Contrôle continu 1

Durée: 1h. Les documents et calculatrices sont interdits.

Connaissances élémentaires

Si x est la quantité initiale, après augmentation de 10% on obtient $y = (1 + \frac{10}{100})x = 1, 1x$, puis près diminution de 10% on a finalement $z = (1 - \frac{10}{100})y = 0, 9y = 0, 9*1, 1x = 0, 99x$, ce qui est différent de x dès que x est non nul.

Questions de cours

Voir le cours.

Exercice 1. 1. Voir le cours.

- 2. Soit $x \in]1, 5[$ et posons $r = \min\{x-1, 5-x\}$. Alors r > 0 et]x-r, x+r[est inclus dans]1, 5[. En effet, si y est dans]x-r, x+r[, alors par l'inégalité triangulaire $|y-3| \le |y-x| + |x-3|$. Or |y-x| < r et donc si r = x-1, on obtient alors |x-3| = 3-x et donc |y-3| < x-1+3-x=2, alors que si r = 5-x il vient |x-3| = x-3 et donc |y-3| < 5-x+x-3=2.
- 3. Soit $X_0 = (x_0, y_0) \in E$ et posons $r = 2 ||X_0 (2, -3)||$. Déjà r > 0 car

$$||X_0 - (2, -3)|| = \sqrt{(x-2)^2 + (y+3)^2} < \sqrt{4} = 2.$$

Montrons que la boule de centre X_0 et de rayon r est incluse dans E. Soit X = (x, y) un point de cette boule $B(X_0, r)$. D'après l'inégalité triangulaire

$$||X - (2, -3)|| \le ||X - X_0|| + ||X_0 - (2, -3)||,$$

d'où

$$||X - (2, -3)|| < r + ||X_0 - (2, -3)|| = 2.$$

Ainsi $X \in E$ et donc $B(X_0, r) \subset E$. Ainsi E est ouvert.

- **Exercice 2.** 1. Le numérateur est défini sur \mathbb{R}^2 car il est composée de fonctions polynomiales et du cosinus qui est définie sur \mathbb{R} . Le dénominateur est aussi définie sur \mathbb{R}^2 car pour tout $(x,y) \in \mathbb{R}^2$, on a $x^2 + y^4 + 2 \geq 2$. De plus le dénominateur ne s'annule pas donc f est définie sur \mathbb{R}^2 .
 - 2. Les fonctions de deux variables $(x,y) \mapsto x$, $(x,y) \mapsto xy^2$ et $(x,y) \mapsto x^2 + y^4 + 2$ sont polynomiales donc continues sur \mathbb{R}^2 . Alors la fonction $(x,y) \mapsto \cos(xy^2)$ est continue par composition avec la fonction cosinus qui est continue sur \mathbb{R} , et donc le

numérateur de f est continu par produit de fonctions continues. Le dénominateur est lui continu par composition d'une fonction continue à valeurs dans $[2, +\infty[$ avec la fonction ln qui est continue sur $]0, +\infty[$. Comme de plus le dénominateur ne s'annule pas, f est donc continue sur \mathbb{R}^2 comme quotient de fonctions continues.

Exercice 3. 1. Si $a \in \mathring{A}$, il existe r > 0 tel que $B(a,r) \subset A$. Or $A \subset B$ donc $B(a,r) \subset B$ et donc a est dans \mathring{B} .

La réciproque est fausse, prendre A = [0, 1] et B =]0, 1[dans \mathbb{R} .

2. Montrer que la fermeture $\overline{A \cap B}$ de l'intersection de A et de B est incluse dans l'intersection $\overline{A} \cap \overline{B}$. Que dire de la réciproque?

Soit $x \in \overline{A \cap B}$. Si $x A \cap B$, alors x est dans $\overline{A} \cap \overline{B}$ car $A \subset \overline{A}$ et $B \subset \overline{B}$. Sinon, pour tout rayon r > 0, la boule B(x,r) contient à la fois des points de $A \cap B$ et de $(A \cap B)^c$. Si B(x,r) ne contient que des points de A, alors x est dans l'intérieur de A donc dans \overline{A} . Sinon B(x,r) contient à la fois des points de A et de son complémentaire, donc x est dans \overline{A} . On raisonne de même avec B pour montrer que x est aussi dans \overline{B} , et donc dans l'intersection $\overline{A} \cap \overline{B}$.

La récirpoque est fausse, prendre A = [0, 1[et B =]1, 2] dans \mathbb{R} .