ON THE NON-INTEGRABILITY OF SOME N-BODY PROBLEMS

Juan J. MORALES-RUIZ†
(Joint work with Sergi SIMON[‡])

†Department of Applied Mathematics II **Technical University of Catalunya**‡Department of Applied Mathematics **University of Barcelona**

A. N. R. : Intégrabilité réelle et complexe en Mécanique Hamiltonienne

INTÉGRABILITÉ DYNAMIQUE

C. I. R. M. Luminy (**France**)
Du 27 novembre au 1er décembre 2006

Assessment

The **General (Planar)** *N***-Body Problem (***NBP***)** lays at the foundations of Celestial Mechanics. Up to now we had:

- strong numerical evidence of lack of integrability;
- 3BP: previous rigorous proofs of non-integrability by A. Tsygvintsev (2000), D. Boucher & J.-A. Weil (2002).
 - Tsygvintsev (2006): absence of a *single* additional integral except for three special cases.

We present proofs of the meromorphic non-integrability in the sense of Liouville-Arnold:

- for the 3BP (yet another proof), as well as
 - the absence of a *single* additional integral for arbitrary masses.
- for the NBP with equal masses, for some special values of $N \ge 4$.

as applications of **differential Galois theory** to significant dynamical problems.

Application of the same tools to the *N*-Body Problem with general masses: **in process**.

1. Introduction

1.1 Setting

Given an autonomous dynamical system

$$\dot{\mathbf{z}} = X(\mathbf{z}), \tag{1}$$

having an integral curve $\Gamma = \{\widehat{\mathbf{z}}(t) : t \in I\}$, the **variational equations** of (1) along Γ are the linear homogeneous system

$$\dot{\boldsymbol{\xi}} = X'(\widehat{\mathbf{z}}(t))\,\boldsymbol{\xi},\tag{2}$$

whose principal fundamental matrix Ψ is the linear part of the flow $\varphi(t; \widehat{\mathbf{z}}(0))$ of (1) along Γ .

Distinguished example (though by far not the only one): an *n*-degree-of-freedom Hamiltonian H with Hamilton's equations $\dot{\mathbf{z}} = X_H(\mathbf{z})$ ($\mathbf{z} = (\mathbf{Q}; \mathbf{P})$).

We thus have:

- a (generally nonlinear) system 1 and
- a **linear system** (2) linked to (1).

1. Introduction

1.1 Integrability of linear systems

Given a **linear** differential system (whether or not autonomous), with coefficients in a differential field (K, ∂) whose field of constants C is algebraically closed (e.g. $(\mathbb{C}(t), \frac{d}{dt})$),

$$\mathbf{y}' = A(t)\,\mathbf{y},\tag{3}$$

differential Galois theory assures the existence of

- A differential field $L \supset K$, unique up to K-isomorphism, containing all entries of a fundamental matrix $\Psi = \left[\psi_1, \dots, \psi_n\right]$ of (3);
- an algebraic group G linked to $K \subset L$ (the **differential Galois group** of (3)), such that
 - G acts over the C-vector space $\langle \psi_1, \dots, \psi_n \rangle$ of solutions as a linear transformation group over C;
 - the **monodromy group** of (3) is contained in G.
- (3) is called *integrable* if its general solution can be written as a finite sequence of quadratures, exponentials, and algebraic functions (and any of their inverses).

In the Galoisian setting, assertion "(3) is integrable" is equivalent to the following: the identity component G^0 of the differential Galois group G of (3) es **solvable**.

1. Introduction

1.1 General principle

Heuristics of all non-integrability results presented here are firmly rooted in the following:

General Principle. If we assume (1) "integrable" in some reasonable sense, then the corresponding variational system (2) along any integral curve Γ of (1) must be also integrable (in the sense of linear Galois differential theory).

Any attempt at **ad-hoc formulations of this heuristic principle** for a specific system (1) has an asset and a drawback:

- as seen above, there *is* a definition of integrability for linear systems (and thus, for (2)): that the identity component of its Galois group be *solvable*;
- still, in order to transform this principle into a true conjecture it is necessary to clarify a notion of "integrability" for (1).

Remark. Everything is considered in the complex analytical setting.

2.1. General case

There is a specific notion of integrability for *Hamiltonian* systems, namely in the sense of Liouville-Arnold, for which the General Principle does have an implementation:

Theorem 1. (*J. Morales-Ruiz & J.-P. Ramis, 2001*) Let H be an n-degree-of-freedom Hamiltonian having n independent first integrals in pairwise involution, defined on a neighborhood of an integral curve Γ . Then, the identity component of the Galois group of the variational equations (2) of H along Γ is a **commutative** group.

Key Lemma. (an essential tool in the proof): Let f be a meromorphic first integral of the dynamical system (1). Then the Galois group of the variational system (2) has a non-trivial rational invariant.

Remark. In this lemma we do not assume the dynamical system Hamiltonian!

2.3. Special case: homogeneous potentials

If X_H is classical with a homogeneous potential of degree $k \in \mathbb{Z}$, i.e.

$$H = H(\mathbf{Q}, \mathbf{P}) = \frac{P^2}{2} + V(\mathbf{Q}),$$

let $\mathbf{c} \in \mathbb{C}^n$ be a solution of $\mathbf{c} = V'(\mathbf{c})$ and

$$\{\lambda_1,\ldots,\lambda_n\}=\operatorname{Spec} V''(\mathbf{c}).$$

• Since $V''(\mathbf{c}) \mathbf{c} = (k-1) \mathbf{c}$, we may define $\lambda_n = k-1$.

2.3. Special case: homogeneous potentials

Theorem 2. (J.J. Morales-Ruiz & J.-P. Ramis, 2001) If $k \neq 0$ and H is integrable with meromorphic integrals, then each of the eigenvalues, $\lambda_1, \ldots, \lambda_n$, matches an item in Table 1 ($p \in \mathbb{Z}$):

TABLE 1					
	k	λ		k	λ
	k	$\frac{p(2+k(p-1))}{2}$		-3	$\frac{25 - \left(\frac{12}{5} + 6p\right)^2}{24}$
	2	$\lambda \in C$		3	$\frac{-1+(2+6p)^2}{24}$
	_2	$\lambda \in C$		3	$\frac{-1+(\frac{3}{2}+6p)^2}{24}$
	_5	$\frac{49 - \left(\frac{10}{3} + 10p\right)^2}{40}$		3	$\frac{-1+\left(\frac{6}{5}+6p\right)^2}{24}$
	_5	$\frac{49-(4+10p)^2}{40}$		3	$\frac{-1+(\frac{12}{5}+6p)^2}{24}$
	-4	$\frac{9-\left(\frac{4}{3}+4p\right)^2}{8}$		4	$\frac{-1+\left(\frac{4}{3}+4p\right)^2}{8}$
	_3	$\frac{25-(2+6p)^2}{24}$		5	$\frac{-9 + \left(\frac{10}{3} + 10p\right)^2}{40}$
	_3	$\frac{25 - \left(\frac{3}{2} + 6p\right)^2}{24}$		5	$\frac{9+(4+10p)^2}{40}$
	_3	$\frac{25 - \left(\frac{6}{5} + 6p\right)^2}{24}$		k	$\frac{((p+1)k-1)(pk+1)}{2k}$

2.3. Special case: homogeneous potentials

• Based on basic properties of algebraic groups with a non-trivial rational invariant, we obtain a necessary condition for the existence of a *single* additional first integral:

Theorem 3. If f_1, \ldots, f_m are such first integrals of X_H that $\lambda_{n-m+1}, \ldots, \lambda_n$ belong to Table 1, and there is a first integral f independent of and in involution with $\{f_1, \ldots, f_m\}$, then at least one of the eigenvalues $\lambda_1, \ldots, \lambda_{n-m}$ belongs to Table 1. \square

3. The N-Body Problem

3.1 Introduction

• It may be written as a classical Hamiltonian \mathcal{H}_N with homogeneous potential of degree -1:

$$V_N(\mathbf{q}) = -\sum_{1 \le i < j \le N} \frac{\left(m_i m_j\right)^{3/2}}{\left\|\sqrt{m_j} \mathbf{q}_i - \sqrt{m_i} \mathbf{q}_j\right\|}.$$

- Solutions of $V'_N(\mathbf{c}) = \mathbf{c}$ correspond exactly to **central configurations** of the *N*-Body Problem.
- Known first integrals (of the *d*-dimensional *NBP*): $\frac{1}{2}(d+2)(d+1)$ (so-called *classical*) first integrals:
 - 2d for the invariance of the **linear momentum** $\mathbf{I}_L := \sum_{i=1}^{N} m_i \dot{\mathbf{x}}_i$, i.e. for the uniform linear motion of the center of mass;
 - d(d-1)/2 for the invariance of the **angular** momentum $I_A := \sum_{i=1}^{N} m_i \mathbf{x}_i \wedge \dot{\mathbf{x}}_i$;
 - one for the invariance of the Hamiltonian \mathcal{H}_N .

In particular, for N=3 that makes 6 for the planar problem and 10 for the spatial problem.

4. Current results

4.1 Three Body Problem

• we obtained two solutions \mathbf{c} , \mathbf{c}^* of $V_3'(\mathbf{c}) = \mathbf{c}$ and computed the eigenvalues of $V_3''(\mathbf{c})$ y $V_3''(\mathbf{c}^*)$:

$$\{\lambda_{\pm}, 1, 0, 0, -2\}, \quad \{\lambda_{\pm}^*, 1, 0, 0, -2\},\$$

1, 0, 0 and -2 being a consequence of the invariance of the two entries of the linear momentum, the angular momentum and \mathcal{H}_3 , respectively.

• due to Theorem 3, the existence of a single integral independent of \mathcal{H}_3 , \mathbf{I}_L , I_A requires one of λ_+ , λ_- and one of λ_+^* , λ_-^* to match items 1 and 18 in Table 1 for k=-1, i.e. two such eigenvalues should belong to

$$S := \left\{ -\frac{1}{2} p \left(p - 3 \right) : p \in \mathbb{Z} \right\},\,$$

and a simple calculation deems this impossible. Thus,

Theorem 4. \mathcal{H}_3 does not have an additional meromorphic integral. \square

4. Current results

4.2 N-body problem with equal masses

• We may set all $m_1 = \cdots = m_N = 1$; the vector $\mathbf{c} = a^{\frac{1}{3}}(\mathbf{c}_1, \dots, \mathbf{c}_N)$, where $a = \frac{1}{4}\sum_{k=1}^{N-1} \csc(\frac{\pi k}{n})$ and

$$\mathbf{c}_k = \left(\cos\frac{2\pi k}{N}, \sin\frac{2\pi k}{N}\right), \quad k = 1, \dots, N,$$

is a solution for $V_N'(\mathbf{q}) = \mathbf{q}$.

• The trace of V_N'' (c) is equal to

$$\operatorname{tr} V_N''(\mathbf{c}) = -N \left(\frac{\sum_{k=1}^{N-1} \frac{1}{\sin^3\left(\frac{\pi k}{N}\right)}}{2\sum_{k=1}^{N-1} \frac{1}{\sin\left(\frac{\pi k}{N}\right)}} \right),$$

and is also equal to $\lambda_1 + \cdots + \lambda_{2N-4} - 1$ since we can choose

$$\lambda_{2N-3} = 1$$
, $\lambda_{2N-2} = \lambda_{2N-1} = 0$, $\lambda_{2N} = -2$,

as in V_3'' . Proving tr $V_N''(\mathbf{c}) \notin \mathbb{Z}$ would be enough to prove the non-integrability of \mathcal{H}_N .

4. Current results

4.2 N-body problem with equal masses

• First partial result: for N = 3, 4, 5, 6, we computed all eigenvalues of $V_N''(\mathbf{c})$ and except for four of them, -2, 0, 0, 1, not a single one matches items 1 and 18 in Table 1. Thus, in virtue of Theorem 3:

Theorem 5. The Three-, Four-, Five- and Six-Body Problems with equal masses do not possess an additional first integral. \square

• Second partial result:

Theorem 6. If $N = 2^m$ for $m \ge 2$, then $\sum_{k=1}^{N-1} \csc \frac{\pi}{N} k$ and $\sum_{k=1}^{N-1} \csc^3 \frac{\pi}{N} k$ are \mathbb{Q} -independent; in particular, tr $V_N''(\mathbf{c}) \notin \mathbb{Q}$, i.e. \mathcal{H}_{2^m} with equal masses is not integrable in the sense of Liouville-Arnold. \square

- Proving one of the following conjectures would be enough to obtain non-integrability for general N:
 if N ≥ 7,
 - Conjecture 1: V_N'' (c) has an eigenvalue $\lambda > 1$.
 - Conjecture 2: tr $V_N''(\mathbf{c}) \notin \mathbb{Q}$.