AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS

Kenneth R. Meyer ${ }^{1}$ Jesús F. Palacián ${ }^{2} \quad$ Patricia Yanguas ${ }^{2}$

$$
{ }^{1} \text { Department of Mathematical Sciences }
$$ University of Cincinnati, Cincinnati, Ohio (USA)

${ }^{2}$ Departamento de Matemática e Informática
Universidad Pública de Navarra, Pamplona, Navarra (Spain)

DYNAMICAL INTEGRABILITY

CIRM (Luminy), 27th November-1st December 2006

Contents

(1) Goal

Contents

(1) Goal

(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results

Contents

(1) Goal

(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results
(3) The Spatial Lunar RTBP
- The Hamiltonian Vector Field
- Normalise and Reduce
- Analysis and Reconstruction

Goal and Method

Goal:

Investigating the existence, stability and bifurcation of periodic solutions and invariant tori to a Hamiltonian vector field which is a small perturbation of a Hamiltonian vector field whose orbits are all periodic.

Method:

By averaging the perturbation over the fibers of the circle bundle one obtains a Hamiltonian system on the reduced (orbit) space of the circle bundle.

We state and prove results which have hypotheses on the reduced system and have conclusions about the full system.

Contents

(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results
(3) The Spatial Lunar RTBP
- The Hamiltonian Vector Field
- Normalise and Reduce
- Analysis and Reconstruction
K.Meyer, J.Palacián, P.Yanguas

The Original Reduction Theorem

Theorem 1 (Reeb, 1952)

- (M, Ω) symplectic manifold of dimension $2 n$;
- $\mathcal{H}_{0}: M \rightarrow \mathbb{R}$ a smooth Hamiltonian, which defines a Hamiltonian vector field $Y_{0}=\left(d \mathcal{H}_{0}\right)^{\#}$ with symplectic flow ϕ_{0}^{t};
- $\mathbb{I} \subset \mathbb{R}$ an interval such that each $h \in \mathbb{I}$ is a regular value of \mathcal{H}_{0};
- $\mathcal{N}_{0}(h)=\mathcal{H}_{0}^{-1}(h)$ is a compact connected circle bundle over a base space $B(h)$ with projection $\pi: \mathcal{N}_{0}(h) \rightarrow B(h)$;
- the vector field Y_{0} is everywhere tangent to the fibers of $\mathcal{N}_{0}(h)$, i.e. all the solutions of Y_{0} in $\mathcal{N}_{0}(h)$ are periodic.

The base space B inherits a symplectic structure ω from (M, Ω), i.e. (B, ω) is a symplectic manifold.

Perturbation Theorem

Theorem 2 (Reeb, 1952)

- ε a small parameter and $\mathcal{H}_{1}: M \rightarrow \mathbb{R}$ is smooth;
- $\mathcal{H}_{\varepsilon}=\mathcal{H}_{0}+\varepsilon \mathcal{H}_{1} ; Y_{\varepsilon}=Y_{0}+\varepsilon Y_{1}=d \mathcal{H}_{\varepsilon}^{\#}$;
- $\mathcal{N}_{\varepsilon}(h)=\mathcal{H}_{\varepsilon}^{-1}(h) ;$
- ϕ_{ε}^{t} the flow defined by Y_{ε};
- the average of \mathcal{H}_{1} is a smooth function on $B(h)$

$$
\overline{\mathcal{H}}=\frac{1}{T} \int_{0}^{T} \mathcal{H}_{1}\left(\phi_{0}^{t}\right) d t
$$

Perturbation Theorem \#2

- If $\overline{\mathcal{H}}$ has a nondegenerate critical point at $\pi(p)=\bar{p} \in B$ with $p \in \mathcal{N}_{0}$, then there are smooth functions $p(\varepsilon)$ and $T(\varepsilon)$ for ε small and the solution of Y_{ε} through $p(\varepsilon)$ is $T(\varepsilon)$-periodic.
- If $\overline{\mathcal{H}}$ is a Morse function then Y_{ε} has at least $\chi(B)$ periodic solutions, where $\chi(B)$ is the Euler-Poincaré characteristic of B.

Sketch of the Proofs

Idea: Construct symplectic coordinates (I, θ, y) valid in a tubular neighbourhood of the periodic solution $\phi_{0}^{t}(p)$ of $Y_{0}(h)$.

- (I, θ) are action-angle variables and $y \in \mathbb{N}$ where \mathbb{N} is an open neighbourhood of the origin in $\mathbb{R}^{2 n-2}$.
- The point p corresponds to $(I, \theta, y)=(0,0,0)$.
- The Hamiltonian is

$$
\mathcal{H}_{\varepsilon}(I, \theta, y)=\mathcal{H}_{0}(I)+\varepsilon \mathcal{H}_{1}(I, \theta, y)=\mathcal{H}_{0}(I)+\varepsilon \overline{\mathcal{H}}(I, y)+O\left(\varepsilon^{2}\right) .
$$

- We make use of the Hamiltonian Flow Box Theorem.

Sketch of the Proofs \#2

- Up to terms of order $O\left(\varepsilon^{2}\right)$ the equations are

$$
\dot{I}=O\left(\varepsilon^{2}\right), \quad \dot{\theta}=2 \pi / T(I)+O\left(\varepsilon^{2}\right), \quad \dot{y}=\varepsilon J \nabla_{y} \overline{\mathcal{H}}(I, y)+O\left(\varepsilon^{2}\right)
$$

- Construct a section map in an energy level $(I=0)$:

$$
P(y)=y+\varepsilon T J \nabla_{y} \overline{\mathcal{H}}(0, y)+O\left(\varepsilon^{2}\right) .
$$

- A fixed point of P leads to a periodic solution: we solve $P(y)=y$.
- As $y=0$ is a nondegenerate critical point and $\partial^{2} \overline{\mathcal{H}} / \partial y^{2}(0,0)$ is nonsingular, we apply the implicit function theorem.

There is a function $\bar{y}(\varepsilon)=O(\varepsilon)$ such that $P(\bar{y}(\varepsilon))=\bar{y}(\varepsilon)$.
This fixed point of P is the initial condition for the periodic solution asserted in the Perturbation Theorem.

Contents

(1) Goal
(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results
(3) The Spatial Lunar RTBP
- The Hamiltonian Vector Field
- Normalise and Reduce
- Analysis and Reconstruction
K.Meyer, J.Palacián, P.Yanguas

Corollary: Estimate on the Number of Critical Points

(Milnor, 1963)

- $\overline{\mathcal{H}}$ a Morse function;
- β_{j} the $j^{\text {th }}$ Betti number of B;
- I_{j} the number of critical points of index j.
(The index of a nondegenerate critical point \bar{p} of $\overline{\mathcal{H}}$ is the dimension of the maximal linear subspace where the Hessian of $\overline{\mathcal{H}}$ at p is negative definite.)

Corollary: Estimate on the Number of Critical Points \#2

Then $I_{j} \geq \beta_{i}$ or better yet

$$
\begin{aligned}
I_{0} & \geq \beta_{0} \\
I_{1}-I_{0} & \geq \beta_{1}-\beta_{0} \\
I_{2}-I_{1}+I_{0} & \geq \beta_{2}-\beta_{1}+\beta_{0} \\
& \cdots \\
I_{k}-I_{k-1}+I_{k+2}-\cdots \pm I_{0} & \geq \beta_{k}-\beta_{k-1}+\cdots \pm \beta_{0} \quad(k<2 n-2) \\
I_{0}-I_{1}+I_{2}-\cdots-I_{2 n-3}+I_{2 n-2} & =\beta_{0}-\beta_{1}+\cdots-\beta_{2 n-3}+\beta_{2 n-2}=\chi(B) .
\end{aligned}
$$

Corollary: Stability

The eigenvalues of

$$
A=J \frac{\partial^{2} \overline{\mathcal{H}}}{\partial y^{2}}(0,0)
$$

are the characteristic exponents of the critical point of \bar{Y} at \bar{p} on B.

If the characteristic exponents of $\bar{Y}(\bar{p})$ are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 n-2}$, the characteristic multipliers of the periodic solution through $p(\varepsilon)$ are:
$1,1,1+\varepsilon \lambda_{1} T+O\left(\varepsilon^{2}\right), 1+\varepsilon \lambda_{2} T+O\left(\varepsilon^{2}\right), \ldots, 1+\varepsilon \lambda_{2 n-2} T+O\left(\varepsilon^{2}\right)$.

Corollary: Stability \#2

Given an autonomous linear Hamiltonian vector field, it is said to be parametrically stable or strongly stable if it is stable and all sufficiently small linear constant coefficient Hamiltonian perturbations of it are stable.

If the matrix A corresponding to the linearisation around an equilibrium point \bar{p} is parametrically stable then the periodic solution through $p(\varepsilon)$ is elliptic.

Contents

(1) Goal
(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results
(3) The Spatial Lunar RTBP
- The Hamiltonian Vector Field
- Normalise and Reduce
- Analysis and Reconstruction

KAM Tori

Let p be as before and let there be symplectic action-angle variables $\left(I_{1}, \ldots, I_{n-1}, \theta_{1}, \ldots \theta_{n-1}\right)$ at \bar{p} in B such that

$$
\overline{\mathcal{H}}=\sum_{k=1}^{n-1} \omega_{k} I_{k}+\frac{1}{2} \sum_{k=1}^{n-1} \sum_{j=1}^{n-1} C_{k j} I_{k} I_{j}+\mathcal{H}^{\#}
$$

where $\omega_{k} \neq 0$ and $\mathcal{H}^{\#}\left(I_{1}, \ldots, I_{n-1}, \theta_{1}, \ldots \theta_{n-1}\right)$ is at least cubic in I_{1}, \ldots, I_{n-1}.
Assume that $\operatorname{det} C_{k j} \neq 0$ and that $d T / d h \neq 0$.
Near the periodic solutions given before there are invariant KAM tori of dimension n.

Weinstein's Theorem

(Weinstein, 1977, 1978)
Let X be a topological space, then the category of X in the sense of Ljusternik-Schnirelmann, cat (X), is the least number of closed sets that are contractible in X and that cover X.

Assume B is simply connected and let $\ell=\operatorname{cat}(B)$ be the Ljusternik-Schnirelmann category of B.

Then, for small ε the flow of Y_{ε} has at least ℓ periodic solutions with periods near T.

There is no nondegeneracy assumption.

Contents

(1) Goal

(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results
(3) The Spatial Lunar RTBP
- The Hamiltonian Vector Field
- Normalise and Reduce
- Analysis and Reconstruction

Rotating Frame

The Hamiltonian has five equilibria:

- L_{1}, L_{2}, L_{3} unstable (Euler),
- L_{4}, L_{5} linearly stable (Lagrange).

The Hamiltonian in the Rotating Frame

$$
\begin{aligned}
\mathcal{H}= & \frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)-\left(x_{1} y_{2}-x_{2} y_{1}\right)-\frac{\mu}{\sqrt{\left(x_{1}-1+\mu\right)^{2}+x_{2}^{2}+x_{3}^{2}}} \\
& -\frac{1-\mu}{\sqrt{\left(x_{1}+\mu\right)^{2}+x_{2}^{2}+x_{3}^{2}}} .
\end{aligned}
$$

- $\mu \in(0,1 / 2]$ is the quotient between the mass of one of the primaries and the sum of the masses of both primaries.

Lunar case: In the restricted three-body problem the infinitesimal particle is close to one of the primaries.

The Hamiltonian in the Rotating Frame \#2

Change y_{2} and x_{1} to $y_{2}-\mu$ and $x_{1}-\mu$ and introduce a small parameter, ε, by replacing $y=\left(y_{1}, y_{2}, y_{3}\right)$ by $(1-\mu)^{1 / 3} y / \varepsilon$ and $x=\left(x_{1}, x_{2}, x_{3}\right)$ by $(1-\mu)^{1 / 3} \varepsilon^{2} x$:

$$
\begin{aligned}
\mathcal{H}_{\varepsilon}= & \frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)-\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}-\varepsilon^{3}\left(x_{1} y_{2}-x_{2} y_{1}\right) \\
& +\frac{1}{2} \varepsilon^{6} \mu\left(-2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\cdots .
\end{aligned}
$$

Applications

- Detection of extrasolar planets with negligible mass around a binary system but rotating around of the stars.
- Scientific missions of artificial satellites around the Galilean moon Europa need a precise knowledge of the moon's position.

Contents

(1) Goal

(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results
(3) The Spatial Lunar RTBP
- The Hamiltonian Vector Field
- Normalise and Reduce
- Analysis and Reconstruction

Delaunay coordinates

- ℓ : mean anomaly
- g : argument of the pericentre
- $\nu \equiv h$: argument of the node
- L : action related with $\ell: L=\sqrt{\mu a}$
- G : magnitude of \mathbf{G}
- $N \equiv H$: projection of \mathbf{G} onto $O z^{\prime}$.

Normalised Hamiltonian

In Delaunay elements (ℓ, g, ν, L, G, N), we perform the Delaunay normalisation:

$$
\begin{aligned}
\mathcal{H}_{\varepsilon}= & -\frac{1}{2 L^{2}}-\varepsilon^{3} N
\end{aligned} \quad \begin{aligned}
& +\frac{1}{16} \varepsilon^{6} \mu L^{4}(\\
& \left(2+3 e^{2}\right)\left(1-3 c^{2}-3\left(1-c^{2}\right) \cos (2 \nu)\right) \\
& -15 e^{2} \cos (2 g)\left(1-c^{2}+\left(1+c^{2}\right) \cos (2 \nu)\right) \\
& \left.+30 c e^{2} \sin (2 g) \sin (2 \nu)\right)+\cdots,
\end{aligned}
$$

where $e=\sqrt{1-G^{2} / L^{2}}$ and $c=N / G$.

Contents

(2) Averaging Theorems

- Theorems
- Corollaries
- Additional Results
(3) The Spatial Lunar RTBP
- The Hamiltonian Vector Field
- Normalise and Reduce
- Analysis and Reconstruction

Reduction

Base space (orbit space): $S^{2} \times S^{2}$

Reduction process:

- \mathbf{G} is the angular momentum vector and A is the Runge-Lenz vector: $A=y \times \mathbf{G}-\frac{x}{|x|}$,
- define $\mathbf{a}=\mathbf{G}+L A, \mathbf{b}=\mathbf{G}-L A$,
- invariants: $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$,
- constraints:

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=L^{2} \text { and } b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=L^{2} \text { where } a_{i}, b_{i} \in[-L, L] .
$$

Reduction \#2

The Poisson structure on $S^{2} \times S^{2}$:

$$
\begin{array}{lll}
\left\{a_{1}, a_{2}\right\}=2 a_{3}, & \left\{a_{2}, a_{3}\right\}=2 a_{1}, & \left\{a_{3}, a_{1}\right\}=2 a_{2} \\
\left\{b_{1}, b_{2}\right\}=2 b_{3}, & \left\{b_{2}, b_{3}\right\}=2 b_{1}, & \left\{b_{3}, b_{1}\right\}=2 b_{2},
\end{array}\left\{a_{i}, b_{j}\right\}=0 .
$$

- Rectilinear trajectories:

$$
\mathcal{R}=\left\{(\mathbf{a},-\mathbf{a}) \in \mathbb{R}^{6} \mid a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=L^{2}\right\} .
$$

- Equatorial trajectories

$$
\mathcal{E}=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{6} \mid a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=L^{2}, b_{1}=-a_{1}, b_{2}=-a_{2}, b_{3}=a_{3}\right\}
$$

- Circular trajectories:

$$
\mathcal{C}=\left\{(\mathbf{a}, \mathbf{a}) \in \mathbb{R}^{6} \mid a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=L^{2}\right\} .
$$

The Reduced System

$$
\begin{gathered}
\overline{\mathcal{H}}=-\frac{1}{2}\left(a_{3}+b_{3}\right)-\frac{1}{8} \varepsilon^{3} \mu L^{2}\left(3 a_{1}^{2}-3 a_{2}^{2}-3 a_{3}^{2}-12 a_{1} b_{1}+3 b_{1}^{2}+6 a_{2} b_{2}\right. \\
\left.-3 b_{2}^{2}+6 a_{3} b_{3}-3 b_{3}^{2}\right)+\cdots .
\end{gathered}
$$

Minimum Number of Equilibria

$$
B=S^{2} \times S^{2}=\left\{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=L^{2}, \quad b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=L^{2}\right\}
$$

Ljusternik-Schnirelmann category of $S^{n} \times S^{n}$ is 3 .

Weinstein's Theorem

There are at least three periodic solutions of the corresponding flow defined by Y_{ε} with period near $T=2 \pi L^{3}$.

This holds for any perturbation of the spatial Kepler problem.

Relative Equilibria

$$
\overline{\mathcal{H}}=-\frac{1}{2}\left(a_{3}+b_{3}\right)+\cdots:
$$

A nondegenerate maximum at $(\mathbf{a}, \mathbf{b})=(0,0,-L, 0,0,-L)$
A nondegenerate minimum at $(\mathbf{a}, \mathbf{b})=(0,0, L, 0,0, L)$.
\downarrow
By Reeb's Theorem 2 and Corollary about stability they correspond to elliptic periodic solutions of the spatial RTBP of period

$$
T(\varepsilon)=T+O\left(\varepsilon^{3}\right) .
$$

These are the circular equatorial motions also detected in the planar case.

Relative Equilibria \#2

Two nondegenerate critical points of index 2 at

$$
(\mathbf{a}, \mathbf{b})=(0,0, \pm L, 0,0, \mp L) .
$$

- Rectilinear motions of the spatial RTBP corresponding with periodic orbits in the vertical axis x_{3}.
- They generalise the rectilinear trajectories found by Belbruno in 1981 for small μ.
- Refining the computation we find out that these orbits are not longer rectilinear:

$$
\begin{aligned}
e & =1-\frac{11025}{512} \varepsilon^{10} \mu^{2}(1-\mu)^{2 / 3} L^{10}+\cdots \\
G & =\frac{105}{16} \varepsilon^{5} \mu(1-\mu)^{1 / 3} L^{6}+\cdots
\end{aligned}
$$

Relative Equilibria \#3

$\overline{\mathcal{H}}$ is a Morse function

The Betti numbers of $S^{2} \times S^{2}$ are $\beta_{0}=\beta_{4}=1, \beta_{2}=2$ and all the others are zero: the minimum number of critical points is consistent with the Morse inequalities.

The characteristic exponents of all the four critical points of Y_{ε} at the four equilibria are $\pm i$ (double).

\downarrow
 Corollary about Stability

The characteristic multipliers of the associated periodic solutions are:

$$
\begin{gathered}
1,1,1+\varepsilon^{3} T i, 1+\varepsilon^{3} T i, 1-\varepsilon^{3} T i, 1-\varepsilon^{3} T i \\
\text { plus terms factored by } \varepsilon^{6} .
\end{gathered}
$$

Kam Tori around $(0,0, \pm L, 0,0, \mp L)$

- Move the critical point to the origin:

$$
a_{1}=\bar{a}_{1}, \quad a_{2}=\bar{a}_{2}, \quad a_{3}=\bar{a}_{3} \pm L, \quad b_{1}=\bar{b}_{1}, \quad b_{2}=\bar{b}_{2}, \quad b_{3}=\bar{b}_{3} \mp L .
$$

- Introduce the local canonical change:

$$
\begin{array}{ll}
Q_{1}=\frac{\bar{a}_{2}}{\sqrt{ \pm \bar{a}_{3}+2 L}}, & Q_{2}=\frac{\bar{b}_{2}}{\sqrt{\mp \bar{b}_{3}+2 L}} \\
P_{1}=\mp \frac{\bar{a}_{1}}{\sqrt{ \pm \bar{a}_{3}+2 L}}, & P_{2}= \pm \frac{\bar{b}_{1}}{\sqrt{\mp \bar{b}_{3}+2 L}}
\end{array}
$$

- Scale through $\bar{Q}_{j}=\varepsilon^{-3 / 2} Q_{j}$ and $\bar{P}_{j}=\varepsilon^{-3 / 2} P_{j}$ for $j \in\{1,2\}$; make the change canonical and expand this Hamiltonian in powers of ε.

Kam Tori around $(0,0, \pm L, 0,0, \mp L) \# 2$

$$
\begin{aligned}
\overline{\mathcal{H}}= & \pm \frac{1}{2}\left(\bar{P}_{1}^{2}+\bar{Q}_{1}^{2}\right) \mp \frac{1}{2}\left(\bar{P}_{2}^{2}+\bar{Q}_{2}^{2}\right) \\
& -\frac{3}{4} \varepsilon^{3} \mu L^{3}\left(3\left(\bar{P}_{1}^{2}+\bar{P}_{2}^{2}\right)+4 \bar{P}_{1} \bar{P}_{2}+\bar{Q}_{1}^{2}+\bar{Q}_{2}^{2}+2 \bar{Q}_{1} \bar{Q}_{2}\right)+\cdots .
\end{aligned}
$$

The eigenvalues associated with the linear differential equation given through the quadratic part of $\overline{\mathcal{H}}$ are:

$$
\begin{aligned}
& \pm \sqrt{1+20 \bar{\varepsilon}^{2}+2 \sqrt{5} \bar{\varepsilon} \sqrt{3+20 \bar{\varepsilon}^{2}} i= \pm \omega_{1} i,} \\
& \pm \sqrt{1+20 \bar{\varepsilon}^{2}-2 \sqrt{5} \bar{\varepsilon} \sqrt{3+20 \bar{\varepsilon}^{2}} i= \pm \omega_{2} i}
\end{aligned}
$$

where

- $\bar{\varepsilon}=\frac{3}{4} \varepsilon^{3} \mu L^{3}, \omega_{1}>1>\omega_{2}>0$,
- $\omega_{1}=\omega_{2}=1$ when $\varepsilon=0$ and the quadratic part of $\overline{\mathcal{H}}$ is in 1-1 resonance.

Kam Tori around $(0,0, \pm L, 0,0, \mp L) \# 3$

- Bring the quadratic part of $\overline{\mathcal{H}}$ into normal form through a linear canonical change of variables.
- The quadratic part of $\overline{\mathcal{H}}$ is:

$$
\pm \omega_{1} i q_{1} p_{1} \mp \omega_{2} i q_{2} p_{2}
$$

$\left(q_{1}, q_{2}, p_{1}, p_{2}\right)$ being the new variables.

- Introduce action-angle variables $\left(I_{1}, I_{2}, \varphi_{1}, \varphi_{2}\right)$:

$$
\begin{aligned}
& q_{1}=\sqrt{I_{1} / \omega_{1}}\left(\cos \varphi_{1}-i \sin \varphi_{1}\right), \quad q_{2}=\sqrt{I_{2} / \omega_{2}}\left(\cos \varphi_{2}-i \sin \varphi_{2}\right), \\
& p_{1}=\sqrt{\omega_{1} I_{1}}\left(\sin \varphi_{1}-i \cos \varphi_{1}\right), \quad p_{2}=\sqrt{\omega_{2} I_{2}}\left(\sin \varphi_{2}-i \cos \varphi_{2}\right)
\end{aligned}
$$

Kam Tori around $(0,0, \pm L, 0,0, \mp L) \# 4$

- Average $\overline{\mathcal{H}}$ over φ_{1} and φ_{2} arriving in both cases at

$$
\overline{\mathcal{H}}= \pm \omega_{1} I_{1} \mp \omega_{2} I_{2}+\bar{\varepsilon} F\left(I_{1}, I_{2}\right)+\cdots
$$

- Compute:

$$
\operatorname{det}\left[\begin{array}{cc}
\frac{\partial^{2} \overline{\mathcal{H}}}{\partial I_{1}^{2}} & \frac{\partial^{2} \overline{\mathcal{H}}}{\partial I_{1} \partial I_{2}} \\
\frac{\partial^{2} \mathcal{H}}{\partial I_{2} \partial I_{1}} & \frac{\partial^{2} \overline{\mathcal{H}}}{\partial I_{2}^{2}}
\end{array}\right]=\frac{\left(\omega_{1}^{2}-1\right)^{6}\left(7 \omega_{1}^{8}-28 \omega_{1}^{6}-534 \omega_{1}^{4}-604 \omega_{1}^{2}-137\right)}{225 \mu^{2} L^{8} \omega_{1}^{2}\left(\omega_{1}^{2}-4\right)\left(\omega_{1}^{2}+2\right)^{4}\left(2 \omega_{1}^{2}+1\right)^{2}}+
$$

- KAM theory hypotheses hold.
- There are families of invariant 3 -tori around these relative equilibria.

Nonlinear Stability

Apply Arnold's Theorem:

- Compute $\overline{\mathcal{H}}_{4}$, the quartic terms of $\overline{\mathcal{H}}$, evaluate it at $I_{1}=-\omega_{2}$ and $I_{2}=\omega_{1}$ (i.e., compute $\left.\overline{\mathcal{H}}_{4}\left(-\omega_{2}, \omega_{1}\right)\right)$ and ensure that it does not vanish for $\bar{\varepsilon}$ positive and small.
- The points $(0,0, \pm L, 0,0, \mp L)$ are nonlinearly stable in the space $S^{2} \times S^{2}$.

Kam Tori around $(0,0, \pm L, 0,0, \pm L)$

- Similar results hold for these points and there are (stable) periodic orbits as they correspond to nondegenerate maximum or minimum of the Hamiltonian.
- Besides, one can find KAM 3-tori around these periodic orbits.

Second Reduction

Melons and lemons (Cushman, 1983)

$$
\mathcal{U}_{L, H}=\left\{\tau \in \mathbb{R}^{3} \mid \tau_{2}^{2}+\tau_{3}^{2}=\left[\left(L+\tau_{1}\right)^{2}-H^{2}\right]\left[\left(L-\tau_{1}\right)^{2}-H^{2}\right]\right\}
$$

Second Reduction \#2

(1) We find rectilinear, circular and equatorial relative equilibria for all cases.
(2) There are up to six different equilibria.
(3) A pitchfork bifurcation takes place for $|H| / L=\sqrt{3 / 5}$.
(9) The equilibria are reconstructed into (approximate) invariant 2-tori of the restricted three body problem.

So far it is not clear how to apply a KAM theorem to conclude the existence of invariant 3-tori and how to reconstruct the pitchfork bifurcation of invariant tori.

