Singularity confinement for a class of recursion relations

Joint work with Mark Adler and Pierre van Moerbeke

Pol Vanhaecke

Université de Poitiers

Luminy, December 1, 2006

Unitary integrals & combinatorics

Object of interest:

$$au_n(t,s) = \int_{U(n)} \exp\left(\sum_{j=1}^N \mathrm{T} r(t_j M^j - s_j M^{-j})\right) dM$$

- ▶ *U*(*n*) unitary group
- dM Haar measure
- ▶ t_i, s_i "time variables"

Basic examples:

$$au_n(t) = \int_{U(n)} \mathrm{e}^{t \, \mathrm{Tr}(M+M^{-1})} \, dM$$
 $au_n(t) = \int_{U(n)} \mathrm{e}^{t \, \mathrm{Tr}(M^2+M^{-2})} \, dM$

$$\int_{U(n)} e^{t \operatorname{Tr}(M+M^{-1})} dM = \sum_{k=0}^{\infty} \frac{t^{2k}}{k!} P_k(\pi \in S_k \mid \ell(\pi) \leq n)$$

- ▶ S_k permutations of $\{1, 2, ..., k\}$
- $lacktriangleright \ell(\pi)$ length of the longest increasing subsequence of π

$$\int_{U(n)} e^{t \operatorname{Tr}(M+M^{-1})} dM = \sum_{k=0}^{\infty} \frac{t^{2k}}{k!} P_k(\pi \in S_k \mid \ell(\pi) \leq n)$$

- \triangleright S_k permutations of $\{1, 2, \dots, k\}$
- ▶ $\ell(\pi)$ length of the longest increasing subsequence of π

$$\int_{U(n)} e^{t \operatorname{Tr}(M+M^{-1})} dM = \sum_{k=0}^{\infty} \frac{t^{2k}}{k!} P_k(\pi \in \mathcal{S}_k \mid \underline{\ell(\pi)} \leq n)$$

- \triangleright S_k permutations of $\{1, 2, \dots, k\}$
- \blacktriangleright $\ell(\pi)$ length of the longest increasing subsequence of π
 - 3 6 5 2 7 8 9 4 1

$$\int_{U(n)} e^{t \operatorname{Tr}(M+M^{-1})} dM = \sum_{k=0}^{\infty} \frac{t^{2k}}{k!} \frac{P_k}{k!} (\pi \in S_k \mid \ell(\pi) \leq n)$$

- ▶ S_k permutations of $\{1, 2, ..., k\}$
- \blacktriangleright $\ell(\pi)$ length of the longest increasing subsequence of π
- \triangleright P_k uniform probability on S_k

$$\int_{U(n)} e^{t \operatorname{Tr}(M+M^{-1})} dM = \sum_{k=0}^{\infty} \frac{t^{2k}}{k!} P_k(\pi \in S_k \mid \ell(\pi) \leq n)$$

- ▶ S_k permutations of $\{1, 2, ..., k\}$
- \blacktriangleright $\ell(\pi)$ length of the longest increasing subsequence of π
- \triangleright P_k uniform probability on S_k

$$P_2(\pi \in S_2 \mid \ell(\pi) \leq 1) = \frac{1}{2}; P_2(\pi \in S_2 \mid \ell(\pi) \leq 2) = 1.$$

$$\int_{U(n)} e^{t \operatorname{Tr}(M+M^{-1})} dM = \sum_{k=0}^{\infty} \frac{t^{2k}}{k!} P_k(\pi \in S_k \mid \ell(\pi) \leq n)$$

- \triangleright S_k permutations of $\{1, 2, \dots, k\}$
- \blacktriangleright $\ell(\pi)$ length of the longest increasing subsequence of π
- \triangleright P_k uniform probability on S_k

$$P_3(\pi \in S_3 \mid \ell(\pi) \leq 1) = \frac{1}{6}; P_3(\pi \in S_3 \mid \ell(\pi) \leq 2) = \frac{5}{6}.$$

Example 2: odd permutations

Rains (1998); Tracy-Widom (1999)

$$\int_{U(n)} \mathrm{e}^{s \, \mathrm{Tr}(M^2 + M^{-2})} \, dM = \sum_{k=0}^{\infty} \frac{(\sqrt{2} \, \mathrm{s})^{2k}}{k!} P_{2k}(\pi \in S_{2k}^{odd} \mid \ell(\pi) \leq n)$$

- 1. S_{2k}^{odd} permutations σ of $\{-k, \ldots, -1, 1, \ldots, k\}$ with $\sigma(-i) = -\sigma(i)$
- 2. P_{2k} uniform probability on S_{2k}^{odd}
- 3. $\ell(\pi)$ length of the longest increasing subsequence of π

Example 2: odd permutations

Rains (1998); Tracy-Widom (1999)

$$\int_{U(n)} e^{s \operatorname{Tr}(M^2 + M^{-2})} \, dM = \sum_{k=0}^{\infty} \frac{(\sqrt{2}s)^{2k}}{k!} P_{2k}(\pi \in S^{odd}_{2k} \mid \ell(\pi) \leq n)$$

- 1. S_{2k}^{odd} permutations σ of $\{-k, \ldots, -1, 1, \ldots, k\}$ with $\sigma(-i) = -\sigma(i)$
- 2. P_{2k} uniform probability on S_{2k}^{odd}
- 3. $\ell(\pi)$ length of the longest increasing subsequence of π
- 4. In the case of

$$S_{2k+1}^{odd}$$
 = odd permutations of $\{-k, \ldots, -1, 0, 1, \ldots, k\}$

the unitary integral involves

$$e^{t \operatorname{Tr}(M+M^{-1}) \pm s \operatorname{Tr}(M^2+M^{-2})}$$

Unitary integrals & integrable systems

$$au_n(t,s) = \int_{U(n)} \exp\left(\sum_{j=1}^N \mathrm{T} r(t_j M^j - s_j M^{-j})\right) dM$$

- an inner product on functions on the circle
- ⇒ (bi-)orthogonal polynomials
- ⇒ an integrable system ⊂ 2-Toda lattice
- recursion relations

Unitary integrals & integrable systems

$$au_n(t,s) = \int_{U(n)} \exp\left(\sum_{j=1}^N \mathrm{T}r(t_j M^j - s_j M^{-j})\right) dM$$

an inner product on functions on the circle

$$\langle f, g \rangle_{s,t} = \int_{\mathbb{S}^1} \frac{dz}{2\pi i z} f(z) g(z^{-1}) \exp\left(\sum_{j=1}^N (t_j z^j - s_j z^{-j})\right) dz$$

$$\tau_n(t, s) = \det\left(\left\langle z^k, z^l \right\rangle_{s,t}\right)_{0 < k, l < n-1}$$

- → (bi-)orthogonal polynomials
- ⇒ an integrable system ⊂ 2-Toda lattice
- recursion relations

Unitary integrals & integrable systems

$$au_n(t,s) = \int_{U(n)} \exp\left(\sum_{j=1}^N \mathrm{T} r(t_j M^j - s_j M^{-j})\right) dM$$

⇒ an inner product on functions on the circle

$$\langle f, g \rangle_{s,t} = \int_{\mathbb{S}^1} \frac{dz}{2\pi i z} f(z) g(z^{-1}) \exp\left(\sum_{j=1}^N (t_j z^j - s_j z^{-j})\right) dz$$

$$\tau_n(t, s) = \det\left(\left\langle z^k, z^l \right\rangle_{s,t}\right)_{0 \le k, l \le n-1}$$

 \implies (bi-)orthogonal polynomials $p_n^{(1)}(t, s; z), p_n^{(2)}(t, s; z)$

$$\left\langle p_n^{(1)}, p_m^{(2)} \right\rangle = \delta_{n,m} \frac{\tau_{n+1}(t,s)}{\tau_n(t,s)}$$

 \implies an integrable system \subset 2-Toda lattice

→ recursion relations

The Toeplitz lattice

The constant coefficients of the bi-orthogonal polynomials

$$x_n(t,s) := p_n^{(1)}(t,s;0)$$
 $y_n(t,s) := p_n^{(2)}(t,s;0)$

satisfy for i = 1, ..., N the differential equations

$$\frac{dx_k}{dt_i} = (1 - x_k y_k) \frac{\partial H_i^{(1)}}{\partial y_k}, \qquad \frac{dy_k}{dt_i} = -(1 - x_k y_k) \frac{\partial H_i^{(1)}}{\partial x_k}$$

and

$$\frac{dx_k}{ds_i} = (1 - x_k y_k) \frac{\partial H_i^{(2)}}{\partial y_k}, \qquad \frac{dy_k}{ds_i} = -(1 - x_k y_k) \frac{\partial H_i^{(2)}}{\partial x_k}$$

The Toeplitz lattice

The constant coefficients of the bi-orthogonal polynomials

$$x_n(t,s) := p_n^{(1)}(t,s;0)$$
 $y_n(t,s) := p_n^{(2)}(t,s;0)$

satisfy for i = 1, ..., N the differential equations

$$\frac{dx_k}{dt_i} = (1 - x_k y_k) \frac{\partial H_i^{(1)}}{\partial y_k}, \qquad \frac{dy_k}{dt_i} = -(1 - x_k y_k) \frac{\partial H_i^{(1)}}{\partial x_k}$$

and

$$\frac{dx_k}{ds_i} = (1 - x_k y_k) \frac{\partial H_i^{(2)}}{\partial y_k}, \qquad \frac{dy_k}{ds_i} = -(1 - x_k y_k) \frac{\partial H_i^{(2)}}{\partial x_k}$$

- ▶ almost standard Poisson structure $\{x_k, y_l\} = (1 x_k y_l)\delta_{kl}$
- ▶ all $H_i^{(k)}$ and $H_i^{(l)}$ are in involution, $\{H_i^{(l)}, H_i^{(l)}\} = 0$
- $H_i^{(1)} = -\frac{1}{i} \operatorname{Tr} L^i \text{ and } H_i^{(2)} = -\frac{1}{i} \operatorname{Tr} M^i$

The Toeplitz matrices

$$L = \begin{pmatrix} -x_1y_0 & 1 - x_1y_1 & 0 & 0 \\ -x_2y_0 & -x_2y_1 & 1 - x_2y_2 & 0 \\ -x_3y_0 & -x_3y_1 & -x_3y_2 & 1 - x_3y_3 \\ -x_4y_0 & -x_4y_1 & -x_4y_2 & -x_4y_3 \\ & & & \ddots \end{pmatrix}$$

$$M = \begin{pmatrix} -x_0y_1 & -x_0y_2 & -x_0y_3 & -x_0y_4 \\ 1 - x_1y_1 & -x_1y_2 & -x_1y_3 & -x_1y_4 \\ 0 & 1 - x_2y_2 & -x_2y_3 & -x_2y_4 \\ 0 & 0 & 1 - x_3y_3 & -x_3y_4 \end{pmatrix}.$$

$$\operatorname{Tr} L = -\sum_{i=0}^{\infty} x_{i+1} y_i, \qquad \operatorname{Tr} M = -\sum_{i=0}^{\infty} x_i y_{i+1}.$$

The first Toeplitz vector field(s)

$$\begin{array}{lll} \frac{dx_k}{dt_1} &=& (1-x_ky_k)x_{k+1} & \frac{dy_k}{dt_1} &=& -(1-x_ky_k)y_{k-1} \\ \frac{dx_k}{ds_1} &=& (1-x_ky_k)x_{k-1} & \frac{dy_k}{ds_1} &=& -(1-x_ky_k)y_{k+1} \\ \\ \text{duality:} & x_i \leftrightarrow y_i \quad L \leftrightarrow M^T \quad \{\cdot\,,\cdot\} \leftrightarrow -\{\cdot\,,\cdot\} \quad s_i \leftrightarrow -t_i \\ \\ \text{self-dual:} & x_i = y_i \quad L = M^T \quad \{\cdot\,,\cdot\} =? \quad s_i = -t_i \end{array}$$

The first Toeplitz vector field(s)

$$\frac{dx_k}{dt_1} = (1 - x_k y_k) x_{k+1} \qquad \frac{dy_k}{dt_1} = -(1 - x_k y_k) y_{k-1}
\frac{dx_k}{ds_1} = (1 - x_k y_k) x_{k-1} \qquad \frac{dy_k}{ds_1} = -(1 - x_k y_k) y_{k+1}$$

duality:
$$x_i \leftrightarrow y_i \quad L \leftrightarrow M^T \quad \{\cdot, \cdot\} \leftrightarrow -\{\cdot, \cdot\} \quad s_i \leftrightarrow -t_i$$

self-dual: $x_i = y_i \quad L = M^T \quad \{\cdot, \cdot\} = ? \quad s_i = -t_i$

The first self-dual Toeplitz vector field

$$\frac{dx_k}{dt} = (1 - x_k^2)(x_{k+1} - x_{k-1})$$

Similar to, but different from, the Kac-van Moerbeke lattice

$$\frac{dx_k}{dt} = x_k(x_{k+1} - x_{k-1})$$

 $(x_k)_{k\in \mathbb{N}}$ and $(y_k)_{k\in \mathbb{N}}$ also satisfy a recursion relation $\Gamma_k=\Delta_k=0$ $(k=1,2,\ldots)$. In the self-dual case:

$$\Gamma_k = kx_k - \frac{1 - x_k^2}{x_k} \sum_{i=1}^{N} it_i \left(L_{k+1,k+1}^i + L_{k,k}^i - 2L_{k+1,k}^{i-1} \right)$$

 $(x_k)_{k\in \mathbb{N}}$ and $(y_k)_{k\in \mathbb{N}}$ also satisfy a recursion relation $\Gamma_k=\Delta_k=0$ $(k=1,2,\ldots)$. In the self-dual case:

$$\Gamma_{k} = kx_{k} - \frac{1 - x_{k}^{2}}{x_{k}} \sum_{i=1}^{N} it_{i} \left(L_{k+1,k+1}^{i} + L_{k,k}^{i} - 2L_{k+1,k}^{i-1} \right)$$

$$L = \begin{pmatrix} -x_{1}x_{0} & 1 - x_{1}^{2} & 0 & 0 \\ -x_{2}x_{0} & -x_{2}x_{1} & 1 - x_{2}^{2} & 0 \\ -x_{3}x_{0} & -x_{3}x_{1} & -x_{3}x_{2} & 1 - x_{3}^{2} \\ -x_{4}x_{0} & -x_{4}x_{1} & -x_{4}x_{2} & -x_{4}x_{3} \end{pmatrix}$$

$$\vdots$$

 $(x_k)_{k\in\mathbb{N}}$ and $(y_k)_{k\in\mathbb{N}}$ also satisfy a recursion relation $\Gamma_k=\Delta_k=0$ $(k=1,2,\ldots)$. In the self-dual case:

$$\Gamma_k = kx_k - \frac{1 - x_k^2}{x_k} \sum_{i=1}^N it_i \left(L_{k+1,k+1}^i + L_{k,k}^i - 2L_{k+1,k}^{i-1} \right)$$

- ightharpoonup is a polynomial in $x_{k-N}, x_{k-N+1}, \dots, x_k, \dots, x_{k+N}$ (only!)
- ightharpoonup Γ_k is of degree 1 in x_{k+N}
- ▶ (2N + 1)-step recursion relation $x_n = F_n(x_{n-1}, ..., x_{n-2N})$

 $(x_k)_{k\in\mathbb{N}}$ and $(y_k)_{k\in\mathbb{N}}$ also satisfy a recursion relation $\Gamma_k=\Delta_k=0$ $(k=1,2,\ldots)$. In the self-dual case:

$$\Gamma_{k} = kx_{k} - \frac{1 - x_{k}^{2}}{x_{k}} \sum_{i=1}^{N} it_{i} \left(L_{k+1,k+1}^{i} + L_{k,k}^{i} - 2L_{k+1,k}^{i-1} \right)$$

- $ightharpoonup \Gamma_k$ is a polynomial in $x_{k-N}, x_{k-N+1}, \dots, x_k, \dots, x_{k+N}$ (only!)
- ightharpoonup Γ_k is of degree 1 in x_{k+N}
- ▶ (2N + 1)-step recursion relation $x_n = F_n(x_{n-1}, \dots, x_{n-2N})$

Example (Borodin, N = 1):

$$kx_k + t(1-x_k^2)(\underline{x_{k+1}} + x_{k-1}) = 0$$

 $(x_k)_{k\in \mathbb{N}}$ and $(y_k)_{k\in \mathbb{N}}$ also satisfy a recursion relation $\Gamma_k=\Delta_k=0$ $(k=1,2,\ldots)$. In the self-dual case:

$$\Gamma_{k} = kx_{k} - \frac{1 - x_{k}^{2}}{x_{k}} \sum_{i=1}^{N} it_{i} \left(L_{k+1,k+1}^{i} + L_{k,k}^{i} - 2L_{k+1,k}^{i-1} \right)$$

- $ightharpoonup \Gamma_k$ is a polynomial in $x_{k-N}, x_{k-N+1}, \dots, x_k, \dots, x_{k+N}$ (only!)
- ightharpoonup Γ_k is of degree 1 in x_{k+N}
- ▶ (2N + 1)-step recursion relation $x_n = F_n(x_{n-1}, \dots, x_{n-2N})$

Example (Borodin, N = 1):

$$kx_k + t(1 - x_k^2)(x_{k+1} + x_{k-1}) = 0$$

Example (Adler-van Moerbeke, N = 2, $v_i := 1 - x_i^2$):

$$kx_k + tv_k(x_{k+1} + x_{k-1}) + 2sv_k(\underline{x_{k+2}}v_{k+1} + x_{k-2}v_{k-1} - x_k(x_{k+1} + x_{k-1})^2) = 0$$

Main result

Theorem (Adler, van Moerbeke and V.)

The recursion relations $\Gamma_k = \Delta_k = 0$ have the singularity confinement property (in its strongest form).

Main result

Theorem (Adler, van Moerbeke and V.)

The recursion relations $\Gamma_k = \Delta_k = 0$ have the singularity confinement property (in its strongest form).

Singularity confinement:

- weak form: there exist formal Laurent solutions $(x_k(\epsilon))_{k\in\mathbb{N}}$ that only blow up for a few k
- ▶ stronger form: such a solution exists, depending on (2N + 1) 1 = 2N free parameters
- strongest form: for every k there exists such a solution with at least x_k blowing up (and depending on 2N free parameters)

Main result

Theorem (Adler, van Moerbeke and V.)

The recursion relations $\Gamma_k = \Delta_k = 0$ have the singularity confinement property (in its strongest form).

Singularity confinement:

- weak form: there exist formal Laurent solutions $(x_k(\epsilon))_{k\in\mathbb{N}}$ that only blow up for a few k
- ▶ stronger form: such a solution exists, depending on (2N + 1) 1 = 2N free parameters
- strongest form: for every k there exists such a solution with at least x_k blowing up (and depending on 2N free parameters)

In a sense: discrete version of the Kowalevski-Painlevé property

- Singularity confinement and integrability seem to go hand in hand ...
- but the precise relation is not properly undertood

- Singularity confinement and integrability seem to go hand in hand ...
- but the precise relation is not properly undertood

For N=1

$$kx_k + t(1 - x_k^2)(x_{k+1} + x_{k-1}) = 0$$

invariant (first shown by Borodin):

$$\Phi_n(y,z) = (1-y^2)(1-z^2) - \frac{n}{t}yz$$

invariance:

$$\Phi_n(x_{n+1},x_n)=\Phi_n(x_n,x_{n-1})$$

- Singularity confinement and integrability seem to go hand in hand ...
- ... but the precise relation is not properly undertood

For N=2

$$kx_k + tv_k(x_{k+1} + x_{k-1}) + 2sv_k(\underline{x_{k+2}}v_{k+1} + x_{k-2}v_{k-1} - x_k(x_{k+1} + x_{k-1})^2) = 0$$

invariant:

$$\Phi_n(x, y, z, u) = nyz - (1 - y^2)(1 - z^2)(t + 2s(x(u - y) - z(u + y)))$$
invariance:

$$\Phi_n(x_{n+3}, x_{n+2}, x_{n+1}, x_n) = \Phi_n(x_{n+2}, x_{n+1}, x_n, x_{n-1})$$

- Singularity confinement and integrability seem to go hand in hand ...
- but the precise relation is not properly undertood

For N=2

$$kx_k + tv_k(x_{k+1} + x_{k-1}) + 2sv_k(\underline{x_{k+2}}v_{k+1} + x_{k-2}v_{k-1} - x_k(x_{k+1} + x_{k-1})^2) = 0$$

invariant:

$$\Phi_n(x,y,z,u) = nyz - (1-y^2)(1-z^2)(t+2s(x(u-y)-z(u+y)))$$

invariance:

$$\Phi_n(x_{n+3},x_{n+2},x_{n+1},x_n) = \Phi_n(x_{n+2},x_{n+1},x_n,x_{n-1})$$

Conjecture: there is for any N an invariant (self-dual case and general case)

The theorem is in support of this conjecture

The theorem: outline of the proof

Theorem

The recursion relations $\Gamma_k = \Delta_k = 0$ satisfy the singularity confinement property (in its strongest form).

Setup:

- 1. bi-infinite Toeplitz lattice (semi-infinite: $x_i = y_i = \delta_{i0}$ for $i \le 0$)
- 2. L and M becomes bi-infinite matrices

general Toeplitz lattice

$$\begin{cases} \dot{x}_k = (1 - x_k y_k)(x_{k+1} - x_{k-1}) \\ \dot{y}_k = (1 - x_k y_k)(y_{k+1} - y_{k-1}) \end{cases} \quad k \in \mathbf{Z}$$

recursion relations $\Gamma_k = \Delta_k = 0$, $k \in \mathbf{Z}$

self-dual Toeplitz lattice

$$\dot{x}_k = (1 - x_k^2)(x_{k+1} - x_{k-1}) \qquad k \in \mathbf{Z}$$

recursion relations
$$\Gamma_k = 0$$
, $k \in \mathbf{Z}$.

The theorem: outline of the proof

Theorem

The recursion relations $\Gamma_k = \Delta_k = 0$ satisfy the singularity confinement property (in its strongest form).

Setup:

- 1. bi-infinite Toeplitz lattice (semi-infinite: $x_i = y_i = \delta_{i0}$ for $i \le 0$)
- 2. L and M becomes bi-infinite matrices

idea: construct singular solutions for the recursion relations from principal balances for the Toeplitz lattice principal balances: formal Laurent solutions depending on *many* free parameters

Step 1: Invariant manifold

Theorem

Let \mathcal{M} be the submanifold, defined by $\Gamma_k(x,y) = \Delta_k(x,y) = 0$. Then \mathcal{M} is an invariant submanifold for the (first) Toeplitz flow(s) of the Toeplitz lattice.

Proof.

The recursion relations satisfy differential equations.

General case:

$$\dot{\Gamma}_{k} = (1 - x_{k} y_{k}) (\Gamma_{k+1} - \Gamma_{k-1}) + (x_{k+1} - x_{k-1}) (x_{k} \Delta_{k} - y_{k} \Gamma_{k}),
\dot{\Delta}_{k} = (1 - x_{k} y_{k}) (\Delta_{k+1} - \Delta_{k-1}) - (y_{k+1} - y_{k-1}) (x_{k} \Delta_{k} - y_{k} \Gamma_{k}).$$

Self-dual case:
$$\dot{\Gamma}_k = (1 - x_k^2)(\Gamma_{k+1} - \Gamma_{k-1})$$
.

Corollary : every formal power series solution to Toeplitz that starts out on $\mathcal M$ stays on $\mathcal M$.

Step 2: Painlevé analysis for the Toeplitz lattice

A few extra features wrt standard Painlevé analysis

- not weight-homogeneous
- infinite number of variables (? how many free parameters)
- existence of all terms, rather than convergence

Step 2: Painlevé analysis for the Toeplitz lattice

$$\frac{dx_k}{dt} = (1 - x_k^2)(x_{k+1} - x_{k-1}) \qquad k \in \mathbf{Z}$$

Theorem

For any $n \in \mathbf{Z}$, the self-dual Toeplitz lattice admits a formal Laurent solution x(t), with only $x_n(t)$ having a pole, given by

$$\begin{aligned} x_k(t) &=& 1\left(a_k+(1-a_k^2)(a_{k+1}-a_{k-1})t+O(t^2)\right), \quad |k-n| \geq 2, \\ x_{n\pm 1}(t) &=& 1\left(\mp 1+4a_\pm t+4a_\pm(2a_{n\pm 2}\mp(a_-+a_+))t^2+O(t^3)\right), \\ x_n(t) &=& -\frac{1}{2t}\left(1+(a_+-a_-)t+\frac{1}{3}((a_+-a_-)^2+4(a_+a_{n+2}-a_-a_{n-2}+1-2a_+a_-))t^2+O(t^3)\right), \end{aligned}$$

where a_+, a_- and all a_i , with $i \in \mathbf{Z} \setminus \{n-1, n, n+1\}$ are arbitrary free parameters; also, $1^2 = 1$.

Step 2': Painlevé analysis for the Toeplitz lattice

For the general Toeplitz lattice:

$$\begin{array}{lcl} \dot{x}_k & = & (1-x_ky_k)(x_{k+1}-x_{k-1}) \\ \dot{y}_k & = & (1-x_ky_k)(y_{k+1}-y_{k-1}) \end{array} \qquad k \in \mathbf{Z}$$

Features

- not weight-homogeneous
- ▶ $2\infty 1 \neq 2(\infty 1)$ free parameters
- \triangleright x_n and y_n have a pole at the same time (n arbitrary)

Step 3: Tangency of the Laurent solutions

In the self-dual case, recall $\dot{\Gamma}_k = (1 - x_k^2)(\Gamma_{k+1} - \Gamma_{k-1})$.

Theorem

Let $\Gamma(t) := \Gamma(x(t))$, where x(t) is the above formal Laurent solution. Then, as formal series in t,

$$\Gamma_k(t) = \Gamma_k^{(0)} + O(t), \qquad k \in \mathbf{Z} \setminus \{n\},
\Gamma_n(t) = \frac{1}{4t} (\Gamma_{n+1}^{(0)} - \Gamma_{n-1}^{(0)}) + \Gamma_n^{(0)} + O(t).$$

Moreover, $\Gamma_k(t)=0$ as a formal series in t, for all $k\in \mathbf{Z}$, as soon as x(t) is such that

$$\Gamma_k^{(0)} = 0$$
, for all $k \in \mathbf{Z}$.

Step 3': Tangency of the Laurent solutions

Theorem

Let $\Gamma(t):=\Gamma(x(t),y(t))$, where (x(t),y(t)) is the above formal Laurent solution. Then, as a formal series in t, $\Gamma_k(t)=\Gamma_k^{(0)}+O(t)$ and $\Delta_k(t)=\Delta_k^{(0)}+O(t)$ for $k\in\mathbf{Z}\setminus\{n\}$. Also

$$\Gamma_{n}(t) = \frac{a_{n+1}^{2}}{a_{-}(a_{n-1} - a_{n+1})^{2}t^{2}} \left(\Gamma_{n-1}^{(0)} - a_{n-1}^{2}\Delta_{n-1}^{(0)}\right) + \frac{1}{t}\Gamma_{n}^{(-1)} + O(1),$$

$$\Delta_{n}(t) = \frac{a_{n+1}a_{n-1}}{a_{-}(a_{n-1} - a_{n+1})^{2}t^{2}} \left(\Gamma_{n-1}^{(0)}/a_{n-1}^{2} - \Delta_{n-1}^{(0)}\right) + \frac{1}{t}\Delta_{n}^{(-1)} + O(1),$$

where $\Gamma_n^{(-1)}$ and $\Delta_n^{(-1)}$ are both linear combinations of $\Gamma_{n\pm 1}^{(0)}$ and $\Delta_{n+1}^{(0)}$.

Step 4: Parameter restriction (self-dual case)

In the self-dual case, recall that $\Gamma_k(x) = \Gamma_k(x_{n-N}, \dots, x_{n+N})$. Some very tricky fishing leads to:

Γ_{n-N-1}	$\underline{a_{n-2N-1}}, \dots, a_{n-1} = 1$
Γ_{n-N-2}	$a_{n-2N-2},\ldots,a_{n-2}$
	 .
:	:
Γ_{n-N}	$a_{n-2N},\ldots,a_{n-2},\underline{a_{-}}$
Γ_{n-N+1}	$a_{n-2N+1},\ldots,a_{n-2},a_{-},\underline{a_{+}}$
Γ_{n-N+2}	$a_{n-2N+2},\ldots,a_{n-2},a_{\pm},\underline{a_{n+2}}$
:	:
•	•
Γ_{n-1}	$a_{n-N-1}, \dots, a_{n-2}, a_{\pm}, a_{n+2}, \dots, \underline{a_{n+N-1}}$
Γ_{n+1}	$a_{n-N+1},\ldots,a_{n-2},a_{\pm},a_{n+2},\ldots,\underline{a_{n+N}},\overline{a_{n+N+1}}$
Γ_n	$a_{n-N-1}, \ldots, a_{n-2}, a_{\pm}, a_{n+2}, \ldots, \underline{a_{n+N+1}}$
Γ_{n+2}	$a_{n-N+2},\ldots,a_{n-2},a_{\pm},a_{n+2},\ldots,\overline{a_{n+N+2}}$
:	÷

Step 5: Formal inverse function theorem

The equations

$$\begin{cases} x_k(t) = a_k + O(t) & k = n - 2N, \dots, n - 2 \\ x_{n-1}(t) = 1 + \sum_{i=1}^{\infty} x_{n-1}^{(i)} t^i \end{cases}$$

can be inverted, as formal power series, into

$$\begin{cases} x_k(t) = \alpha_k & k = n - 2N, \dots, n - 2 \\ x_{n-1}(t) = 1 + \lambda \end{cases}$$

Final result: Singularity confinement

Theorem

In the self-dual case, there exist formal Laurent solutions to the (2N+1)-step recursion relations $\Gamma_k=0$, depending rationally on 2N free parameters $\alpha_{n-2N},\ldots,\alpha_{n-2}$ and λ , namely

$$x_{k}(\lambda, \alpha) = \sum_{i \in \mathbf{N}} x_{k}^{(i)}(\alpha) \lambda^{i} \qquad k < n - 2N$$

$$x_{k}(\lambda, \alpha) = \alpha_{k} \qquad n - 2N \le k < n - 1$$

$$x_{n-1}(\lambda, \alpha) = 1 + \lambda$$

$$x_{n}(\lambda, \alpha) = \lambda^{-1} \sum_{i \in \mathbf{N}} x_{n}^{(i)}(\alpha) \lambda^{i}$$

$$x_{n+1}(\lambda, \alpha) = -1 + \sum_{i \in \mathbf{N}} x_{n+1}^{(i)}(\alpha) \lambda^{i}$$

$$x_{k}(\lambda, \alpha) = -1 + \sum_{i \in \mathbf{N}} x_{k}^{(i)}(\alpha) \lambda^{i} \qquad n + 1 < k$$