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e Preservation of Invariant Measure

T =v(x), r=(x1,...,2,) (%)
The volume form Z = p(z) dzy A - - - A dxy, is said to be an invariant measure of (*) if

LI=0 <= pz)+pdiv(v)=0.

e Some Integrability Theorems:

Theorem 1. (Euler—Jacobi). If the system (*) possesses an an invariant measure I and n— 2 independent
first integrals, then it is integrable by quadratures.

Theorem 2. (Kozlov). Suppose that the system (*) has an invariant measure Z(x), k — 1 independent

integrals fi(x),..., fr_1(x), and there are vector fields uxy1 = v, Uy, - .., Uy, independent at each point,
commuting with each other, such that

L,T=0, Lyf;=0, i=1,...k j=k+1,...n

Then this system is integrable by quadratures.



e Example: Spherical Supporter (Yu. F., 1988)
A dynamically non-symmetric sphere surrounded by N symmetric spheres

o

N
Jo+wxJu=>Y 7" xR, Dt =Ny"xR, k=1, N
k=1

N nonholonomic constraints expressing absence
of slipping at the contact points:

M’ = w — (w, Y)Y = AW AV, AW, 4F) = ¢ = const.



Taking into account the constraints, the first equation gives rise to

N N
A+ wx Aw =—-Tw, A:J—l—Z(Dk/)\%)I, F:ZDk7k®’7k/)\2a
k=1 k=1

Setting ' =aa®@ a+ b8 R B+ cy 7,
one obtains the generalized Euler top on T SO(3):

K=Kxw, d=axw, f=03Xw, A=7Xuw,
K=A+Tw=Aw+a(w,a)a+blw, 8)8 + c(w,7)7,
e First integrals: (K, K),

(K,a) = (Aw, ), (K,B)=MNw,8), (K,7)=(Aw,v),
Ap=A+al, Ay=A+bl, A=A+,

of which any three integrals are independent. Besides, the system has the kinetic energy integral
1 1 a b c
5(% (A+Tw) = 5(% Aw) + 5(% ) + 5(% B)? + 5(% 7).

It also possesses an invariant measure with density u = /det(A +T)
e By the Euler-Jacobi theorem, the system is integrable by quadratures, and its generic invariant
manifolds are two-dimensional tori.

eFor N=1wehave ' = —Diy®7/)2, =1,
K:Kx@, F=9Xw, K=Avw—D(w, )y,

and the spherical support becomes equivalent to the celebrated Chaplygin sphere problem (Chaplygin,
1903).



e The Suslov problem (A. Suslov, 1903)
Nonholonomic constraint: the projection of the angular velocity vector w € R3
to a certain fized in the body unit vector 7 equals zero:

(W,7)=0.

The Lagrangian L = }(@, %), the momentum M = (M;, My, My)T = I
d __, — = —
ﬁ(l[w):]lw X W+ A7,

which is equivalent to

d —

The Suslov system possesses the energy integral
(W,10) = (]\7,]1_1]\7) = h, h = const
and a line of equilibria positions
E={(w,7)=0n{{IJ,7)=0}
In the basis where 5 = (0,0, 1) the energy integral can be replaced by

Tpo M7 — 201, My My + Ty M3






e Discrete nonholonomic mechanical system on @ x @ (J.Cortés, S. Martinez, 1999)
(1) a discrete Lagrangian L : Q x Q — R;
(2) distribution D on TQ (D ={¢ € TQ | (A7(q),4) =0, j=1,...,s});

)

(3) a discrete constraint manifold Dy C @ X @ (of the same dimension as D and (g, q) € D, for all ¢ € Q)
f'j(Qk;,Qk;—kl):O, jzla"'as

Discrete Lagrange—d’Alembert equations with multipliers

Dill(q, @r+1) + D2L(gr-1, ax) Z)\ Aj(ar),  Fi(ar, qu1) =0

This defines a multi-valued map Q X Q — Q X Q)

e Discrete Euler—Poincaré—Suslov Equations (Yu. F., D. Zenkov, 2004)

- Assume () = G{g} and L(g gx, g gr+1) = L(k, gr+1)-
- Introduce left displacement W, = gk_lng e G.
There exists reduced discrete Lagrangian l; : (G X G)/G = G — R such that Ly(gk, grs1) = la(Wk).

- The discrete body momentum p; : G X G +— g*

d ‘
(P, &) = sl ld (exp(—=s&)Wi),  pr = Ry, lg(Wh).
- Left-invariant distribution D C 7 G, D, =TL,0?,
0={¢cgl|{a,&)=0,j=1,...,5}, a’ = const.

Then {(a’,g71g) = 0, j=1,...,s.



e Discrete Euler—Poincaré-Suslov Equations (continuation)
e Discrete left-invariant constraints F;(g g, 9 gr+1) = F;(9k, Gr+1)
there exist functions f; : G — R, j =1,...,s, such that

Fi(gr gr1) = [;(Wi).
D, C G x G is completely defined by the admissible displacement subvariety
S={AW)=0,.... f(W) =0} C G
This implies that the discrete momentum p;. is restricted to the admissible momentum subvariety

U={peg |p=Lyly(W),WeS}tCg"

S
pri1 = Adjy pe = > M0/, where Wi, Wit €S, prpryr €U C g
j=1

e Our choice of S C G: § = exp0. Usually exp0o =G !
Assume g = h @0, b being a subalgebra, such that

b5 Ch,  [,2]ch,  [ho]Co.

In this case S = exp 0 is a smooth submanifold of G homeomorphic to either the symmetric space G/H
or to a quotient of G/H by a finite group action.



e Discrete Suslov system G = SO(3) (SO(n) ), {Rr} C SO(3) (SO(n))

Finite rotations ) = R, ' Riy1 (discrete analogue of the body angular velocity w = R'R)
Discrete Lagrangian is the same as for the discrete Euler top (A. Veselov, J.Moser, 1991)

1 1
L(Rk,Rk+1) =-Tr (RkJR£+1), ld(Qk) = -"Tr (ij),
2 2

The discrete body angular momentum My, = Qi J — JQI € s0(3)

Continuous constraints are defined by the subspace

0 RPN 0 Win
L : . 0 0 w3
0= ' ' ' ' C so(n), 0= 0 0 w3 | Cso(3)
0 ce 0 Wn—-1.n
’ —wi3 —wey 0
—Win .. —Wp—1n 0

Discrete constraints are defined by the admissible finite rotations
S = eXpD = {Q € SO(n) ‘ Qij = jS, Qm = —Qm', 1 < Z,j <n-— 1}

S is diffeomerphic to RP"! = §"~1/72.

For n = 3,
2(g5+¢7) — 1 201> 2404
Q= 241> 2@ +@3)—1 —2q0q |, @+ad+qd=1
—2q0q2 2q0q1 2q5 — 1



e Discrete Euler-Poincaré-Suslov equations on so*(3).

0
My = QZM]CQ;C + M | —1
0

Admissible momentum locus in so*(3), U = {QJ — JOL | Q) € S}

0
0], M, = QpJ — JQF
0

o O =

Theorem 3. Regardless to the branch of the map My — M,,.1, the discrete Suslov map preserves the
reduced constrained enerqgy

E.(Ma3,My3) = (J11 + Ja3)Ma3 + 2J12MagMiz + (Jog + J33) M35,
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e A discretization of the Chaplygin sphere { Ry, 7}, Ry € SO(n),r, € R”
Discrete Lagrangian L. = %Tr(RkJRZH) + F(Ary, Ary), ATy = Tpi1 — T
The discrete momentum of the sphere in the body frame

My =] —JQAL, Q= RLR,1 € SO(n),
e Continuous constraints expressing abcence of slipping at the contact point
7+ pwy = 0.
Discrete Euler—Poincaré equations with multipliers
My =QF M Qi+ pFF AL, m(Ary — Ary) = fF.

where F* = Rgf%, v = RIS,
e Our choice of discrete constraints that mimic the continuous constraints

Ary + g(s‘zk —0N)7 =0, Qp=RL R € SOn).
Proposition 4. The map admits the following compact representation
Ki = Q1 KiaQ-1,  Th = QT Q,
where
Kr = O (J - grk) — (J - grk) Qf + g(mk —QITy)
D
2

D
= M; + E(Qkfk — k%) + = (Tifl% — QL T%), D =mp’,

D D
= (J + E(Fk_H + Fk)> — (J + E(Fk_H + Fk)> Qg
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e The classical case n = 3 Let
M = (M, My, M3)" = (Mo, Mz, May)”, K = (K1, Ko, K3)" = (Ko, Kig, Kot)”.

Then the map reads
K= Q1K1 = Qi

and preserves 3 independent integrals
(v =1 K,y =h (K,K)=n.
The special case K || 7. (Ki = by, h =const)
This defines map Gj, : S? — S?, () = Vrr1
Proposition 5. Regardless to branch of the map Gy, it has the quadratic integral
(v, A7) =1.
Hence, v admits the elliptic parameterization, e.g.,
7 = Cren(ulk), 2= Casn(ulk), ~3= Csdn(ulk),
Therefore, for a fixed [, the map Gy, is reduced to one-dimensional map
U1 = ug + Aug(ug, )

Auy, depens non-trivially on uy, !
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