where I'E,_l) and Aﬁ_l) are both linear combinations of '), and

n+l
A
nt1-



Step 4: Parameter restriction (self-dual case)

In the self-dual case, recall that 'y (X) = Mk (Xn_nN; - - -, Xnan)- SOme
very tricky fishing leads to:
Mnon-1 an-2N-1,---,8n-1 =1
Mon—2 An-_2N-2,---,8n-2
Fn-N An—2N,---,8n—2,8_
Mh—N+1 An—2N+1,---;8n-2,8—, 84
MhoNy2 An_2N42;---;8n_2,at,8n 2
M1 An-N-1,---;8n-2,8+,8n42,--,8nfN-1
Mht1 | @n-N+1,---58n-2,84,8n42, - - -, BNy ARpNEL
Mn An-N-1;--->8n-2,8%,8n42,- -, AntN+1
Mni2 An-N+2;---s8n—2,8+, 8042, -, AnfN42




Step 5: Formal inverse function theorem
The equations

xk(t) = ak+O() k_n—2N,...,n—2
Xooa(t) = 14 R xpt

can be inverted, as formal power series, into

() = oag k=n—-2N,....n—2



Final result: Singularity confinement

Theorem
In the self-dual case, there exist formal Laurent solutions to the
(2N + 1)-step recursion relations 'y = 0, depending rationally on

2N free parameters ap_on, - .., an_2 and A, namely

XA a) = > x (A k <n-—2N

ieN
Xk (A, ) = o n—2N<k<n-1
xn(/\,a) = A Y XA
ieEN )
Xnr1( A o) = =1+ an—i-l A
ieN )
Xx(Aa@) = —1+ > x (@) n+1<k

ieN



