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Abstract

We classify all functions satisfying non-trivial families of Painlevé
VI equations. Each family is parameterized by an affine space. This
affine space, except for the so-called constant families, is generated
by points of ”geometric origin”, associated either to deformations of
elliptic surfaces with four singular fibers, or to deformations of three-
sheeted covers of P1 with branching locus consisting of four points.
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1 Introduction

Consider the Painlevé VI ( PVIα) equation
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parameterized by α = (α0, α1, α2, α3) ∈ C4. Although any solution of PVIα,
for generic αi, is transcendental (and even a ”new transcendental function”)
there is a large amount of solutions which are algebraic in t. Their general
classification is still an open problem (e.g. [15, Manin]), except in the par-
ticular case α1 = α2 = α3 = 0 [4, Dubrovin, Mazzocco], [16, Mazzocco]. The
present paper addresses the question of classifying families of algebraic solu-
tions. The simplest case occurs when a given algebraic solution satisfies each
member of a non-trivial family of PVIα equations. By a non-trivial family
of PVIα equations we mean a set {PVIα}α containing at least two distinct
elements corresponding to, say, α′ and α′′. Then this solution satisfies the
PVIα equations corresponding to the affine line containing α′ and α′′. It
follows that each non-trivial family as above corresponds to an affine plane
in the parameter space C4{α}. We classify all such affine spaces, together
with their associated algebraic solutions (Theorem 1, Table 1). The proof
of Theorem 1 does not use the notion of Picard-Fuchs equation. It turns
out that the solutions 2A, 2B, . . . , 5L on Table 1 coincide surprisingly with
the solutions obtained earlier by Doran, who used deformations of elliptic
surfaces with four singular fibers and the related Picard-Fuchs equations, see
Theorem 2.

The second purpose of the paper is to give a partial explanation of the
above coincidence. Recall that each solution (λ(t), α) of a given PVIα equa-
tion governs the isomonodromy deformation of an appropriate 2×2 Fuchsian
system with four singular points. We say that such a deformation is geomet-
ric, if there is a fundamental matrix of solutions whose entries are Abelian
integrals depending algebraically on the deformation parameter. A geometric
deformation of a Fuchsian system is isomonodromic, and defines an algebraic
solution (λ(t), α) of an appropriate PVIα equation. When this holds true,
we say that the algebraic solution (λ(t), α) of PVIα is of geometric origin.

The solutions (λ(t), α′) of geometric origin coming from deformations of
elliptic surfaces with four singular fibers were computed by Doran [3] (this
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result is summarized in Theorem 2 and Table 4). We shall prove that to each
such (λ(t), α′), we may associate a parameter α′′ 6= α′, such that (λ(t), α′′)
is still of geometric origin, and governs the deformation of a ramified cover
of P1 with four ramification points (Theorem 3 and Table 5). On its turn
this already implies that λ(t) is a common solution of the family {PVIα}α,
where α belongs to the affine line containing α′ and α′′. This explains why
the solutions λ(t) found by Doran reappeared in Theorem 1. Finally we note
that the converse is also true (although there is no apparent reason for this).
Namely, each affine space of PVIα equations on Table 1, except the families
0A,. . . ,1F, is generated by points α′ and α′′ given in Table 4 and Table 5
respectively.

Acknowledgments. We thank the anonymous referees for the valuable
recommendations. The solution 1A, as well its relation to the family 2A was
pointed out to us by Philip Boalch. We acknowledge his interest and critical
remarks.

2 Families of Painlevé VI equations having a

common solution

Let λ = λ(t) be a solution of the equations PVIα′ , PVIα′′ , α′ 6= α′′. Then
λ(t) satisfies the implicit equation

β0 − β1
t

λ2
+ β2

t− 1

(λ− 1)2
− β3

t(t− 1)

(λ− t)2
= 0 (1)

where β = α′ − α′′ = (β0, β1, β2, β3), and hence it is an algebraic function.
The function λ(t) satisfies, moreover, the family {PVIα}α, where α belongs
to the affine line

{α′ + s(α′ − α′′) : s ∈ C} ⊂ C4.

It is seen from this that the set of all α such that PVIα is satisfied by the
function λ(t) form an affine subspace of C4. We refer to the set of these
PVIα equations as to a family of Painlevé VI equations having a common
solution.

Theorem 1 The list of all families of Painlevé VI equations having a com-
mon solution, together with the corresponding solution, is shown in Table 1.
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Remark 1 The meaning of the solutions 0A-0D is as follows. If we write
down the PVIα equation as an equivalent hamiltonian non-autonomous sys-
tem on C2 (e.g. [10, Theorem 1.5.2])) then λ = 0, 1, t defines a solution
of this system if and only if α1 = 0, α2 = 0, α3 = 1/2. One may fur-
ther complete canonically C2 to a surface Σ (the so called ”space of initial
conditions”), such that PVIα induces a foliation on Σ × {P1 \ {0, 1,∞}}
which is uniform with respect to the trivial fibration Σ× {P1 \ {0, 1,∞}} →
P1 \{0, 1,∞} (see [17, Okamoto] for details). Then λ = 0, 1, t,∞ correspond
to leaves of this foliation, e.g. [17, p.45-47], if and only if α1 = 0, α2 = 0,
α3 = 1/2, or α4 = 0 respectively.

Remark 2 Each solution λ(t) can be defined by a relation P (λ(t), t) ≡ 0
where P is an irreducible polynomial. This polynomial is given in Table 1.
The solutions in each of the 6 series of families on Table 1 are equivalent up
to a S4-symmetry of Painlevé VI equation (see section 2.1).

Remark 3 The solutions 1A, 1B, . . . , 1F depend on the ratio a/b ∈ C. There-
fore they are solutions in a different sense to all the others. However, for
every fixed value of a/b they are common solutions of a family (affine line)
of PVIα equations. It turns out that they are Okamoto equivalent to the
solutions 2A, 2B, 2C which do not contain a parameter. More precisely, the
solution 1A

aλ2 − bt = 0, α = (a, b,
1

8
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1

8
)

is equivalent, after applying the transformation w2 of Okamoto [18, p.363],
to the solution λ2 − t = 0 where the parameter α equals to
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Thus, up to Okamoto equivalence, the families of Painlevé VI equations hav-
ing a common solution are represented (for instance) by the four families
2A, 3A, 4A, 5A on Table 1.

Outline of the Proof. Denote by Γβ the compactified and normalized
algebraic curve defined by (1), with affine model

Γaff
β = {(λ, t) ∈ C2 : N(λ, t) = 0} (2)
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Name Solution of PVIα equation PVIα equation

0A λ = t (a, b, c, 1
2
)

0B λ = 1 (a, b, 0, c)
0C λ = 0 (a, 0, b, c)
0D λ = ∞ (0, a, b, c)

1A aλ2 − bt (a, b, 1
8
, 1

8
)

1B a(λ− 1)2 + b(t− 1) (a, 1
8
, b, 1

8
)

1C a(λ− t)2 − bt(t− 1) (a, 1
8
, 1

8
, b)

1D −at(λ− 1)2 + b(t− 1)λ2 (1
8
, a, b, 1

8
)

1E a(λ− t)2 + b(t− 1)λ2 (1
8
, a, 1

8
, b)

1F a(λ− t)2 − bt(λ− 1)2 (1
8
, 1

8
, a, b)

2A λ2 − t (a, a, b, b)
2B λ2 − 2λ + t (a, b, a, b)
2C λ2 − 2λt + t (b, a, a, b)

3A λ4 − 6λ2t + 4λt + 4λt2 − 3t2 (a, 9a, a, a)
3B 3λ4 − 4λ3 − 4λ3t + 6λ2t− t2 (9a, a, a, a)
3C λ4 − 4λ3 + 6tλ2 − 4t2λ + t2 (a, a, 9a, a)
3D λ4 − 4tλ3 + 6tλ2 − 4tλ + t2 (a, a, a, 9a)

4A λ4 − 2tλ3 − 2λ3 + 6tλ2 (a, 1
8
, a, a)

−2t2λ− 2tλ + t3 − t2 + t
4B λ4 − 2tλ3 + 2t2λ− t3 (a, a, 1

8
, a)

4C λ4(t2 − t + 1)− 2λ3t(t + 1) + 6t2λ2 (1
8
, a, a, a)

−2λt2(t + 1) + t3

4D λ4 − 2λ3 + 2tλ− t (a, a, a, 1
18

)

5A −2λ3 + 3tλ2 + 3λ2 − 6tλ + t2 + t (4a, 1
8
, a, a)

5B λ3 − 3λ2 + 3tλ− 2t2 + t (a, 1
18

, 4a, a)
5C λ3 − 3tλ2 + 3tλ + t2 − 2t (a, 1

18
, a, 4a)

5D 2λ3 − 3tλ2 + t2 (4a, a, 1
18

, a)
5E λ3 − 3tλ + 2t2 (a, 4a, 1

18
, a)

5F λ3 − 3tλ2 + 3tλ− t2 (a, a, 1
18

, 4a)
5G λ3(2− t)− 3tλ2 + 3t2λ− t2 ( 1

18
, a, 4a, a)

5H λ3(t + 1)− 6tλ2 + 3t(t + 1)λ− 2t2 ( 1
18

, 4a, a, a)
5I (1− 2t)λ3 + 3tλ2 − 3tλ + t2 ( 1

18
, a, a, 4a)

5J λ3 − 3λ2 + 3tλ− t (a, a, 4a, 1
18

)
5K λ3 − 3tλ + 2t (a, 4a, a, 1

18
)

5L λ3 − 3λ2 + t (4a, a, a, 1
18

)

Table 1: List of all algebraic solutions satisfying families of PVIα equations
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where

N(λ, t) = β0λ
2(λ− 1)2(λ− t)2 − β1t(λ− 1)2(λ− t)2

+ β2(t− 1)λ2(λ− t)2 − β3t(t− 1)λ2(λ− 1)2 = 0.

In the case when Γβ is irreducible, the relation {N(λ, t) = 0} defines an alge-
braic function λ(t). If this function were a solution of some PVIα equation,
then the only ramification points of λ(t) would be at t = 0, 1,∞ (because
PVIα satisfies the so called Painlevé property [10]). Equivalently, the pair
(Γβ, t) is a Belyi pair, which means that the only possible critical values of
the map

π : Γβ → CP1 : (λ, t) → t (3)

are 0, 1 or ∞. This means also that if ∆(t) is the discriminant of N(λ, t)
with respect to λ, then it is a polynomial whose only roots are at t = 0 and
t = 1. A direct computation shows that this is impossible. The more difficult
case is when N(λ, t) is reducible over C. Then Γβ defines several algebraic
functions and we have to apply the above to each of them. Finally we have
to check whether the obtained function is actually a solution of some PVIα

equation. To check whether a given polynomial N(λ, t) is reducible over C is
a difficult task in general. We shall make use of the action of the symmetric
group S4 (see section 2.1) on the set of curves Γβ, parameterized by β ∈ CP3.

It turns out that, first, curves Γβ with a trivial stabilizer under the action
of S4 can not produce a solution of PVIα. The stabilizer of a curve acts
on it as a group of automorphisms (symmetries) which imposes additional
restrictions on β.

The second ingredient of the proof is the study of the Puiseux expansion
of λ(t) in a neighborhood of t = 0, 1,∞ (section 2.2). These expansions
depend on the stabilizer of Γβ only and imply the possible topological types
of the solution λ(t). Equivalently, to each solution λ(t) we associate a Belyi
pair and the Puiseux expansions determine their possible dessin d’enfant.
The algebraic functions which we obtain in this way are, a posteriori, the
solutions of the PVIα presented in Table 1.
Proof of Theorem 1.

2.1 The action of S4

The set of automorphisms of the projective line CP1 which send four distinct
points (0, 1, t,∞) to the points (0, 1, t̃,∞) (t̃ = t̃(t) is uniquely defined) form
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a group isomorphic to S4 generated by the transpositions

x1 : s 7→ 1− s, x2 : s 7→ 1

s
, x3 : s 7→ t− s

t− 1
. (4)

Each xi sends an isomonodromic family of Fuchsian systems with singular
points at 0, 1, t,∞ to an isomonodromic family of such systems with singular
points at 0, 1, t̃,∞. Therefore xi induce an action of S4 on the set of PVIα

equations, and hence on the set of curves Γβ. Explicitly we have

xi : Γβ → Γxi
∗(β) : (λ, t) → (xi(λ), xi(t)), i = 1, 2 (5)

and

x3 : Γβ → Γx3
∗(β) : (λ, t) → (x3(λ), x3(0)) = (

t− λ

t− 1
,

t

t− 1
) (6)

where 
x1
∗ : (β0, β1, β2, β3) → (β0, β2, β1, β3)

x2
∗ : (β0, β1, β2, β3) → (β1, β0, β2, β3)

x3
∗ : (β0, β1, β2, β3) → (β0, β3, β2, β1)

(7)

which is the standard representation of S4 on C4 (upon identifying ∞, 0, 1, t
to β0, β1, β2, β3 respectively). The proof of the above facts is straightforward,
see [10] for details.

2.2 The topological type of the projection Γβ → CP1 in
a neighborhood of the pre-image of t = 0, 1,∞

Let Γβ be the compactified and normalized curve defined by (2) (it is a dis-
joint union of Riemann surfaces). In this section we determine the topological
type of the projection (3)

Γβ → CP1

in a neighborhood of the pre-image of t = 0, 1,∞ in Γβ. In the projective
space CP3 with coordinates [β0 : β1 : β2 : β3] consider the complex polyhe-
dron W formed by the ten planes (2-faces)

W = ∪i6=j{βi = βj} ∪k {βk = 0}. (8)

It has also 45 1-faces (projective lines) and 120 0-faces (points). We shall
see in the process of the proof that the topological type of the projection in
a neighborhood of the pre-image of t = 0, 1,∞ is one and the same when
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β belongs to a given i-face, but does not belong to any other j-face with
j < i. For this reason we shall use, until the end of this paper, the following
convention. When we say that a point β belongs to a given face (satisfies
some set of relations (8)), then this will mean that it does not belong to any
other face of smaller dimension (does not satisfy any other relation from the
list (8) ). The topological type in a neighborhood of the pre-image of any
point is determined by a partition of the degree of the map which is 6. Thus
a partition (1 + 1 + 1 + 1 + 2) means that we have 5 pre-images, and that
the multiplicity of π at each pre-image is 1, 1, 1, 1, 2 respectively. Similarly,
a partition (1 + 1 + 2 + 2) means that have 4 pre-images with multiplicities
1, 1, 2, 2 respectively etc. To formulate the result we note that the symmetric
group S4 acts on the polyhedron W by its standard representation (7), as
well on the set of curves Γβ by (5). The subgroup S3 generated by x1, x2

permutes the ramification points 0, 1,∞ according to (4) without changing
the topological type of the projection π over each of these points.

Proposition 1 The topological type of the projection (3) in a neighborhood
of the pre-image of t = 0, 1,∞ is one and the same when β belongs to a given
face of the polyhedron W or it does not belong to W . This topological type is
shown on Table 2 (one representative for each orbit of S3 =< x1, x2 >)

Proof The bi-rational transformations x1, x2 defined by (5) are compatible
with the projection π and permute the points t = 0, 1,∞. Therefore it suffices
to consider the pre-image of 0. Let us consider in detail the ”generic” case,
when β 6∈ W . It follows from the Newton polygon of N(λ, t), shown on fig.
1, that there are at least three Puiseux series in a neighborhood of (0, 0) (for
the terminology see for instance [12, Kirwan]). The first two correspond to
the line segment [(3, 0), (1, 2)] and have non-equivalent leading terms

λ = c1t + . . . , λ = c2t + . . .

where
(β3 − β1)c

2
1,2 + 2β1c1,2 − β1 = 0

provided that
β1 6= β3, β

2
1 + β1(β3 − β1) 6= 0.

The third one corresponds to the line segment [(1, 2), (0, 4)] and has leading
term

λ = c3t
1/2 + . . .
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Figure 1: The Newton polygon of N(λ, t) and N0(λ, t)

where
(β0 − β2)c

2
3 + β3 − β1 = 0,

provided that
β0 6= β2, β1 6= β3.

Taking into consideration that

N(λ, 0) = λ4(β0λ
2 − 2β0λ + β0 − β2)

we conclude that we have at least five pre-images of multiplicities at least
1, 1, 2, 1, 1 respectively. As the degree of the map π is six, then its topological
type is exactly (1 + 1 + 1 + 1 + 2). The topological type of the projection π
over 0 and 1 is obtained by acting with the group S3 generated by x1, x2.

In a similar way one verifies that when β0 = β2, or β1 = β3 the multi-
plicities are (1 + 1 + 1 + 3). If β0 = β2 and β1 = β3 the multiplicities are
(1 + 1 + 2 + 2). The case β0 = β1 = β3 is the same as β0 = β2 and the
multiplicity is (1+1+1+3). The case β0 = β1 = β2 = β3 is of the same type
as β0 = β2 and β1 = β3. The multiplicities of π over 1 and ∞ are obtained
as before. This completes the study of faces of W for which βi 6= 0. In the
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case β3 = 0 we consider the curve

Γ0
β = {(λ, t) ∈ C2 : β0 − β1

t

λ2
+ β2

t− 1

(λ− 1)2
= 0, λ 6= 0, 1}.

The polynomial N(λ, t) is replaced by

N0(λ, t) = β0λ
2(λ− 1)2 − β1t(λ− 1)2 + β2(t− 1)λ2

whose Newton polygon is shown on fig. 1. It follows that there is at least
one Puiseux expansion with leading term

λ = ct1/2 + . . . , β1 + (β2 − β0)c
2 = 0

provided that β1 6= 0, β2 6= β0. As

N0(λ, 0) = λ2(β0(λ− 1)2 − β2)

then t = 0 has at least three pre-images, provided that β0β2 6= 0. We
conclude that t = 0 has exactly three pre-images with multiplicities 2, 1, 1
respectively, provided that β belongs to the 2-face β3 = 0. The remaining
1-faces and 0-faces are studied in the same way. The result is summarized
on Table 2. It worth noting that in all cases the computing of the leading
term of the Puiseux expansion suffices to deduce the result.

We conclude this section by the following elementary claim which will be
often useful in the computations

Proposition 2 Let N1(λ, t) be a polynomial of non-zero degree with respect
to λ and of non-zero degree with respect to t, which divides N(λ, t), and
β1β2β3 6= 0. Then

N1(0, t) = c0t
n0 , c0 6= 0, 1 ≤ n0 ≤ 3, N1(1, t) = c1(t− 1)n1 , c1 6= 0, 1 ≤ n1 ≤ 3

and

N1(t, t) = c2t
m0(t− 1)m1 , c2 6= 0, 1 ≤ m0, 1 ≤ m1, m0 + m1 ≤ 3.

Proof. We have N(0, t) = −β1t
3. For a fixed λ = c ∼ 0 the polynomial

N(c, t) ∈ C[t] has exactly three roots which tend to zero when c tends to
zero. Therefore the polynomial N1(c, t) ∈ C[t] has at least one and at most
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face of W stabilizer t = 0 t = 1 t = ∞
βi 6= βj S4 (1+1+1+1+2) (1+1+1+1+2) (1+1+1+1+2)
β0 = β2 S2 × S2 (1+1+1+3) (1+1+1+1+2) (1+1+1+1+2)

β0 = β2, β1 = β3 D4 (1+1+2+2) (1+1+1+1+2) (1+1+1+1+2)
β0 = β1 = β2 S3 (1+1+1+3) (1+1+1+3) (1+1+1+3)

β0 = β1 = β2 = β3 S4 (1+1+2+2) (1+1+2+2) (1+1+2+2)
β3 = 0 S3 (1+1+2) (1+1+2) (1+1+2)

β0 = β2, β3 = 0 S2 (1+3) (1+1+2) (1+1+2)
β0 = β1 = β2, β3 = 0 S3 (1+3) (1+3) (1+3)

β2 = β3 = 0 S2 × S2 (2) (1+1) (2)
β2 = β3 = 0, β0 = β1 S2 × S2 (2) (1+1) (2)

Table 2: Multiplicity of π at the pre-images of t = 0, 1,∞.

three roots which tends to zero when c tends to zero, which proves the claim
concerning N1(0, t). The claim concerning N1(1, t) is proved in the same way.
As N1(0, 0) = N1(1, 1) = 0 then N1(t, t) is divided by t(t−1) but also divides
N(t, t) = −β3t

3(t− 1)3. �
We are ready to compute the solutions of PVIα corresponding to the

faces of W . Let Γ be the Riemann surface of an irreducible component of Γβ,
which defines a solution of some PVIα equation. Then the only ramification
points of the induced map

π : Γ → CP1 : (λ, t) → t (9)

are at 0, 1,∞, and Γ is connected. The pair (Γ, π) is called a Belyi pair,
to which we associate a dessins d’enfant, which is the graph obtained as a
pre-image of the segment [0, 1] under the map π. The degree of the dessin is
the degree of π (see [20]). The dessin d’enfant will be useful when describing
the topological type of the projection π.

2.3 The case β 6∈ W

We suppose that λ(t) is an algebraic function, such that N(λ(t), t) ≡ 0, and
consider the corresponding Belyi pair (Γ, π), (9). Let {λ1, . . . , λd} = π−1(t0)
where t0 6= 0, 1,∞. The loops originating from t0 and going clockwise once
around 0, 1 and∞ induce permutations σ0, σ1 and σ∞ of the points λ1, . . . , λd,
such that σ0σ1σ∞ = 1. According to Table 2 σ0, σ1 and σ∞ are transpositions,
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c c c cs ss s0 1
0 1 0 1 0 1

(i) (ii) (iii)

Figure 2: Dessins of degree 1, 2 and 3

unless one of them is the identity permutation. In the former case (σ0σ1)
2 = 1

and hence σ0σ1 = σ1σ0. Thus σ∞ is a product of two disjoint transpositions,
which contradicts to Table 2. On the other, if one of the permutations
σ0, σ1, σ∞ is the identity, the group generated by them is either Z2 or is
trivial. This shows that the degree of π is either two (because the covering
(9) is connected), or one. The corresponding dessin d’enfants are shown on
fig.2 (i) and (ii) (in particular N(λ, t) ∈ C[λ, t] is reducible). If the dessin is of
degree one, then the solution is defined as λ = P (t), where P is a polynomial
(the coefficient of λ6 in the polynomial N(λ, t) is β0 6= 0). By Proposition
2 we conclude that either λ = t, or λ = t2 or λ = t3. But λ − t , λ − t2,
λ− t3 can not divide N(λ, t), provided that βi 6= 0. If the dessin is of degree
two, then λ(t) is defined by λ2 + 2p(t)λ + q(t) = 0. The functions p, q are
polynomials in t, because the coefficient of λ6 in the polynomial N(λ, t) is
β0 6= 0. Further, we may suppose (acting with an appropriate symmetry xi

on Γ, see section 2.1) that λ(t) is ramified over 0 and ∞ only. By Proposition
2 q(t) is a non-constant polynomial which divides t3. As p(t)2−q(t) is a non-
constant monomial of odd degree, then p(t) ≡ 0. Proposition 2 implies that
we have either λ2 = t or λ2 = t3. The polynomial λ2 − t3 can not divide
N(λ, t) while λ2 − t divides N(λ, t) if and only if β0 = β1 and β2 = β3 (this
case is excluded, as β 6∈ W ). The curve Γβ does not define a solution.

2.4 The face β1 = β2

The possible dessins d’enfant are determined as above. Namely, when one of
the permutations σ0, σ1, σ∞ is identity, the dessin is of degree one or two. Up
to a symmetry it is equivalent to the one shown on fig. 2 (i) or (ii). Reasoning
as in the case β 6∈ W we conclude that Γβ does not define a solution.

If, on the other hand, σ0, σ1 are non-trivial transpositions we have one
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more case compared to section 2.3: σ3 is cyclic of order three, and σ0, σ1

are non-disjoined permutations. Taking into account that the covering (9)
is connected, we conclude that the dessin is of degree three. Up to a sym-
metry, it is shown on 2 (iii) and λ(t) satisfies N1(λ(t), t) ≡ 0 where N1 is an
irreducible polynomial of degree three in λ dividing the polynomial N(λ, t),
defined after formula (2). We denote

N = N1N2, Γ
aff
1 = {N1(λ, t) = 0}, Γaff

2 = {N2(λ, t) = 0}, Γaff
β = Γaff

1 ∪Γaff
2 .

As before, let Γ1, Γ2, Γβ be the corresponding compactified and normalized
curves. The symmetry x1 is an automorphism of Γβ and hence it is either
an automorphism of the curves Γ1 and Γ2, or it permutes these curves (we
used that Γ1 is irreducible). Suppose first that x1 is an automorphism of Γ1.
Then the rational function

N1(λ, t)

λ(λ− 1)(λ− t)
= 1 +

A1

λ
+

B1

λ− 1
+

C1

λ− t

is invariant under the action of x1 too. Here A1, B1, C1 are polynomials in t
which divide t, t− 1 and t(t− λ) respectively (see (1)), and hence we have

A1(1− t) = −B1(t), B1(1− t) = −A1(t), C1(1− t) = −C1(t).

Similarly, if
N2(λ, t)

λ(λ− 1)(λ− t)
= 1 +

A2

λ
+

B2

λ− 1
+

C2

λ− t

then

A2(1− t) = −B2(t), B2(1− t) = −A2(t), C2(1− t) = −C2(t).

We conclude that C1(t) = c1t(t− 1), C2(t) = c2t(t− 1), which contradicts to
C1C2 = −β3t(t− 1)/β1, β1, β3 6= 0. Suppose now that the map x1 exchanges
the curves Γ1 and Γ2. Then we have

A1(1− t) = −B2(t), B1(1− t) = −B2(t), C1(1− t) = −C2(t).

The polynomial N(λ, t) is of degree three with respect to t and

A1A2 = −β1

β0

t, B1B2 = −β2

β0

(t− 1), C1C2 = −β3

β0

t(t− 1).

Therefore without loss of generality we may suppose that C1(t) = c1t, C2 =
c1(t−1) and A1(t) = a1t, B2 = b2(t−1) or A2(t) = a2t, B1 = b1(t−1), where
ai, bj 6= 0. In both cases the polynomials N1(λ, t), N2(λ, t) are of degree two
in t, in contradiction to the fact that the degree of N(λ, t) with respect to t
is three. We conclude that the curve Γβ does not define a solution.
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2.5 The face β0 = β2, β1 = β3.

We have the identity

N(λ, t) = (λ2 − 2λ + t)(β0λ
2(λ− t)2 − β1t

2(λ− 1)2).

Indeed,
λ2 − 2λ + t = 0 (10)

defines a solution of PVIα, e.g. [3], Table 2, solution 2B. Its dessin is
equivalent to the one on fig. 2 (ii). The function λ(t) defined by

λ(λ− t)− ct(λ− 1) = 0, c = ±

√
β1

β0

is ramified over 0, 1,∞ only provided that c = 0,±1. This is, however,
impossible as β0 6= β1, βi 6= 0. The curve Γβ defines the solution (10).

2.6 The face β0 = β1 = β2.

According to Table 2 each of the permutations σ0, σ1, σ∞ is either the identity,
or is a cycle of length three.

If one of the permutations σ0, σ1, σ∞ is the identity then the group gen-
erated by σ0, σ1, σ∞ is either Z3 or the trivial one {1}, and hence the degree
of the corresponding dessin is one or three. The case of degree one does not
lead to a solution (see section 2.3). The case of degree three is studied as in
section 2.4 and does not lead to a solution too (provided that βi 6= 0).

If neither of the permutations σ0, σ1, σ∞ is the identity, then they are
disjoint three-cycles. As the symmetric group S3 contains only two three-
cycles we conclude that the degree of the projection π is at least four. Suppose
that λ(t) is defined by the polynomial N1, N1(λ(t), t) ≡ 0, where N1 ∈ C[λ, t]
is irreducible of degree four in λ. Then x1, x2 are automorphisms of

Γ1 = {N1(λ, t) = 0}.

It follows that the curve

Γ2 = {N2(λ, t) = 0}

defined by the polynomial N2 = N/N1 is also invariant. We have

N2(λ, t)

λ(λ− 1)
= 1 +

A

λ
+

B

λ− 1

14



where A, B are polynomials in t of degree at most three. The x1,2 invariance
of the above expression implies

A(t)A(1/t) = 1, A(1/t)B(t) = −B(1/t), B(t) = −A(1− t).

with solutions

A(t) = t, B(t) = t− 1; A(t) = t3, B(t) = (t− 1)3; A(t) = −t2, B(t) = (t− 1)2.

The case A(t) = t3, B(t) = (t−1)3 does not lead to a solution as N1(λ, t) does
depend on t. The case A(t) = −t2, B(t) = (t−1)2 implies N2(λ, t) = (λ−t)2,
and hence β3 = 0. Finally, in the case A(t) = t, B(t) = t − 1 we have
N2(λ, t) = λ2−2λ+2λt−t (which does not define a solution). The condition
that N2(λ, t) divides N(λ, t) leads to β3 = 9β0 and we get

N(λ, t) =
(
λ2 − 2 λ + 2 λ t− t

) (
t2 − 4 λ3t + 6 λ2t− 4 λ t + λ4

)
.

The function λ(t) defined by

t2 − 4 λ3t + 6 λ2t− 4 λ t + λ4 = 0 (11)

is indeed a solution of PVIα, e.g. [3], Table 2, solution 3D. In the case
when the dessin corresponding to λ(t) is of degree five we conclude that the
polynomial N2(λ, t) is linear in λ. By Proposition 2 we get N2(λ, t) = λ− t2

which implies β1 = 0. To resume, the curve Γβ defines a solution, provided
that β0 = β1 = β2 = β3/9.

2.7 The face β0 = β1 = β2 = β3.

We have
N(λ, t) = β0(λ

2 − 2λ + t)(λ2 − 2λt + t)(λ2 − t)

and the three algebraic functions defined by N(λ, t) = 0 are solutions of
suitable PVIα equations, e.g. [3], Table 2, solutions 2B, 2C, 2A respectively.
The curve Γβ defines three solutions

2.8 The face β3 = 0.

Recall that in this case N(λ, t) = (λ− t)2N0(λ, t) where

N0(λ, t) = β0λ
2(λ− 1)2 − β1t(λ− 1)2 + β2(t− 1)λ2.
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Indeed, λ = t is the so called constant solution 0B (because, up to a symme-
try, it coincides with λ = 0, 1,∞). To the end of this section the polynomial
N bill be replaced by N0 and the curve Γβ by Γ0

β = {N0(λ, t) = 0}. The same
arguments as in section 2.3 show that the corresponding dessin d’enfant is of
degree one or two.

If the degree is one, then the solution is λ = P (t) for some non-constant
polynomial P . Therefore N0(P (t), t) 6≡ 0 and P (t) can not be a solution.

If the degree is two, then λ(t) has exactly two ramification points. With-
out loss of generality we suppose that these points a 0 and ∞, and as in
section 2.3 we conclude that λ(t) is defined by λ2 + 2p(t)λ + q(t) = 0 for
some p, q ∈ C[t]. The polynomial λ2 + 2p(t)λ + q(t) divides

N0(λ, t) = t(β2λ
2 − β1(λ− 1)2) + β0λ

2(λ− 1)2 − β2λ
2

and hence p(t) = c1 and q(t) = c2t for some constants c1, c2. Without loss
of generality we suppose that the ramification points of λ(t) are 0 and ∞
and hence the discriminant 4(p2 − q) is a power of t. This implies that c1 =
0. Finally, a direct computation shows that the identity N0(

√
−c2t, t) ≡ 0

implies β2 = 0 which is not true. The curve Γ0
β does not define a solution.

2.9 The face β3 = 0, β0 = β2.

It is easier to analyze the face β3 = 0, β1 = β2, which is equivalent to β3 =
0, β0 = β2 after applying the transformation x2. Suppose for a moment that
β3 = 0, β1 = β2. The dessin is of degree at most three, and hence N0(λ, t)
is reducible. It follows that λ − c divides N0(λ, t) for some constant c. As
N0(λ, t) is linear in t, then λ − c is deduced from the coefficient of t which
equals to β1(1 − 2λ). Thus c = 1/2 and the condition that 1 − 2λ divides
N0(λ, t) leads to β0 = 4β1 = 4β2, in which case

N0(λ, t) = β0 (2 λ− 1)
(
2 λ3 − 3 λ2 + t

)
.

The function λ(t) defined by (2 λ3 − 3 λ2 + t) = 0 is indeed a solution, see [3],
Table 2, solutions 5L. Applying the transformation (x2)−1 = x2 of section
2.1 we get the solution (see [3], Table 2, solution 5K

λ3 − 3 λt + 2 t = 0

defined by Γ0
β with β3 = 0, β1 = 4β0 = 4β2. The curve Γ0

β defines a solution
provided that β3 = 0, β1 = 4β0 = 4β2.
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2.10 The face β3 = 0, β0 = β1 = β2.

The polynomial N0(λ, t) is irreducible and defines a solution, see [3], Table
2, solution 4D.

2.11 The face β3 = 0, β2 = 0.

The curve Γ0
β defines the constant solution λ = 1, 0B, as well the solution

1A β0λ
2 − β1t = 0.

2.12 The face β3 = 0, β2 = 0, β0 = β1.

The curve Γ0
β defines the constant solution λ = 1, 0B, and the solution λ2 = t,

2A.
The results are summarized in Table 1. Theorem 1 is proved.

3 Algebraic solutions of PVIα and Picard-Fuchs

equations

It was noted in the Remark after Theorem 1 that the families 1A, 1B, . . . , 1F
are Okamoto equivalent to the families 2A, 2B, 2C. To this end we consider
the remaining 23 families 2A−5L, see Table 1. To each of them corresponds
an affine plane or line in the parameter space C4{α} which, as we shall prove
bellow, is generated by special points α of geometric origin, see Tables 4 and
5. Indeed, observe that exactly the same 23 solutions 2A− 5L were already
obtained by Doran, see Theorem 2 bellow, by making use of deformations of
elliptic surfaces with four singular fibers. The corresponding special values
of the parameter α are given in Table 4. The main result of this section is
that exactly the same list of solutions can be obtained from deformations of
ramified covers of P1 with four ramification points. The corresponding values
of the parameters α are different and are shown on Table 5, see Theorem 3.

Recall that an elliptic surface is a complex compact analytic surface S
with a projection S → P1, such that the general fiber f−1(z) = Γz is an
elliptic curve. Two elliptic surfaces are equivalent, if there is a bi-analytic
map compatible with the projections, see [14, Kodaira].

We may suppose that the fiber Γz is written in the Weierstrass form

Γz = {(x, y) ∈ C2 : y2 = 4x3 − g2(z)x− g3(z)}
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and consider the complete elliptic integrals of first and second kind

η1 =

∫
γ(z)

dx

y
, η2 =

∫
γ(z)

xdx

y

where γ(z) ⊂ Γz is a continuous family of closed loops (representing a locally
constant section z 7→ H1(Γz, Z) of the associated homology bundle). Then
η1, η2 satisfy the following Picard-Fuchs system (this goes back at least to [6,
Griffiths], see [19, Sasai])

4(z)
d

dz

(
η1

η2

)
=

(
−4′

z

12
−3δ

2

−g2δ
8

4′
z

12

)(
η1

η2

)
(12)

where
4(g2, g3) = g3

2 − 27g2
3.

and

δ(z) = 3g3
dg2

dz
− 2g2

dg3

dz
.

The singular points of the system correspond to singular fibers of the surface.
The elliptic surfaces with four singular fibers were classified by [9, Herfurt-
ner] who obtained 50 distinct case, but only 5 of them contain an additional
parameter, see Table 3. They lead to non-trivial isomonodromic deforma-
tions of the above Picard-Fuchs system with four regular singular points. If
we renormalize the singular points to be 0, 1,∞, t then the zero λ of δ(z),
considered as a function in t is a solution of an appropriate PVIα equation,
see [18] for details. The result is summarized as follows

Theorem 2 [3, Theorem 3.13] All algebraic solutions (λ(t), α) of PVIα

equation coming from moduli of elliptic surfaces with four singular fibers are
shown on Table 1. The corresponding values of α together with the stabilizer
of the solution and the PVIα equation under the action of the symmetric
group S4 are listed on Table 4.

Remark 4 The Picard-Fuchs system (12) has generically an infinite mon-
odromy group. More precisely, let z 7→ (g2(z), g3(z)) be a curve intersecting
transversally the discriminant locus {g3

2 − 27g2
3 = 0} of Γz at some smooth

point (g2(z0), g3(z0)). The Picard-Lefschetz formula implies that the mon-
odromy of the first homology group H1(Γz, Z) along a small loop which makes
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one turn about z0 is represented by the unipotent matrix(
1 ±1
0 1

)
and hence the monodromy group of (12) is infinite. When the curve

z 7→ (g2(z), g3(z))

is chosen as on Table 3, the result also follows from [9, Table 1].

We shall deduce a Picard-Fuchs system closely related to (12), but having
a finite monodromy. Consider a ramified covering Γ → P1 of degree three
with branching locus consisting of four points, where Γ is a Riemann surface.
We choose an affine model Γaff = {(x, z) ∈ C2 : f(x, z) = 0} of Γ, where
f(x, z) = 4x3− g2x− g3, and g2 = g2(z), g3 = g3(z) are suitable polynomials.
Moreover, without loss of generality, we suppose that the covering Γ → P1 is
induced from the projection

{(x, z) ∈ C2 : f(x, z) = 0} → C : (x, z) 7→ z. (13)

Let x1(z), x2(z) be two distinct roots of f . Then γ(z) = x1(z) − x2(z) is a
0-cycle of the fiber {x : f(x, z) = 0} and the Abelian integrals above are
replaced by the algebraic functions

η1(z) =

∫
γ(z)

x = x1(z)− x2(z), η2(z) =

∫
γ(z)

x2 = x2
1(z)− x2

2(z).

A straightforward computation shows that η1, η2 satisfy the following Picard-
Fuchs system (see [5])

4(z)
d

dz

(
η1

η2

)
=

(
4′

z

6
−3δ

−g2δ
2

4′
z

3

)(
η1

η2

)
. (14)

As before, if we renormalize the system (14) to have singular points at
0, 1, t,∞, then the root λ(t) of δ(z) is a solution of a suitable PVIα equation,
provided that the deformation is isomonodromic. The last property holds,
strictly speaking, in the case when the system is non-resonant. In our case it
holds too, because the deformation is isoprincipal in the sense of [11]. This
can be also checked by a direct computation. Thus, if we consider the fibra-
tion (13) and take for g2, g3 the expressions found by Herfutner, see Table 3,
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we get the 23 algebraic solutions 2A-5L shown on Table 1. The correspond-
ing values for α are different, because the monodromy group of (14) is finite,
see Remark 4. They are computed in Table 5. In this way we proved

Theorem 3 The algebraic solutions (λ(t), α) of PVIα equation coming from
deformations of the covering (13) with g2, g3 as on the Herfutner list, Table
3, are shown on Table 1. The corresponding values of α together with the
stabilizer of the solution and the PVIα equation under the action of the
symmetric group S4 are listed on Table 5.

Remark 5 Particular cases of the Picard-Fuchs system (14), in a more or
less explicit way, were considered by many authors, e.g. [2, Boalch], [4,
Dubrovin-Mazzocco], [7, 8, Hitchin], [13, Kitaev].

To this end, for convenience of the reader, we explain how the solution
4A with α = (1/8, 1/8, 1/8, 1/8) follows from (14) and the Table 3. The
remaining solutions on Table 5 are computed in a similar way.

The Picard-Fuchs system (14) implies that the Abelian integral of first
kind η1 satisfies the following equation

p0(z, a)η′′1 + p1(z, a)η′1 + p2(z, a)η1 = 0 (15)

where

p0(z, a) = 144δ∆2

p1(z, a) = 144∆(δ
d∆

dz
−∆

dδ

dz
)

p2(z, a) = 12δ
d2∆

dz2
− 216δ3g2 − 12∆

dδ

dz

d∆

dz
− δ(

d∆

dz
)2.

Consider, for instance, the deformation 2 from the Herfurtner list (Ta-
ble 3)

g2 = g2(z, a) = 3z3(z + a)

g3 = g3(z, a) = z5(z + 1).

We have

∆ = ∆(g2, g3) = 27z9((3a− 2)z2 + (3a2 − 1)z + a3)

δ = δ(z, a) = −3z7((3a− 2)z + a).
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name deformation

1 g2(z, a) = 3(z − 1)(z − a2)3

g3(z, a) = (z − 1)(z − a2)4(z + a)

2 g2(z, a) = 12z2(z2 + az + 1)
g3(z, a) = 4z3(2z3 + 3az2 + 3az + 2)

3 g2(z, a) = 12z2(z2 + 2az + 1)
g3(z, a) = 4z3(2z3 + 3(a2 + 1)z2 + 6az + 2)

4 g2(z, a) = 3z3(z + a)
g3(z, a) = z5(z + 1)

5 g2(z, a) = 3z3(z + 2a)
g3(z, a) = z4(z2 + 3az + 1)

Table 3: The Herfurtner list of ”deformable” elliptic surfaces with four sin-
gular fibers

The Picard-Fuchs equation (15) takes the form

144z2((3a− 2)z + a)((3a− 2)z2 + (3a2 − 1)z + a3)2 η′′1

+144z((3a− 2)z2 + (3a2 − 1)z + a3)(3(3a− 2)2z3

+2(3a− 2)(3a− 1)(a + 1)z2 + a(3a3 + 7a2 − 3)z + 2a4) η′1

+[135(3a− 2)3z5 + (3a− 2)2(468a2 + 267a− 164)z4

+2(3a− 2)(189a4 + 522a3 − 48a2 − 208a + 10)z3

−2a(270a5 − 1269a4 + 252a3 + 460a2 − 70)z2

−a4(243a3 − 666a2 + 176)z + 27a7] η1 = 0

and has four regular singular points at ∞ and the roots of (3a − 2)z2 +
(3a2− 1)z + a3 (the roots of ∆), as well one apparent singularity at the root
of (3a− 2)z + a (which is a root of δ). Re-normalizing the singular points to
0, 1, t,∞ we get

λ =
a2 − a + 1

a2(2− a)
, t =

2a− 1

a3(2− a)
, a ∈ C. (16)
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The parameter a defines an algebraic isomonodromic deformation of the
Picard-Fuchs equation (15) with Riemann schema 0 1 t λ ∞

−3
4

1
4

1
4

0 5
4

−1
4
−1

4
−1

4
2 3

4

 .

Therefore the algebraic function λ = λ(t) determined implicitly by (16) is an
algebraic solution of PVIα equation with

α0 =
1

8
, α1 =

1

8
, α2 =

1

8
, α3 =

1

8
.

(see [10] for details). Eliminating a from (16) we get

λ4 − 2tλ3 − 2λ3 + 6tλ2 − 2t2λ− 2tλ + t3 − t2 + t = 0

which is an equation for the solution 4A with α = (1/8, 1/8, 1/8, 1/8). To-
gether with the Doran’s point α = (0, 1/8, 0, 0), this implies that the solution
λ(t) satisfies also the implicit equation (1)

1 +
t− 1

(λ− 1)2
− t(t− 1)

(λ− t)2
= 0

corresponding to the affine line through (1/8, 1/8, 1/8, 1/8) and (0, 1/8, 0, 0)
described in Table 1, 4A. The solution (16) with α = (1/8, 1/8, 1/8, 1/8) was
found by Hitchin [7, section 6.1], [8, (34)].

Remark 6 If we repeat the same computation, but making use of the Picard-
Fuchs system (12) then of course we obtain the same algebraic solution but
with α = (1/8, 0, 0, 0). This value has been erroneously computed by Do-
ran [3] to be (1/18, 0, 0, 0). This led him to the wrong conclusion that the
solution 4C is equivalent by an Okamoto transformation to the ”cubic” so-
lution B3 of Dubrovin-Mazzocco [4, p.140] with α = (25/18, 0, 0, 0), see [3,
Remark 7]. As the Okamoto transformations of PVIα act within the ring
Z[1/2,

√
2α1,

√
2α1,

√
2α1,

√
2α1], then no solution of PVI(25/18,0,0,0) is equiv-

alent to a solution of PVI(1/8,0,0,0). M. Mazzocco kindly informed us for a
missprint in the formula for the B3-solution, [4, p.140]. The corrected for-
mula is reproduced in [3, formula (3.1)].
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Stabilizer of Name of PVIα equation Stabilizer of
the solution the solution PVIα equation

D4 2A (0, 0, 1
18

, 1
18

) S2 × S2

( 1
18

, 1
18

, 0, 0)
2B ( 1

18
, 0, 1

18
, 0)

(0, 1
18

, 0, 1
18

)
2C ( 1

18
, 0, 0, 1

18
)

(0, 1
18

, 1
18

, 0)

D4 2A (0, 0, 0, 0) S4

2B
2C

S3 3A (0, 0, 0, 0) S4

3B
3C
3D

S3 4A (0, 1
8
, 0, 0) S3

4B (0, 0, 1
8
, 0)

4C (1
8
, 0, 0, 0)

4D (0, 0, 0, 1
8
)

S2 5A (0, 1
18

, 0, 0) S3

5B
5C
5D (0, 0, 1

18
, 0)

5E
5F
5G ( 1

18
, 0, 0, 0)

5H
5I
5J (0, 0, 0, 1

18
)

5K
5L

Table 4: Solutions (λ(t), α) of PVIα equations related to the Picard-Fuchs
system (12).
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Stabilizer of Name of PVIα equation Stabilizer of
the solution the solution PVIα equation

D4 2A (1
8
, 1

8
, 1

18
, 1

18
) S2 × S2

( 1
18

, 1
18

, 1
8
, 1

8
)

2B ( 1
18

, 1
8
, 1

18
, 1

8
)

(1
8
, 1

18
, 1

8
, 1

18
)

2C ( 1
18

, 1
8
, 1

8
, 1

18
)

(1
8
, 1

18
, 1

18
, 1

8
)

D4 2A (1
8
, 1

8
, 1

2
, 1

2
) S2 × S2

(1
2
, 1

2
, 1

8
, 1

8
)

2B (1
2
, 1

8
, 1

2
, 1

8
)

(1
8
, 1

2
, 1

8
, 1

2
)

2C (1
2
, 1

8
, 1

8
, 1

2
)

(1
8
, 1

2
, 1

2
, 1

8
)

S3 3A (1
8
, 9

8
, 1

8
, 1

8
) S3

3B (9
8
, 1

8
, 1

8
, 1

8
)

3C (1
8
, 1

8
, 9

8
, 1

8
)

3D (1
8
, 1

8
, 1

8
, 9

8
)

S3 4A (1
8
, 1

8
, 1

8
, 1

8
) S4

4B
4C
4D

S2 5A (1
2
, 1

18
, 1

8
, 1

8
) S3

5B (1
8
, 1

18
, 1

2
, 1

8
)

5C (1
8
, 1

18
, 1

8
, 1

2
)

5D (1
2
, 1

8
, 1

18
, 1

8
)

5E (1
8
, 1

2
, 1

18
, 1

8
)

5F (1
8
, 1

8
, 1

18
, 1

2
)

5G ( 1
18

, 1
8
, 1

2
, 1

8
)

5H ( 1
18

, 1
2
, 1

8
, 1

8
)

5I ( 1
18

, 1
8
, 1

8
, 1

2
)

5J (1
8
, 1

8
, 1

2
, 1

18
)

5K (1
8
, 1

2
, 1

8
, 1

18
)

5L (1
2
, 1

8
, 1

8
, 1

18
)

Table 5: Solutions (λ(t), α) of PVIα equations related to the Picard-Fuchs
system (14).
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