On the dynamics of the triple pendulum: non-integrability,

topological properties of the phase space.

VI.N.Salnikov*
Ecole normale superieure de Lyon
46, allee d’Italie
69364 Lyon cedex 07 France

(Dated: November, 2006)

In this paper the planar motion of a multiple pendulum is studied. A multiple
pendulum is a system of mass points with constraints given by second degree poly-
nomial equations. Employing the reduction of the problem (Routh transform), some
topological properties (dimensions of the intersection of the general manifolds, and
foliation of the phase space, generated by the Routh transform) and direct numerical
modeling the non-integrability of the problem has been shown and also the chaotisa-
tion of the dynamics has been observed. Special attention is given to the connection
of dynamics of the system with constraints to the behavior of the geodesics on the

three-dimensional torus. It results in the presence of returnability geodesics.

I. INTRODUCTION.

In this paper the planar motion of the multiple pendulum is studied. The triple pendulum
is the system of four mass points, connected by weightless inextensible rods in the case of

the first mass point being fixed. This conditions can be cast in the form:
(75— 7 1)>=const i=1,2,3

where 7; corresponds to i-th mass point, the point 7 is fixed. Or in more general case the

conditions may be given by a second degree polynomial equations.
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Let us note that the case of double pendulum has been carefully studied. Particularly,
the free motion of the planar double pendulum is a classical system described in various
textbooks. It is proved to be completely integrable (See for example [8]), as there exist
the energy and the third component of angular momentum integrals. But for this system
in the gravity field the non-integrability has been shown, and the chaotic motion can be
observed. The problem of control has also been studied for this system [2]. It turns out
that the control of only one degree of freedom of two is enough to set the system in the
upright vertical position. And it is possible to construct an algorithm of control to observe

the motion on the given curve with some conditions.

At the same time the dynamics of the triple pendulum is not that well studied, although
it is very interesting for different applications. As it will be shown in this paper the system
is non-integrable and possesses the irregular behavior. Furthermore the employed methods
may be useful for studying the dynamics of the multiple pendulum which is even one of the
models of a polymer molecule. The idea of describing the interaction of atoms with the help
of Lagrange mechanics can be the continuance of the harmonic model employed in ([3]) for

studying thermodynamical properties of the system or may in some sense contrast with it.

Thus, we consider a mechanical system of three mass points, the position of it is described
by radius-vectors 7; and velocities ¥; (¢ = 1,2, 3) of the points. The motion is restricted by

the constraints - the conditions of the form:

=) =05 =0 (1)
o= -7 ) - =0 i=23

As is know ([1]), there are at least two approaches to the analysis of the systems of the
kind: the constraints can be resolved (i.e. we can choose new variables instead of 7; and ;,
that consider the constraints in explicit form) or we can employ Lagrange multipliers (for
details see section III). The first method turns out to be more convenient for analytical
studies of the properties of the phase space of the system, while the second one permits
to obtain the equations of motion in explicit form in the initial coordinates and may be
employed for numerical modeling of the dynamics of the system. We should note that in
the first case the connection between the problem of dynamics if the system, coming from

mechanics, and the problem of behavior of geodesics on the corresponding manifold becomes



obvious. At that some non-trivial but not that artificial metric is generated on the manifold.
This consideration will be extremely useful for us in studying the connection between the

non-integrability and topological properties of the system.

II. TOPOLOGICAL PROPERTIES OF THE PHASE SPACE OF THE SYSTEM.

The considered problem permits the convenient description in terms of generalized coor-
dinates. The angles «; between the units of the pendulum and some fixed straight line on
the plane can be used for this purpose (See fig. 1) For the description of the position of the

pendulum it is sufficient to set three angles.

FIG. 1: The triple pendulum. Angle «; parametrization.

The Lagrange function ([1]) in terms of this variables reads

L=FE,—-U= E(Ch, a1, i, (i, O3, ds) =
m
= 5(3[%0:% —+ 2[3(1% =+ 2008((1/2 - a3)l1l2d2d3 —+ lgag +

+411l2008(a/1 - ag)d1d2 -+ 2l1l3008(a1 — Oég)dldg)



While the potential energy of the particles U = 0, as we consider the free motion. The
configuration space in our case is a three dimensional torus T> = S x S! x S*. And the
phase space is the tangent bundle of it 7(T?), which, as is know is the Cartesian product
T? x R® - the 6-dimensional manifold [7]. The Lagrange function corresponds to the metric

on the torus ([4]):

ds® = %(?ﬁda% + 2l5dai + 2cos(ay — )l lpdapdas +

+I5das + 4l1lycos(ay — ap)dagdag + 2lyl3cos(ay — az)daidas)

The Lagrange function explicitly doesn’t depend on time, it means that our systems possesses
the energy integral. Let us note that our system also possesses the cylindrical symmetry:
the Lagrange function is invariant with respect to rotation around the point 7. That is in

the 6-dimensional phase space T(T?) the trajectory belongs to some 4-dimensional manifold.

More efficiently and pictorially the analysis of the topology of the systems trajectory
can be performed with the use of Routh transform. The idea is that the presence of the
angular momentum integral results in the existence of the cyclic variable ([1]). That is, we

can choose new generalized coordinate system in which the Lagrange function reads

L= L(B1, B, Be, o, Bs) (2)
It is sufficient to perform the following coordinate transform
Bi = i1 — i=1,2, (3)
fs = aa
In that case

L= % [(31 + 215 + 15 + 2l1l5(cos Bz + 2 cos B1) + 2l1lzcos(Br + () &+

+ (213 + 15+ 2[1l200352) ﬂf + (lg) ﬁ% + (4[; + 213 + 4111y (cos By + cosBa)+

+20115(cos(B1 + B2))) dlﬁl + (2[?, + 2l1lyc0s By + 21113(cos(B1 + ﬂ2))) dlﬁz +
+ (212 + 2Ly 1ac0562) 52] (4)



From this we can obtain that [33 = &y = const. Now we can introduce the Routh function:

R = % By — L=
s
= % [(312 + 212 + 2 + 2115(cos By + 2 cos By) + 2hlscos(By + ) &3—
— (23 + 1+ 2hacosfps) 57— (B) B2 — (203 + 2Dilacosp) fu o) (5)

When (35 is fixed the function depends on only two variables and its derivatives.

R =R(b, Br, B, Ba; B = const)

Then we can consider R as a new Lagrange function. That is the trajectory in the phase
space belongs to the manifold of dimension 4 (certainly depending on the value of the cyclic
integral 33). Thus we obtain a continuous set of nonintersecting 4-dimensional manifolds
- layers, parameterized by the value of the cyclic integral; at that any trajectory belongs
to one of them. That is the foliation of the phase space with respect to Routh transform.
And as R still doesn’t depend explicitly on time, the system again possesses the ”energy”
integral. That’s why the manifold (let’s name it Mpg), containing the trajectory is actually

three-dimensional.

This foliation is of primary importance in our analysis. let’s consider this fact from
topological point of view. The motion takes place on the 3-dimensional manifold in the 4-
dimensional space. It permits us to study the structure of the manifold Mg by intersecting
it with the planes (of dimension 2) which is very convenient for visualization. Really, the di-
mension of the intersection of the manifolds with dimensions n; and ny in the N-dimensional

space is given by the equation [7]
dim=n;+n, — N

In our case it results in dim = 1, i.e. the finite set of curves.

The ideas discussed above allow us to prove the non-integrability of the problem. In
case of existence of another integral the dimension of Mg would be 2, i.e. the intersection
would be the set of points. The concept is the variant of Poincaré application for the case
of more complicated phase space than usual. The presence of foliation allows to analyze the

geodesics flow and its intersection with the plane.



The presence of curves in the intersection indicates not only the absence of integrability,
but also that the trajectory is rather dense on the manifold. It means that the behavior of

the system is quite irregular, that is the system can be chaotic.

It is worth noting that the numerical investigation of our problem with the resolved con-
straints leads to rather complicated equations and to the needs of employing other methods

for obtaining constructive results.

But before considering this problem let us note that the case of the triple lattice (the
pendulum with the first point being not fixed) from topological point of view is equivalent
to the one investigated above. Really, we can choose the same «; generalized coordinates
and also the values of coordinates of the center of mass of the system. In this case the
system will be invariant with respect to translation along the X and Y axes. That is the

momentum conservation law will be fulfilled. The Lagrange function can be cast in the form
L= £($, ya aq, dla a2, C.V2, a3, 063)

and the Routh transform can be performed. First with respect to x:

oL . . . : . .
Ri= i L =R1(& = const, §, aq, &, o, Gia, i3, (t3)
T
then similarly with respect to y
OR; . . . ) ) .
Ry = Ty — Ry = Ra(& = const, y = const, oy, &1, Q, Ao, i3, At3)
Y

And as described above we can choose angle variables (;:

RQ = RQ(-T/‘ = Con8t7 y = COTLSt, ﬂlv /6.17 ﬂZ) /6'27 /63)

and perform the Routh transform with respect to (33

R = %% —R2 = R(& = const,y = const, 5'3 = const, 31, 5'1, Ba, 52,)

93

That is, the method worked out above is applicable also for the lattice.

III. DYNAMICS OF THE SYSTEM. VISUALIZATION.

Let us now turn to the second way of treating the systems with constraints, more con-

venient for numerical modeling. If we investigate the system of N mass points, described



by radius-vectors 7; and velocities #; (i = 1,...,N), and the motion is restricted by the
conditions

@i (7, -+, 7n) =0, j=1,...,K

In that case, according to [10] the equations read

0 K 0p;
mit; = ——=U(,...,TN) + Pyt 6
il 87“2' (17 7N) ;Jari ()
where ); are Lagrange multipliers. As we consider the free motion of the system
U(r,...,7n) = 0 For our concrete system the equations of motion read:
mfh = /\1771 — )\2(772 — Fl) (7)

mz:f’Q = Ao(7y — T1) — A3(73 — 72)

mai3 = A3(r3 —7%)
Here we denote the doubled Lagrange multipliers as A; just for convenience.

The equations of this form are very convenient for computer simulation using various
algorithms of numerical integration, as we can employ the standard way of reducing the
order of differential equation and cast the system (7) of NV vector differential equations of

second order to the system of 2/V vector equations of the first order, introducing the variables

—

'Uz':_;“i; 221,,N

Their physical meaning is velocities. It is important to note, that Lagrange multipliers are

the functions of coordinates and velocities:
/\i:/\i(T‘l,...TN,’Ul,...’UN) 1,:1,,N

This fact is true for a general system with constraints. For our system it is easy to obtain the
system of equations for \; in an explicit form. We should just subtract the 7 — th equation
from the 7 + 1 — st one, and notice that the conditions of conservation of the constraints

read:

Y =¢1/2=70 =0
Vi =@i)2=(F — 7)) (T —Tisy) =0 i=2,...,N



From these equations we can obtain another condition for the initial data:

Y =7+ = 0 (8)

i = (Fi—771'—1)@2'—.7)1'—1)%-(@—@—1)2 =0 i=2,...,N

From these equations we can easily obtain the left-hand sides of equations (7) and thus

obtain the linear system for the Lagrange multipliers A;.

It is also worth noting that this kind of treating the problem also permits to perform some
algebraic analysis, connected with existence of polynomial first integrals. Having written
the system of equations describing the motion in explicit form, we can notice, that it is
invariant under the similarity transform ([12]), i.e. t = a™'¢, F— 97, o adtMp
That is we can apply Yoshida method, but it results in nonlinear algebraic equations, which
can’t be solved in a general case. So, the only approach to detailed analysis of the system

is the numerical one.

Direct numerical simulations allows us to obtain the pictures like Fig. 2, visually demon-

strating the dynamics of the system.

FIG. 2: Triple pendulum. Dynamics.

To apply the method, worked out in section II it is important to choose the efficient way of
the results visualization. As it has been shown, as ; and 3, (see eq.2) it is possible to take

the difference of corresponding angles «;

61' = 041 — Oy, 1= 1a2a



that is the angles between the units of the pendulum, calculated by the coordinates 7; ;.

The angles «; are taken modulo 27. And the intersecting plane is any coordinate plane of

the space (81, 81, B2, B2).-

FIG. 3: The intersection of the manifold My with the planes (B =1,6 = 1), (5o, 32), (B1, B2),
(ﬂ?aﬁl)

As it can be seen from Fig. 3, there is some region on the manifold My swept by the
trajectory. It means not only non-integrability of the problem, but also its strongly irregular

behavior.

We should also note, that the system possesses the important property of returnability:
the trajectory (as is seen from numerical experiment) passes an infinite number of times
close to the initial point. This fact is interesting both from the point of view of pendulum

dynamics and also for the behavior of geodesics, as it ir the first step to chaotic motion.
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IV. CONCLUSION

Thus, we have investigated the dynamics of the planar triple pendulum, employing two
approaches to the analysis of the problem. One is the direct numerical modeling of the sys-
tem, using Lagrange multipliers in the equations of motion. Another one - is the topological
analysis of the phase space and the reduction of the problem using Routh transform. At
that each of these methods doesn’t give the complete description of properties of the system,

due to the difficulties of direct visualization and full analytical investigation.

The analogy between the mechanical problem of motion and the geometric problem of
behavior of geodesics on the manifold. The non-integrability, showed explicitly for the
mechanical problem, means the possibility of chaotic behavior of geodesics on rather simple

objects, like three-dimensional torus with metric, having rather natural origin.

Methods and results, described in this paper may be useful for studying the multiple
pendulum or multiple lattice, having more applied interest, and also other multidimensional

problems, having analogs in geometry.
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