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Hamiltonian reductions of the free particle
on a simple Lie group

to (spin) Calogero type integrable models
Based on math-ph/0609085, 0604073 with B.G. Pusztai

Integrable systems of ‘Calogero type’ are beautiful and are
connected with important areas of physics and mathematics.

Landmark contributions: Calogero (71, 75), Sutherland (72),
Moser (75), Olshanetsky-Perelomov (76, 78), Kazhdan-Kostant-
Sternberg (78), Gibbons-Hermsen (84), Heckman-Opdam (87-
88), Oshima-Sekiguchi (95), Etingof-Frenkel-Kirillov (95), Sasaki
et al (98-99) . . . Many aspects, surveyed in over 20 reviews ...

In our study we follow the (OP, KKS) ‘projection method’ to
explore hyperbolic/trigonometric (spin) Calogero models.
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Sutherland models associated with root systems [OP, 76]

R: crystallographic root system

HR(q, p) :=
1

2
〈p, p〉+

∑

α∈R+

g2
α

sinh2 α(q)

Coupling constants g2
α may arbitrarily depend on orbits of the

corresponding reflection group. An important case is R = BCn:

HBCn =
1

2

n∑

k=1

p2
k +

∑

1≤j<k≤n

(
g2

sinh2(qj − qk)
+

g2

sinh2(qj + qk)
)

+
n∑

k=1

(
g2
1

sinh2(qk)
+

g2
2

sinh2(2qk)
)

[OP, 76]: BCn model is ‘projection’ of geodesics on symmetric
space SU(n+1, n)/(S(U(n+1)×U(n)) if g2

1−2g2 +
√

2gg2 = 0.
Why this symmetric space? Can one get rid of the restriction?
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Take a non-compact real simple Lie group G and denote by
G+ its maximal compact subgroup. The Olshanetsy-Perelomov
treatment of the BCn model amounts to (very special) reduction
of geodesic motion on coset space G/G+, based on the G+
symmetry generated by left-multiplications, for G = SU(n+1, n).

Geodesic system of G/G+ is reduction of geodesics on G, at zero
momentum for the right-multiplications defined by G+.

We describe the reduction of the geodesics on G at any value
of the momentum map for the ‘left × right’ action of G+×G+.

Not surprisingly, this leads to (hyperbolic) Calogero type models
decorated with internal (‘spin’) degrees of freedom in general.
The detailed description of this class of models is new.
We characterize the cases without spin, and using a ‘character
trick’ obtain the BCn model with 3 arbitrary coupling constants.
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Some notations and group theoretic facts

G ≡ Lie(G), G+ ≡ Lie(G+), Cartan decomposition: G = G+ + G−
G± are eigesubspaces of Cartan involution θ ∈ Aut(G)

Choose maximal Abelian subspace A ⊂ G−. Centralizer

M := {X ∈ G+ | [X, Y ] = 0 ∀Y ∈ A} = Lie(M) with

M := {m ∈ G+ |mY m−1 = Y ∀Y ∈ A} using matrix notations

The Killing form 〈 , 〉 of G induces

G− = A+A⊥, G+ = M+M⊥

X ∈ A is called regular if Ker(adX) = A+M (and not larger).

The regular elements form dense open subset, Â ⊂ A.

Open Weyl chamber, Ǎ, is connected component of Â.

4



Ǧ := {g = g+eqh+ | g+, h+ ∈ G+, q ∈ Ǎ} dense, open subset of G
(g+, h+, q) unique up to (g+, h+) → (g+m−1, mh+) ∀m ∈ M .

/Can also write Ǧ = {g = g+eqh+ | g+, h+ ∈ G+, q ∈ Â}, with the
ambiguity (g+, h+, q) → (g+n−1, nh+, nqn−1) ∀n from normalizer
N := {n ∈ G+ |nY n−1 ∈ A ∀Y ∈ A}./

adY diagonable ∀Y ∈ A, Gα := {X ∈ G | [Y, X] = α(Y )X ∀Y ∈ A}.
The restricted roots, α ⊂ A∗ \ {0} with να := dim(Gα) 6= 0,
form a crystallographic root system, denoted by R.

Weyl group: W = N/M is reflection group generated by R.
If {Ea

α}να
a=1 basis of Gα for α ∈ R+, then M⊥ and A⊥ spanned by

E+,a
α =

1√
2
(Ea

α+θ(Ea
α)) ∈M⊥, E−,a

α =
1√
2
(Ea

α−θ(Ea
α)) ∈ A⊥
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Some details on G = SU(m, n), m ≥ n

SU(m, n) = {g ∈ SL(m + n,C) | g†Im,ng = Im,n}
su(m, n) = {X ∈ sl(m + n,C) |X†Im,n + Im,nX = 0}

where Im,n := diag(1m,−1n). Any X ∈ G = su(m, n) has the form

X =

(
A B

B† D

)

with B ∈ Cm×n, A ∈ u(m), D ∈ u(n) and tr A + tr D = 0. With

Cartan involution Θ : g 7→ (g†)−1, θ : X 7→ −X†, one obtains

G+ = S(U(m) × U(n)) and G+ = su(m) ⊕ su(n) ⊕ RCm,n. Then

G− consists of block off-diagonal, hermitian matrices. Next we

fix maximal Abelian subspace A ⊂ G− and describe its centralizer.
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A :=





q :=




0n 0 Q
0 0m−n 0
Q 0 0n




∣∣∣ Q = diag(q1, . . . , qn), qj ∈ R




Using χ := diag(χ1, . . . , χn) ∀χj ∈ R, centralizer of A reads

M = {diag(iχ, γ, iχ) | γ ∈ u(m− n), tr γ + 2itr χ = 0} ⊂ G+

M = {diag(eiχ,Γ, eiχ) |Γ ∈ U(m−n), (detΓ)(det ei2χ) = 1} ⊂ G+.

Define ek ∈ A∗ (k = 1, . . . , n) by ek(q) := qk. Restricted roots:

BCn : R+ = {ej±ek(1 ≤ j < k ≤ n), 2ek, ek(1 ≤ k ≤ n)} if m > n

Cn : R+ = {ej ± ek (1 ≤ j < k ≤ n), 2ek (1 ≤ k ≤ n)} if m = n

multiplicities: νej±ek
= 2, ν2ek

= 1, νek = 2(m− n)
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Basis vectors of M⊥ for su(m, n)

E
+,r
ej±ek

, E
+,i
ej±ek

, E
+,i
2ek

, E+,r,d
ek

, E+,i,d
ek

for 1 ≤ d ≤ (m−n)

The superscripts r or i refer to purely real or imaginary matrices.
Block notation associated to partition (m+n) = n+(m−n)+n:

X =




a v b

−v† e w

b† w† d


 , tr a + tr e + tr d = 0,

a, d ∈ u(n), e ∈ u(m− n), v ∈ Cn×(m−n); b ∈ Cn×n, w ∈ C(m−n)×n.
With elementary matrices Ekl of suitable size, we define

E
+,r
ek±el

:=
1

2




Ekl − Elk 0 0
0 0 0
0 0 ∓(Ekl − Elk)
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E
+,i
ek±el

:=
i

2




Ekl + Elk 0 0
0 0 0
0 0 ∓(Ekl + Elk)




E
+,i
2ek

:=
i√
2




Ekk 0 0
0 0 0
0 0 −Ekk




If m > n, then for 1 ≤ d ≤ m− n we also have

E+,r,d
ek

:=
1√
2




0 Ekd 0
−Edk 0 0

0 0 0


 , E+,i,d

ek
:=

i√
2




0 Ekd 0
Edk 0 0
0 0 0




Basis of A⊥ ⊂ G− can be given similarly. Basis is ‘orthonormal’
with respect to 〈X, Y 〉 := tr (XY ). Useful relation, ∀q ∈ A,

[q, E±,j
α ] = α(q)E∓,j

α ∀α ∈ R+ and multiplicity index j.

9



Hamiltonian system to be reduced: (P,Ω,H)

P := T ∗Ǧ ' Ǧ× G = {(g, J l) | g ∈ Ǧ, J l ∈ G } (G ' G∗)

Ω = d〈J l, (dg)g−1〉, H(g, J l) =
1

2
〈J l, J l〉

Reduce by G+ ×G+ ⊂ G×G symmetry.

To use ‘shifting trick’ consider extended system (P ext,Ωext,Hext):

P ext := P×Ol×Or = {(g, J l, ξl, ξr) | g ∈ Ǧ, J l ∈ G, ξl ∈ Ol, ξr ∈ Or }

Ωext := Ω + ωl + ωr, Hext(g, J l, ξl, ξr) := H(g, J l),

with G+ coadjoint orbits (Oλ, ωλ) (λ = l, r). Extended dynamics

ġ = {g,Hext} = J lg, J̇ l = {J l,Hext} = 0, ξ̇λ = {ξλ,Hext} = 0

is integrated obviously by the geodesics g(t) = etJ l
g(0).
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Definition of reduced system

Symmetry transformations: ∀(gl
+, gr

+) ∈ G+×G+ acts on P ext

(g, J l, ξl, ξr) 7→ (gl
+g(gr

+)−1, gl
+J l(gl

+)−1, gl
+ξl(gl

+)−1, gr
+ξr(gr

+)−1)

Equivariant momentum map: Ψ = (Ψl,Ψr) : P ext → G∗+ ⊕ G∗+
Ψ(g, J l, ξl, ξr) = (J l

+ + ξl,−(g−1J lg)+ + ξr), (G∗+ ' G+).

Reduced geodesic system (Pred,Ωred,Hred) carried by

Pred := P ext
Ψ=0/(G+ ×G+).

This is equivalent to (singular) Marsden-Weinstein reduction of

original system (P,Ω,H) at any (−µl,−µr) ∈ Ol ⊕Or.
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The reduced system: (Pred,Ωred,Hred)

Pred = T ∗Ǎ × Ored, Ωred = d〈p, dq〉+ ωred

Here q, p natural variables on T ∗Ǎ ' Ǎ × A and

Ored := (Ol ⊕Or) ∩M⊥
diag/Mdiag, (Mdiag = Lie(Mdiag) 'M)

reduction of orbit Ol⊕Or at zero momentum of Mdiag ⊂ G+×G+.

As Mdiag-invariant function on (Ol ⊕Or) ∩M⊥
diag

2Hred(q, p, ξl, ξr) = 〈p, p〉+ 〈ξl
M, ξl

M〉 − 〈ξl
M⊥, w2(adq)ξ

l
M⊥〉

−〈ξr
M⊥, w2(adq)ξ

r
M⊥〉+ 〈ξr

M⊥, w2(adq)ξ
l
M⊥〉 − 〈ξr

M⊥, w2(
1

2
adq)ξ

l
M⊥〉

where w(z) = 1
sinh z and ξlM + ξrM = 0.

Spin Calogero model in general. When is Ored 1-point space?
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To characterize the reduced system, consider the gauge slice

S := {(eq, J l, ξl, ξr) ∈ P ext
Ψ=0 | q ∈ Ǎ }.

The ‘residual gauge transformations’ are generated by subgroup

Mdiag := {(m, m) ∈ G+ ×G+ |m ∈ M}, and thus

Pred = P ext
Ψ=0/(G+ ×G+) = S/Mdiag.

Using J l = J lA+J l
A⊥+J lM+J l

M⊥, ξλ = ξλM+ξλ
M⊥, Ψ = 0 requires

J l = J l
A − F (adq)ξ

l
M⊥ − w(adq)ξ

r
M⊥ − ξl and ξl

M + ξr
M = 0

with F (z) = coth z, w(z) = 1
sinh z. In terms of (q, p := J l

A) ∈ Ǎ×A
Ωext yields

Ωext|S = d〈p, dq〉+
(
ωl + ωr

)
|(Ol⊕Or)∩M⊥

diag

and 1
2〈J l, J l〉 becomes the reduced Hamiltonian.
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To understand ‘hidden Weyl group symmetry’ of the reduced
system, consider slightly ‘thicker’ gauge slice

Ŝ := {(eq, J l, ξl, ξr) ∈ P ext
Ψ=0 | q ∈ Â }.

The corresponding residual gauge transformations belong to the
normalizer Ndiag := {(n, n) ∈ G+ ×G+ |n ∈ N}. It follows that

Pred = S/Mdiag = Ŝ/Ndiag = (Ŝ/Mdiag)/(Ndiag/Mdiag) = P̂red/W

with

P̂red = Ŝ/Mdiag, W = N/M ' Ndiag/Mdiag.

The (spin) Calogero type model defined on

P̂red := Ŝ/Mdiag = T ∗Â × Ored

enjoys W -symmetry. /In the ‘spinless cases’ Ored is trivial, and
W acts in effect only on T ∗Â. Thus one recovers the usual Weyl
group symmetry of the scalar Sutherland models that arise./
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Constants of motion and integrability

Any G+×G+ invariant function depending on Jλ and ξλ (λ = l, r)
induces a constant of motion for the reduced dynamics.
For example, if h ∈ C∞(G)G and v ∈ R, then the function on P ext

h(Kλ(v)) with Kλ(v) := Jλ− − vξλ

yields conserved quantities, which are in involution ∀h, v, λ.
/Correspond to ‘Casimirs’ if v = 1, since Kλ(1) = Jλ on P ext

Ψ=0./

The Liouville integrability of the reduced system probably follows
(in all cases on all symplectic leaves).

Reduced dynamics can be integrated algebraically by projection
method. It may be interesting to present the solutions explicitly.
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Lax pairs from Hamiltonian reduction

Consider a gauge slice σ ⊆ S ⊂ P ext
Ψ=0, where g = eq with q ∈ Ǎ.

Before reduction, Kλ(v) = Jλ− − vξλ satisfies K̇λ(v) = 0.
By projecting Hamiltonian vector field to σ, we get Lax equation

L̇λ(v) = [Yλ, Lλ(v)] for Lλ(v) ≡ Kλ(v)|σ (λ = l, r)

where the projection is implemented by the ‘compensating gauge
transformation’ belonging to Y : σ → G+. Explicitly:

Y l = YM +
1

2
ξlM − w2(adq)ξ

l
M⊥ − (wF )(adq)ξ

r
M⊥

Yr = YM +
1

2
ξrM − w2(adq)ξ

r
M⊥ − (wF )(adq)ξ

l
M⊥

with w(z) = 1/(sinh z), F (z) = coth z and some YM : σ →M.
/Olshanetsky-Perelomov (1976) BCn Lax pairs can be recovered./

16



The basic example and the ‘KKS mechanism’

Consider G := SL(n,C) with Cartan involution Θ : g 7→ (g†)−1.
Tn−1: Lie algebra of maximal torus Tn−1 ⊂ SU(n) = G+.
Now sl(n,C) = su(n) + i su(n) and A = iTn−1, M = Tn−1.

If Or = {0}, then Ored ' (Ol ∩ T ⊥n−1)/Tn−1.

This is 1-point space iff Ol is minimal orbit of SU(n).

The minimal orbits of SU(n) are On,κ,± for κ > 0, consisting

of the elements ξ = ±i(uu† − u†u
n 1n) for someu ∈ Cn, u†u = nκ.

Imposing ξa,a = 0 requires ua =
√

κeiβa, leading to representative
with ξa,b = ±iκ(1− δa,b). Reproduces original Sutherland model.

One gets 1-point space if G+ has an SU(k) factor and above
arguments are applicable to Ored = (Ol ⊕Or) ∩M⊥

diag/Mdiag.
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Deformation of (spin) Sutherland models using a character

Suppose C ∈ G+ ' G∗+ forms a 1-point coadjoint orbit of G+.
/Such characters exist iff G/G+ is Hermitian symmetric space./
Then (Or+yC) and (Ol−yC) 1-parameter families of G+ orbits,

Oy
red :=

((
Ol − yC

)
⊕ (Or + yC)

)
∩M⊥

diag/Mdiag, ∀y ∈ R

yields deformation of system associated with y = 0.

If Oy=0
red is a 1-point space, then this holds ∀y ∈ R.

Besides G = SL(n,C), the KKS mechanism works iff G = SU(m, n).
In this case G+ = S(U(m)×U(n)) = SU(m)×SU(n)×U(1) and
a 1-parameter family of characters exists.

18



For G = SU(m, n), the system of restricted roots is of BCn type
if m > n and of Cn type if m = n. The 1-parameter family of
characters is spanned by Cm,n := diag(in1m,−im1n).

Spinless BCn Sutherland models result in the following cases.

If m = n: Ol := On,κ,+ + {xCn,n}, Or := {yCn,n}, ∀x, y, κ.

One gets 3 couplings g2 = κ2/4, g2
1 = xyn2/2, g2

2 = (x−y)2n2/2.

If m = n + 1: one obtains the BCn model by taking
Ol := On+1,κ,+ + {xCn+1,n}, Or := {yCn+1,n} with
3 parameters subject to κ + x + y ≥ 0 and κ− n(x + y) ≥ 0.

If m ≥ n + 1: model with 2 independent couplings comes from
Ol = On,κ,+ + {xCm,n} and Or = {yCm,n} with x = −y.

A. Oblomkov (math.RT/0202076) considered quantum Hamiltonian
reduction for holomorphic analogue of the above SU(n, n) case.
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Some remarks on the derivation of spinless BCn models

For SU(n, n), Ored can be represented by the point (ξl, ξr) with

ξl := κ
∑

1≤j<k≤n

(
E

+,i
ej+ek

+ E
+,i
ej−ek

)
+
√

2xn
n∑

k=1

E
+,i
2ek

ξr = yCn,n =
√

2yn
n∑

k=1

E
+,i
2ek

.

The Lax pair that results in this case is apparently new. It could
be interesting to study associated classical dynamical r-matrices.

Using SU(n+1,1), one recovers the Olshanetsky-Perelomov (1976)

and probably also the Inozemtsev-Meshcheryakov (1985) Lax pairs
of the spinless BCn Sutherland model.
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Concluding remarks on further developments

Construction can be applied also to compact simple Lie groups.
This amounts to replacing G = G+ +G− by Gcompact = G+ +iG−,
and leads to trigonometric version of (spin) Sutherland models.

May replace symmetry group G+×G+ by other groups G′+×G′′+.
Results survive if generalized KAK decomposition of G exists,
i.e., if a dense subset of G admits parametrization as g = g′+eqg′′+.

Quantized analogue of P ext = T ∗Ǧ × Ol × Or is L2(G, Vl ⊗ Vr),
where Vl ⊗ Vr is irrep. of G+ × G+. Quantum Hamiltonian
reduction ⇔ restrict to G+ × G+ equivariant wave functions.
Laplacian on ‘generalized spherical functions’ yields Hamiltonian
of quantum mechanical (spin) Sutherland model. Originally,
Olshanetsky-Perelomov (1978) studied the dim(Vl ⊗ Vr) = 1 case.
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