Holomorphic distributions transverse to the sphere

Toshikazu ITO

CIRM Marseille, December 1st, 2006

Our fundamental guestion: Consider $E \subset TC^n$ a holomorphic distribution in TC^n , $n \ge 2$, which is transverse to $S^{n-1}(1) = \Im D^{2n}(1)$ the boundary of the disc $D^n(1)$. What happens E inside $D^{2n}(1)$?

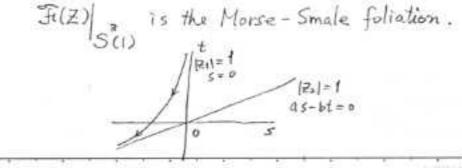
- § Transversality between Z and S (1)
- § Poincaré-Hopf Theorem and Poincaré-Bendixson Theorem (The case of dim E = 1)

- S A Poincaré Hopf type Theorem for holomorphic one form (The case of codim E = 1)
- § Application (The case of codim E = 1)

S Transversality between Z = z₁%z₁ + λz₂%z₂ and S⁽¹⁾
Let λ = a + Fib and z₁ = x₁ + Fi y₂ (j = 1, 2) be complex
numbers. Consider a linear vector field Z on C²:
Z = z₁%z₁ + λz₂%z₂
=
$$\frac{1}{2} [x_1%x_1 + y_1%y_1 + (ax_2 - by_2)%x_1 + (bx_2 + ay_2)%y_2 - Ji (-y_1%x_1 + x_1%y_1 - (bx_2 + ay_2)%x_2 + (ax_2 - by_2)%y_2)]$$

= $\frac{1}{2} [x_1%x_1 + x_1%y_1 + (ax_2 - by_2)%x_2 + (ax_2 - by_2)%y_2]$
where J is the abnost complex structure of C².
Let R be the radial vector field:
 $R = z_1%z_1 + z_2%z_2$
= $\frac{1}{2} [(x_1%z_1 + y_1%y_1 + x_2%x_2 + y_2%y_2)]$
 $-Ji (-y_1%x_1 + x_1%y_1 - y_2%x_1 + x_2%y_2)]$
= $\frac{1}{2} [(x_1%z_1 + y_1%y_1 + x_2%x_2 + y_2%y_2)]$
 $-Ji (-y_1%x_1 + x_1%y_1 - y_2%x_1 + x_2%y_2)]$
We have an equation of estimation.
Lemma. Z is tangent to S⁽¹⁾ at $p = (z_1, z_2) \in S(1)$
 $\frac{1}{2} (x_1, x_2, x_2) = 0$ and $(z_3x_1, x_2) = 0$

φ
$\langle \Xi, \vec{R} \rangle_{c} = z_{1} \cdot \overline{z_{1}} + \lambda z_{s} \cdot \overline{z_{s}} = \langle x, \vec{n} \rangle - \sqrt{-1} \langle JX, \vec{n} \rangle = 0$
The solution of Z with the initial condition $w = (w_1, w_2) \in \tilde{S}(1)$
is $L_1 = \{(z_1, z_2) = (w_1 e^T, w_2 e^{\lambda T}) \mid T = s + Fit \in \mathbb{C}\}$. Consider
$L_{n}S_{c1}^{3} = \{ w_{1} ^{2}e^{2s} + w_{5} ^{2}e^{2(as-bt)} = 1 \}.$
<u>Case 1</u> $a = \frac{n}{m} > 0$, $b = 0$ (i.e. λ is positive rational)
$L_{10}S^{*}(1) = \left\{ (w_{1}e^{e^{e}e^{F_{1}t}}, w_{2}e^{\frac{h}{m}s_{0}} \cdot e^{F_{1}\frac{h}{m}t}) \mid t \in \mathbb{R} \right\}$
F(Z) is the Seifert fibration.
<u>Case 2</u> b=0, a>0 irrational (i.e. Lis positive irrational)
$L_n S^{(1)} = \{ (w_i e^{s_i} e^{Fit}, w_i e^{as_i} e^{Fiat}) \mid t \in \mathbb{R} \}$
Fi(Z) stip is the irrational flow on torus S'(wile") × S'(
$w_{s} e^{as}) \subset S(i).$
<u>Case 3</u> $b \neq 0$, i.e. $\lambda \notin \mathbb{R}$
F(Z) is the Morse-Smale foliation.
15(1) //RIN=1
$\frac{ z_s =1}{as-bt=0}$



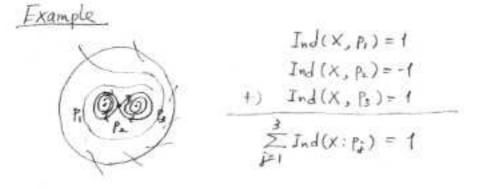
Definition of transversality between Z and S (r) Let Fi(Z) be the foliation defined by orbits of a holomorphic vector field Z on Cⁿ, n≥2. F(Z) is transverse to S(r) if the following equation is satisfied for each point pescr: Tp(\$(2)) + Tp S(r) = Tp R²ⁿ $\left(i.e. \quad \sum_{i=1}^{n} f_i(\alpha) \cdot \overline{x_i} \neq 0 \quad for \quad \alpha = (\alpha_1, \cdots, \alpha_n) \in S(r) \right)$ Example Given non-zero complex numbers 21, --, 2n ECT. If the origin OEC does not belong to the convex hull H(1, ..., In) of the subset { 1, ..., In} CC. Take a linear vector field Z = Z 1; 2; 32; , then F(Z) is transverse to S(r).

Froblem We consider a non-singular vector field Z on
$$\mathbb{C}^{2}$$
:
 $Z = (a_{1}(c_{2_{1}}+z_{2})+b_{1})\mathscr{H}_{z_{1}} + (a_{2}(c_{2_{1}}+z_{2})+b_{2})\mathscr{H}_{z_{2}}, a_{2_{2}}, b_{2_{2}}, c_{2_{2}}, c_{2_{2}}, b_{2_{2}}, c_{2_{2}}, c_$

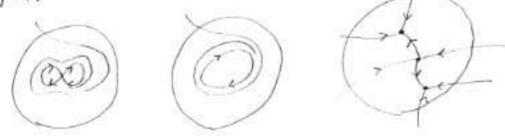
§ Poincaré-Hopf Theorem and Poincaré-Bendixson Theorem First, we recall the classical theorem of Poincaré-Hopf. Given a smooth differential equation $X : \frac{dx}{dt} = f(x,y)$, $\frac{dy}{dt} = g(x,y)$ on \mathbb{R}^2 or a smooth vector field $X = f(x,y) \mathcal{F}_X + g(x,y) \mathcal{F}_y$. Assume that (1) Sing(X) = $\{f = 0, J = 0\} \cap D^{(1)}$ is finite and (2) X is transverse to the boundary $\partial D^{(1)} = S^{(1)}$. Then we have the following equation : $\sum_{p \in Sing(W) \cap D^{(1)}} = \mathcal{X}(D^{(1)}) = 1$ $p \in Sing(W) \cap D^{(1)}$

where $\mathcal{X}(\mathcal{D}(U))$ is the Euler number of $\mathcal{D}(U)$ and $\mathrm{Ind}(X, p)$ is defined by the degree of map F: $F: S^{1}(p; \epsilon) \longrightarrow S^{1}(1)$

$$(x,y) \longrightarrow \frac{(f(x,\theta), f(x,\theta))}{\sqrt{f^2 + f^2}} \qquad (\sum_{s(1)} S_{(1)})$$



Secondly, I explain the Poincaré-Bendixson theorem. Under the hypothesis, the curve of solution of X which crosses to 20°CC) tends to (1) figure 8 or (ii) closed curve or (iii) singular point of X.



Remark : In the case of R", n≥3, this theorem is not true.

In the case of holomorphic vector field on \mathbb{C}^n , $n \ge 2$. <u>Theorem</u> (A. Douady, and T. Ito) Assume that Z is transverse to the boundary $\partial D^2(1)$. Then,

(1) there exists only one singular point p of Z inside DCi), Ind(Z, P) = 1, det (D(Z)(P)) = 0

(2) each solution of Z which crosses to DCI) tends to the singular point P. More particulars, by Möbius transformation we map p to the origin 0, each sphere $S^{2n-1}(r)$, $0 < r \le 1$, is transverse to Z.

- Example Take $Z = (2z_1 + az_2^2) z_1 + z_2 z_2$. Sing (2) consists of a singular point O. There exists a number $r_0 > 0$ such that (i) if $0 < r < r_0$, Z is transverse to S²(r), (ii) if $r \ge r_0$, Z is not transverse to S²(r). We set $\Sigma = \{z \in \mathbb{C}^n \mid (2z_1 + az_2^2) \overline{z_1} + z_2 \cdot \overline{z_2} = 0\}$.
- (a) $\sum n S(r_0)$ is diffeomorphic to the circle S¹ and consists of degenerate critical points.
- (b) $\sum_{n} S^{*}(r)$, $r > r_{o}$, is diffeomorphic to the disjoint union $S' \perp S'$ of two copies of the circle S^{1} . One circle of $\sum_{n} S^{*}(r)$ consists of minimal points and the other consists of saddle points.

Example We consider $Z = Z_1 (1 + F_1 - Z_1 Z_2) Z_{21} + Z_2 (1 - F_1 - Z_1 Z_2) Z_{22}$ on \mathbb{C}^2 . The singular set consists of a single point O. If $0 < r < \sqrt{2}$, $\Sigma_n S_1^{(r)}$ is empty. If $r = \sqrt{2}$, $\Sigma_n S_1^{(v_2)}$ is diffeomorphic to the circle S'. Indeed $\Sigma_n S_1^{(v_2)}$ belongs to the solution $Z_1 Z_2 = 1$ of Z. If $r > \sqrt{2}$, $\Sigma_n S_1^{(r)}$ is diffeomorphic to the disjoint anion $S' \perp S'$ of two copies of the circle S' and consists of saddle points. Problem Let Z be a holomulphic vector field with two properties : (i) $Sing(Z) = S_0 J$, (ii) if $0 < r < r_0$, $\Sigma_n S_1^{(r_1)}$ is empty. In this siduation, if $\Sigma_n S_1^{(r_0)}$ is not empty, then is Σ connected in a neighborhood U of $g \in \Sigma_n S_1^{(r_0)}$?

§ The case of dim E = 2

In this section, we give an example.

Example. (T. Ito and M. Toshino) Take complex numbers 21, ..., λ_n , μ_1 , ..., $\mu_n \in \mathbb{C}^*$ and assume that the origin 0 belongs to H(λ_1 , ..., In) and H(1,..., Mn). We make the following assumption : There exist real numbers G and C2 such that H(G), + C2H1, ..., cixn+capa) \$0. Consider linear vector field X = 2 1/2; 32; and Y= Spizz Bz; . Then it is clear that [X, Y] = 0 so that X and Y span a foliation Fi of complex dimension two on C. Also Fe has as singular set Sing (Fe) the union of the coordinate axis. Denote by $\Sigma(X)$ the set of tangent points of X with the generes $S^{*}($ r) $\subset \mathbb{C}^n$, any r ≥ 0 , then we have $\Sigma(X)$ given by the equation $\sum_{i=1}^{n} \lambda_i |z_i|^2 = 0$. This is a real cone. Analogously we define $\Sigma(Y)$ and describe it by the equation $\sum_{i=1}^{n} \mu_i |z_i|^2$ = 0. Under the assumption, we have $\Sigma(x) \cap \Sigma(Y) = \{o\}$.

Fis transverse to Str) ((Singlat) n Str), r>0.

Moreover each leaf of Fraccumulates the origin.

- § A Poincaré Hopf type theorem for holomorphic one-form Let $\omega = \sum_{j=1}^{n} f_j(z) dz_j$ be a holomorphic one form on \mathbb{C}^n , $n \ge 2$, and $P_{os} = \{z \in T\mathbb{C}^n \mid \omega(z) = o\} \subset T\mathbb{C}^n$ the corresponding holomorphic distribution. Denote by $Sing(\omega) = \{f_1 = 0, \dots, f_n = o\}$ the singular set of ω .
- <u>Definition</u>. Point transverse to the sphere S(1) if Point satisfies (1) and (2): (1) $Sing(\omega) \cap S^{n-1}(1)$ is empty and (2) $(P_{\omega})_{g} + T_{g}S^{n-1}(1) = T_{g}R^{2n}$ for all $g \in S^{2n-1}(1)$.
 - For $p \in Sing(w)$, Ind(w:p) means the degree of the map F: $S^{m'}(p:\epsilon) \longrightarrow S^{m'}(1)$ defined by $F(\epsilon) = \frac{(f_1(0), \cdots, f_m(\epsilon))}{\sqrt{|f_1(\epsilon)|^2 + \cdots + |f_m(\epsilon)|^2}}$.

Theorem (T. Ito and B. Scárdua) If Por is transverse to sphere Sci), we have the following equation:

$$\sum_{p \in Sing(W) \cap D^{sy}(D)} = (-1)^n \mathcal{X}(D^{sy}(D)) = (-1)^n$$

Corollary (i) n is even.
(ii)
$$\omega$$
 has exactly one singular point $p \in \tilde{D}^{2n}(1)$
(iii) $\det\left(\frac{\partial f_{i}}{\partial 2n}(p)\right) \neq 0$
Example Take $\omega = \sum_{j=1}^{n} (Z_{2j} dZ_{2j-1} - Z_{2j-1} dZ_{2j})$ on \mathbb{C}^{2n} .
 ω is not integrable because $\omega_{\Lambda} d\omega = -2Z_{4} dZ_{1} \Lambda dZ_{2} \Lambda dZ_{2} - \cdots$

 $\neq 0$. Since $\omega(\vec{R}) = 0$, P_{ω} is transverse to S_{i} and $S_{ing}(\omega) = \{o\}$.

Example Let $\omega = \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} z_j) dz_i$ be a linear one form on \mathbb{C}^n , $n \ge 3$, satisfied with (1) $\operatorname{Sing}(\omega) \cap \operatorname{S}^{2n-1}(1) = p$ and (2) $\omega \wedge d\omega = 0$. Then $\operatorname{P}\omega$ is not transverse to $\operatorname{S}^{2n-1}(1)$.

<u>Example</u> Take a logarithmic one form $\omega = z_1 z_2 z_3 \left(\sum_{j=1}^3 \lambda_j \frac{dz_j}{z_j} \right)$ on \mathbb{C}^3 , where $\lambda_j \in \mathbb{C}^*$, j=1,2,3, $\lambda_{ij} \neq \mathbb{R}$, $i \neq j$, and $\lambda_1 + \lambda_2 + \lambda_3 \neq 0$. $\exists i(\omega)$ satisfies (i) $Sing(\omega) = \bigcup_{l \neq j} \{z_l = 0, z_j = 0\}$

ROUTE CONTRACT, SHEET, Secondary, Status

(ii) Few) is transverse to S'(1) culside Sing(w) n S(1).

<u>Problem</u> Let ω be a holomorphic Tone form on \mathbb{C}^3 . Assume Codim (Sing(ω)) ≥ 2 . If $\exists i(\omega)$ is transverse to S(i) outside Sing(ω) \cap S⁽¹⁾, what happens $\exists i(\omega)$ in D(1)?

- § Applications Let $\omega = \sum_{j=1}^{2^{m}} f_j(z) dz_j$ be a holomorphic one form on $U^{2^{m}}$. Assume Pw is transverse to S^{m-1} .
- Theorem Under the above hypothesis, if there exists a (Ito and Scardua) holomorphic vector field ξ on U such that ξ is transverse to $S^{4m-1}(1)$ and $\omega(\xi) = 0$ in a neighborhood of $S^{4m-1}(1)$, then ω is not integrable.
- Denote by A(2m) the set of all $2m \times 2m$ skew-symmetric complex matrices and A(2m) the subset of non-singular elements in A(2m). If $A = (a_{ij})$ belongs to A(2m), then for $m \ge 2$, the one form $\Omega_A = \sum_{i,j=1}^{2m} a_{ij} \ge i d_{ij}$ defines a non-integrable distribution transverse to the spheres $S^{4m-1}(r) \subset \mathbb{C}^{2m}$, r > 0. A particular case is the one-form $\Omega_{II(2m)} = \sum_{j=1}^{m} (\mathbb{Z}_{2j-1} d_{2j} - \mathbb{Z}_{2j} d_{2j-1})$. Theorem Let $m \ge 2$. Given $A \in AI(2m)$, $Ker(\Omega_{I(2m)})$ and

Ker (QA) admit no integral manifold through the origin.

Theorem Let ω be a holomorphic one-form in a neighborhood (It and seardua) U of $D^{4m}(1) \subset \mathbb{C}^{2m}$ and such that (1) $\omega(\vec{R}) = 0$, where \vec{R} is the radial vector field in \mathbb{C}^{2m} and (2) $\operatorname{Sing}(\omega)_{\Omega} \overset{\omega m-1}{S}(1) = \phi$. Then Ker(ω) is homotopic to the linear distribution Ker($\Omega_{27(am)}$) by distribution Ker(ω_{2}), $o \leq s \leq 1$, such that $\omega_{0} = \omega$ and ω_{1} $= \Omega_{37(am)}$, where ω_{3} is holomorphic and satisfies (1) and (2) above.

Theorem Let ω be a holomorphic, integrable one form in a (Its and Scardua) neighborhood U of $D^{4m}(1)$, $m \ge 2$ and transverse to the boundary $S^{4m-1}(1)$. If $\mathcal{F}(\omega)$ has some leaf L_0 with $0 \in \overline{L_0}$ and which is closed in $U \setminus Sing(\omega)$ and transverse to every sphere $S^{4m-1}(r)$, $0 < r \le 1$, then n = 2.