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Goal

Goal and Method

Goal:
Investigating the existence, stability and bifurcation of periodic

solutions and invariant tori to a Hamiltonian vector field which is a
small perturbation of a Hamiltonian vector field whose orbits are all

periodic.

Method:
By averaging the perturbation over the fibers of the circle bundle one

obtains a Hamiltonian system on the reduced (orbit) space of the circle
bundle.

We state and prove results which have hypotheses on the reduced
system and have conclusions about the full system.
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Averaging Theorems General Results
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Averaging Theorems General Results

The Original Reduction Theorem

Theorem 1 (Reeb, 1952)

(M,Ω) symplectic manifold of dimension 2n;
H0 : M → R a smooth Hamiltonian, which defines a Hamiltonian
vector field Y0 = (dH0)# with symplectic flow φt

0;

I ⊂ R an interval such that each h ∈ I is a regular value of H0;

N0(h) = H−1
0 (h) is a compact connected circle bundle over a base

space B(h) with projection π : N0(h) → B(h);

the vector field Y0 is everywhere tangent to the fibers of N0(h), i.e.
all the solutions of Y0 in N0(h) are periodic.

The base space B inherits a symplectic structure ω from (M,Ω), i.e.
(B,ω) is a symplectic manifold.
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Averaging Theorems General Results

Perturbation Theorem

Theorem 2 (Reeb, 1952)
ε a small parameter and H1 : M → R is smooth;

Hε = H0 + εH1; Yε = Y0 + εY1 = dH#
ε ;

Nε(h) = H−1
ε (h);

φt
ε the flow defined by Yε;

the average of H1 is a smooth function on B(h)

H̄ =
1
T

∫ T

0
H1(φt

0)dt,
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Averaging Theorems General Results

Perturbation Theorem #2

If H̄ has a nondegenerate critical point at π(p) = p̄ ∈ B with
p ∈ N0, then there are smooth functions p(ε) and T (ε) for ε small
and the solution of Yε through p(ε) is T (ε)-periodic.

If H̄ is a Morse function then Yε has at least χ(B) periodic
solutions, where χ(B) is the Euler-Poincaré characteristic of B.
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Averaging Theorems General Results

Sketch of the Proofs

Idea: Construct symplectic coordinates (I, θ, y) valid in a tubular
neighbourhood of the periodic solution φt

0(p) of Y0(h).

(I, θ) are action-angle variables and y ∈ N where N is an open
neighbourhood of the origin in R2n−2.
The point p corresponds to (I, θ, y) = (0, 0, 0).
The Hamiltonian is

Hε(I, θ, y) = H0(I) + εH1(I, θ, y) = H0(I) + εH̄(I, y) + O(ε2).

We make use of the Hamiltonian Flow Box Theorem.
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Averaging Theorems General Results

Sketch of the Proofs #2

Up to terms of order O(ε2) the equations are

İ = O(ε2), θ̇ = 2π/T (I) + O(ε2), ẏ = εJ∇yH̄(I, y) + O(ε2).

Construct a section map in an energy level (I = 0):

P (y) = y + εTJ∇yH̄(0, y) + O(ε2).

A fixed point of P leads to a periodic solution: we solve P (y) = y.
As y = 0 is a nondegenerate critical point and ∂2H̄/∂y2(0, 0) is
nonsingular, we apply the implicit function theorem.

There is a function ȳ(ε) = O(ε) such that P (ȳ(ε)) = ȳ(ε).

This fixed point of P is the initial condition for the
periodic solution asserted in the Perturbation Theorem.
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Averaging Theorems Corollaries

Contents

1 Goal

2 Averaging Theorems
Theorems
Corollaries
Additional Results

3 The Spatial Lunar RTBP
The Hamiltonian Vector Field
Normalise and Reduce
Analysis and Reconstruction

K.Meyer, J.Palacián, P.Yanguas () Averaging & Reconstruction 30/11/06 10 / 41



Averaging Theorems Corollaries

Corollary: Estimate on the Number of Critical Points

(Milnor, 1963)

H̄ a Morse function;

βj the jth Betti number of B;

Ij the number of critical points of index j.
(The index of a nondegenerate critical point p̄ of H̄ is the
dimension of the maximal linear subspace where the Hessian of H̄
at p is negative definite.)
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Averaging Theorems Corollaries

Corollary: Estimate on the Number of Critical Points
#2

Then Ij ≥ βi or better yet

I0 ≥ β0

I1 − I0 ≥ β1 − β0

I2 − I1 + I0 ≥ β2 − β1 + β0

· · ·

Ik − Ik−1 + Ik+2 − · · · ± I0 ≥ βk − βk−1 + · · · ± β0 (k < 2n− 2)

I0 − I1 + I2 − · · · − I2n−3 + I2n−2 = β0 − β1 + · · · − β2n−3 + β2n−2 = χ(B).
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Averaging Theorems Corollaries

Corollary: Stability

The eigenvalues of

A = J
∂2H̄
∂y2

(0, 0)

are the characteristic exponents of the critical point of Ȳ at p̄ on B.

If the characteristic exponents of Ȳ (p̄) are λ1, λ2, . . . , λ2n−2, the
characteristic multipliers of the periodic solution through p(ε) are:

1, 1, 1 + ελ1T + O(ε2), 1 + ελ2T + O(ε2), . . . , 1 + ελ2n−2T + O(ε2).
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Averaging Theorems Corollaries

Corollary: Stability #2

Given an autonomous linear Hamiltonian vector field, it is said to be
parametrically stable or strongly stable if it is stable and all
sufficiently small linear constant coefficient Hamiltonian perturbations
of it are stable.

If the matrix A corresponding to the linearisation around an
equilibrium point p̄ is parametrically stable then the periodic solution
through p(ε) is elliptic.
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Averaging Theorems Other Results

KAM Tori

Let p be as before and let there be symplectic action-angle variables
(I1, . . . , In−1, θ1, . . . θn−1) at p̄ in B such that

H̄ =
n−1∑
k=1

ωkIk +
1
2

n−1∑
k=1

n−1∑
j=1

CkjIkIj +H#,

where ωk 6= 0 and H#(I1, . . . , In−1, θ1, . . . θn−1) is at least cubic in
I1, ..., In−1.
Assume that det Ckj 6= 0 and that dT/dh 6= 0.

Near the periodic solutions given before there are invariant KAM tori
of dimension n.
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Averaging Theorems Other Results

Weinstein’s Theorem

(Weinstein, 1977, 1978)

Let X be a topological space, then the category of X in the sense of
Ljusternik-Schnirelmann, cat (X), is the least number of closed sets
that are contractible in X and that cover X.

Assume B is simply connected and let ` = cat (B) be the
Ljusternik–Schnirelmann category of B.

Then, for small ε the flow of Yε has at least ` periodic solutions
with periods near T .

There is no nondegeneracy assumption.
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The Example The Equations of Motion

Rotating Frame

2

The Hamiltonian has five equilibria:
L1, L2, L3 unstable (Euler),
L4, L5 linearly stable (Lagrange).
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The Example The Equations of Motion

The Hamiltonian in the Rotating Frame

H =
1
2
(y2

1 + y2
2 + y2

3)− (x1y2 − x2y1)−
µ√

(x1 − 1 + µ)2 + x2
2 + x2

3

− 1− µ√
(x1 + µ)2 + x2

2 + x2
3

.

• µ ∈ (0, 1/2] is the quotient between the mass of one of the primaries

and the sum of the masses of both primaries.

Lunar case: In the restricted three-body problem the infinitesimal
particle is close to one of the primaries.
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The Example The Equations of Motion

The Hamiltonian in the Rotating Frame #2

Change y2 and x1 to y2 − µ and x1 − µ and introduce a small
parameter, ε, by replacing y = (y1, y2, y3) by (1− µ)1/3y/ε and
x = (x1, x2, x3) by (1− µ)1/3ε2x:

Hε =
1
2
(y2

1 + y2
2 + y2

3)−
1√

x2
1 + x2

2 + x2
3

− ε3 (x1y2 − x2y1)

+
1
2

ε6 µ (−2x2
1 + x2

2 + x2
3) + · · · .
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The Example The Equations of Motion

Applications

Detection of extrasolar planets with negligible mass around a
binary system but rotating around of the stars.

Scientific missions of artificial satellites around the Galilean
moon Europa need a precise knowledge of the moon’s position.

K.Meyer, J.Palacián, P.Yanguas () Averaging & Reconstruction 30/11/06 22 / 41



The Example Averaging and Reduction
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The Example Averaging and Reduction

Delaunay coordinates

`: mean anomaly
g: argument of the pericentre
ν ≡ h: argument of the node
L: action related with `: L =

√
µa

G: magnitude of G
N ≡ H: projection of G onto O z′.

x

y

z

r

f
g

I

θG

h

H

x
'

'

'
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The Example Averaging and Reduction

Normalised Hamiltonian

In Delaunay elements (`, g, ν, L,G, N), we perform the Delaunay
normalisation:

Hε = − 1
2 L2 − ε3N

+ 1
16ε6µL4

(
(2 + 3 e2)

(
1− 3 c2 − 3 (1− c2) cos(2 ν)

)
− 15 e2 cos(2 g)

(
1− c2 + (1 + c2) cos(2 ν)

)
+30 c e2 sin(2 g) sin(2 ν)

)
+ · · · ,

where e =
√

1−G2/L2 and c = N/G.
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The Example Analysis of the Reduced System
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The Example Analysis of the Reduced System

Reduction

Base space (orbit space): S2 × S2

Reduction process:

G is the angular momentum vector and A is the Runge-Lenz
vector: A = y ×G− x

|x| ,

define a = G + LA, b = G− LA,

invariants: a = (a1, a2, a3) and b = (b1, b2, b3),

constraints:

a2
1 + a2

2 + a2
3 = L2 and b2

1 + b2
2 + b2

3 = L2 where ai, bi ∈ [−L,L].
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The Example Analysis of the Reduced System

Reduction #2

The Poisson structure on S2 × S2:

{a1, a2} = 2a3, {a2, a3} = 2a1, {a3, a1} = 2a2,

{b1, b2} = 2b3, {b2, b3} = 2b1, {b3, b1} = 2b2, {ai, bj} = 0.

Rectilinear trajectories:

R = {(a,−a) ∈ R6 | a2
1 + a2

2 + a2
3 = L2}.

Equatorial trajectories

E = {(a,b) ∈ R6 | a2
1+a2

2+a2
3 = L2, b1 = −a1, b2 = −a2, b3 = a3}.

Circular trajectories:

C = {(a,a) ∈ R6 | a2
1 + a2

2 + a2
3 = L2}.
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The Example Analysis of the Reduced System

The Reduced System

H̄ = −1
2

(a3 + b3)−
1
8
ε3µL2

(
3a2

1 − 3a2
2 − 3a2

3 − 12a1b1 + 3b2
1 + 6a2b2

− 3b2
2 + 6a3b3 − 3b2

3

)
+ · · · .
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The Example Analysis of the Reduced System

Minimum Number of Equilibria

B = S2 × S2 = {a2
1 + a2

2 + a2
3 = L2, b2

1 + b2
2 + b2

3 = L2}

Ljusternik-Schnirelmann category of Sn × Sn is 3.
↓

Weinstein’s Theorem
↓

There are at least three periodic solutions of the corresponding
flow defined by Yε with period near T = 2πL3.

This holds for any perturbation of the spatial Kepler problem.
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The Example Analysis of the Reduced System

Relative Equilibria

H̄ = −1
2(a3 + b3) + · · · :

A nondegenerate maximum at (a,b) = (0, 0,−L, 0, 0,−L)

A nondegenerate minimum at (a,b) = (0, 0, L, 0, 0, L).
↓

By Reeb’s Theorem 2 and Corollary about stability they correspond to
elliptic periodic solutions of the spatial RTBP of period

T (ε) = T + O(ε3).

These are the circular equatorial motions also detected in the
planar case.
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The Example Analysis of the Reduced System

Relative Equilibria #2

Two nondegenerate critical points of index 2 at

(a,b) = (0, 0,±L, 0, 0,∓L).

Rectilinear motions of the spatial RTBP corresponding with
periodic orbits in the vertical axis x3.

They generalise the rectilinear trajectories found by Belbruno in
1981 for small µ.

Refining the computation we find out that these orbits are not
longer rectilinear:

e = 1− 11025
512 ε10 µ2 (1− µ)2/3 L10 + · · · ,

G = 105
16 ε5 µ (1− µ)1/3 L6 + · · · .
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The Example Analysis of the Reduced System

Relative Equilibria #3

H̄ is a Morse function

The Betti numbers of S2 × S2 are β0 = β4 = 1, β2 = 2 and all the
others are zero: the minimum number of critical points is consistent

with the Morse inequalities.

The characteristic exponents of all the four critical points of Yε at the
four equilibria are ±i (double).

↓
Corollary about Stability

↓
The characteristic multipliers of the associated periodic solutions are:

1, 1, 1 + ε3 T i, 1 + ε3 T i, 1− ε3 T i, 1− ε3 T i

plus terms factored by ε6.
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The Example Analysis of the Reduced System

Kam Tori around (0, 0,±L, 0, 0,∓L)

Move the critical point to the origin:

a1 = ā1, a2 = ā2, a3 = ā3±L, b1 = b̄1, b2 = b̄2, b3 = b̄3∓L.

Introduce the local canonical change:

Q1 =
ā2√

±ā3 + 2L
, Q2 =

b̄2√
∓b̄3 + 2L

,

P1 = ∓ ā1√
±ā3 + 2L

, P2 = ± b̄1√
∓b̄3 + 2L

.

Scale through Q̄j = ε−3/2 Qj and P̄j = ε−3/2 Pj for j ∈ {1, 2};
make the change canonical and expand this Hamiltonian in
powers of ε.
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The Example Analysis of the Reduced System

Kam Tori around (0, 0,±L, 0, 0,∓L) #2

H̄ = ±1
2(P̄ 2

1 + Q̄2
1)∓ 1

2(P̄ 2
2 + Q̄2

2)

− 3
4ε3 µL3

(
3(P̄ 2

1 + P̄ 2
2 ) + 4P̄1 P̄2 + Q̄2

1 + Q̄2
2 + 2Q̄1 Q̄2

)
+ · · · .

The eigenvalues associated with the linear differential equation given
through the quadratic part of H̄ are:

±
√

1 + 20ε̄2 + 2
√

5ε̄
√

3 + 20ε̄2 i = ±ω1 i,

±
√

1 + 20ε̄2 − 2
√

5ε̄
√

3 + 20ε̄2 i = ±ω2 i

where
ε̄ = 3

4ε3 µL3, ω1 > 1 > ω2 > 0,
ω1 = ω2 = 1 when ε = 0 and the quadratic part of H̄ is in 1-1
resonance.
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The Example Analysis of the Reduced System

Kam Tori around (0, 0,±L, 0, 0,∓L) #3

Bring the quadratic part of H̄ into normal form through a linear
canonical change of variables.

The quadratic part of H̄ is:

±ω1 i q1 p1 ∓ ω2 i q2 p2,

(q1, q2, p1, p2) being the new variables.

Introduce action-angle variables (I1, I2, ϕ1, ϕ2):

q1 =
√

I1/ω1 (cos ϕ1 − i sin ϕ1), q2 =
√

I2/ω2 (cos ϕ2 − i sin ϕ2),

p1 =
√

ω1 I1 (sin ϕ1 − i cos ϕ1), p2 =
√

ω2 I2 (sin ϕ2 − i cos ϕ2).
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The Example Analysis of the Reduced System

Kam Tori around (0, 0,±L, 0, 0,∓L) #4

Average H̄ over ϕ1 and ϕ2 arriving in both cases at

H̄ = ±ω1 I1 ∓ ω2 I2 + ε̄ F (I1, I2) + · · · .

Compute:

det


∂2H̄
∂I2

1

∂2H̄
∂I1∂I2

∂2H̄
∂I2∂I1

∂2H̄
∂I2

2

=
(ω2

1 − 1)6 (7ω8
1 − 28ω6

1 − 534ω4
1 − 604ω2

1 − 137)
225µ2 L8 ω2

1 (ω2
1 − 4) (ω2

1 + 2)4 (2ω2
1 + 1)2

+· · ·

KAM theory hypotheses hold.

There are families of invariant 3-tori around these relative
equilibria.
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The Example Analysis of the Reduced System

Nonlinear Stability

Apply Arnold’s Theorem:

Compute H̄4, the quartic terms of H̄, evaluate it at I1 = −ω2 and
I2 = ω1 (i.e., compute H̄4(−ω2, ω1)) and ensure that it does not
vanish for ε̄ positive and small.

The points (0, 0,±L, 0, 0,∓L) are nonlinearly stable in the
space S2 × S2.
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The Example Analysis of the Reduced System

Kam Tori around (0, 0,±L, 0, 0,±L)

Similar results hold for these points and there are (stable) periodic
orbits as they correspond to nondegenerate maximum or minimum
of the Hamiltonian.

Besides, one can find KAM 3-tori around these periodic orbits.
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The Example Analysis of the Reduced System

Second Reduction

Melons and lemons (Cushman, 1983)

UL,H = {τ ∈ R3 | τ2
2 + τ2

3 = [(L + τ1)2 −H2] [(L− τ1)2 −H2]}

τ
1

τ
3

τ
2

τ
2

τ
3

τ
1

1
τ

c

e

0

τ
3

|H|-L L-|H|

L - H
2 2

H - L
2 2

|H|>0

r

c-p

r-e

0

τ
3

1
τ

H=0

-L 
2

2
L

L-L
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The Example Analysis of the Reduced System

Second Reduction #2

1 We find rectilinear, circular and equatorial relative equilibria for
all cases.

2 There are up to six different equilibria.
3 A pitchfork bifurcation takes place for |H|/L =

√
3/5.

4 The equilibria are reconstructed into (approximate) invariant
2-tori of the restricted three body problem.

So far it is not clear how to apply a KAM theorem to conclude the
existence of invariant 3-tori and how to reconstruct the pitchfork
bifurcation of invariant tori.
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