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Abstract. We present a simplified proof for the invariance of the corank and
index of Nash function germs under blow-Nash equivalence. We address also the
question of the blow-Nash types of simple singularities.

In order to address the question of a classification of the singularities of Nash
function germs, that is analytic and semi-algebraic germs, one need to consider a
relevant equivalence relation between such germs. Whereas in the complex case
the topological classification make sense, over the reals the situation is much more
complicated. In this paper we study the blow-Nash equivalence (see [?, ?]) which is
a Nash version of the blow-analytic equivalence between real analytic function germs
proposed by Kuo [?]. To give an idea, this means that we consider as equivalent
germs such germs that become Nash equivalent after resolution of their singularities
(for a precise statement see definition ??).

For this blow-Nash equivalence we know invariants called zeta functions [?]. These
invariants take into account the geometry of polynomial arcs passing through a germ
with a given order. We recalled their construction is section ??. Using these invari-
ants we proved in [?] that the corank and index of Nash function germs are preserved
by blow-Nash equivalence. This establishes a first step in the classification of the
singularities of Nash function germs with respect to the blow-Nash equivalence.

In this paper, we address the two following issues. First, we present in section ?? a
simplified proof for one crucial point in the proof of the invariance of the corank and
index. The point is to compute the virtual Poincaré polynomial of real algebraic
sets defined by quadratic polynomials. Second, we deal with the question of the
classification of simple Nash germs in section ??. In particular we announce that
their classification under blow-Nash equivalence coincide with their classification
under analytic equivalence. We prove moreover the particular case of E6, E7, E8-
singularities in order to give an idea of the general proof.

Acknowledgements. The author wish to thank T. Fukui for motivating dis-
cussions and also for its nice stay at Saitama University. He is also embed to the
Japan Society for the Promotion of Science for its financial support during this stay
at Saitama University where this paper has been written.

1. Blow-Nash equivalence

1.1. Definition. The definition of blow-Nash equivalence comes from an adaptation
of the definition of the blow-analytic equivalence of Kuo (see [?]) for Nash function
germs. It states roughly speaking that two germs are blow-analytically equivalent if
they become analytically equivalent after resolution of their singularities. Similarly
to the blow-analytic case, several slightly different definitions exist, and to find the
appropriate definition is still a work in progress (see [?]). We adopt in this paper

1991 Mathematics Subject Classification. 14B05, 14P20, 14P25, 32S15.
1



the strong definition of blow-Nash equivalence for which, in particular, we require a
Nash isomorphism between the exceptional spaces of the resolutions (see [?, ?]).

Definition 1.1.

(1) A Nash modification of a Nash function germ f : (Rd, 0) −→ (R, 0) is a
proper surjective Nash map σf :

(

Mf , σ
−1

f (0)
)

−→ (Rd, 0), between semi-

algebraic neighbourhoods of 0 in R
d and σ−1

f (0) in Mf , whose complexifica-

tion is an isomorphism except on some thin subset of R
d and for which f ◦σ

is in normal crossing.
(2) Let f, g : (Rd, 0) −→ (R, 0) be Nash function germs. They are said to be

blow-Nash equivalent if there exist two Nash modifications

σf :
(

Mf , σ
−1

f (0)
)

−→ (Rd, 0) and σg :
(

Mg, σ
−1

g (0)
)

−→ (Rd, 0),

such that f ◦ σf and jacσf (respectively g ◦ σg and jacσg) have only normal
crossings simultaneously, and a Nash isomorphism (i.e. a semi-algebraic map
which is an analytic isomorphism) Φ between semi-algebraic neighbourhoods
(

Mf , σ
−1

f (0)
)

and
(

Mg, σ
−1
g (0)

)

which preserves the multiplicities of the Ja-
cobian determinants of σf and σg along the components of the exceptional
divisors, and which induces a homeomorphism φ : (Rd, 0) −→ (Rd, 0) such
that f = g ◦ φ, as illustrated by the commutative diagram:

(

Mf , σ
−1

f (0)
)

Φ
//

σf

��

(

Mg, σ
−1
g (0)

)

σg

��

(Rd, 0)
φ

//

f
&&MMMMMMMMMM

(Rd, 0)

g
xxqqqqqqqqqq

(R, 0)

We refer to [?, ?, ?] for an overview of the properties of the blow-Nash equivalence.

1.2. Invariants. We recall now the definition of the zeta functions associated to
a Nash function germ. To this aim, we need to introduce the virtual Poincaré
polynomial defined by McCrory and Parusiński [?] for algebraic sets and extended
to arc-symmetric sets [?].

Arc-symmetric sets have been introduced by Kurdyka [?]. The category of arc-
symmetric sets is larger than that of real algebraic varieties. In order to recall
the definition of arc-symmetric sets, we fix a compactification of R

n, for instance
R

n ⊂ P
n.

Definition 1.2. Let X ⊂ P
n be a semi-algebraic set. We say that X is arc-

symmetric if, for every real analytic arc γ :]−1, 1[−→ P
n such that γ(]−1, 0[) ⊂ X,

there exists ǫ > 0 such that γ(]0, ǫ[) ⊂ X.

One can think about arc-symmetric sets as the biggest category stable under
boolean operations and containing the compact real algebraic varieties and their
connected components.

We recall also that a Nash isomorphism between arc-symmetric sets X1, X2 is the
restriction of an analytic and semi-algebraic isomorphism between compact semi-
algebraic and real analytic sets Y1, Y2 containing X1, X2 respectively (see [?]).
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An additive map on the category of arc-symmetric sets is a map β such that
β(X) = β(Y )+β(X \Y ) where Y is an arc-symmetric subset closed in X. Moreover
β is called multiplicative if β(X1×X2) = β(X1)·β(X2) for arc-symmetric sets X1, X2.

Proposition 1.3. ([?, ?]) For an integer i, there exists an additive map βi with val-
ues in Z, defined on the category of arc-symmetric sets. It coincides with the classical
Betti number dim Hi(·,

Z

2Z
) on compact nonsingular arc-symmetric sets. Moreover

β(·) =
∑

i≥0
βi(·)u

i is multiplicative, with values in Z[u]. Finally, if X1 and X2 are
Nash isomorphic arc-symmetric sets, then β(X1) = β(X2).

The invariant βi is called the i-th virtual Betti number, and the polynomial β

the virtual Poincaré polynomial. Note that, by evaluation of the virtual Poincaré
polynomial at −1, we recover the Euler characteristic with compact support (see
[?]).

Example 1.4. If P
k denotes the real projective space of dimension k, which is

nonsingular and compact, then β(Pk) = 1+u+ · · ·+uk since dim Hi(P
k, Z

2Z
) = 1 for

i ∈ {0, . . . , k} and dim Hi(P
k, Z

2Z
) = o otherwise. Now, compactify the affine line A

1
R

in P
1 by adding one point at the infinity. By additivity β(A1

R
) = β(P1)−β(point) =

u, and so β(Ak
R
) = uk by multiplicativity.

Then, using the virtual Poincaré polynomial, we can define the zeta functions of
a Nash function germ f : (Rd, 0) −→ (R, 0) as follows. Denote by L the space of
arcs at the origin 0 ∈ R

d, that is:

L = L(Rd, 0) = {γ : (R, 0) −→ (Rd, 0) : γ formal},

and by Ln the space of arcs truncated at order n + 1:

Ln = Ln(Rd, 0) = {γ ∈ L : γ(t) = a1t + a2t
2 + · · ·+ ant

n, ai ∈ R
d},

for n ≥ 0 an integer. We define the naive zeta function Zf(T ) of f as the following
element of Z[u, u−1][[T ]]:

Zf(T ) =
∑

n≥1

β(An)u−ndT n,

where

An = {γ ∈ Ln : ord(f ◦ γ) = n} = {γ ∈ Ln : f ◦ γ(t) = btn + · · · , b 6= 0}.

Similarly, we define zeta functions with sign by

Z+1

f (T ) =
∑

n≥1

β(A+1

n )u−ndT n and Z−1

f (T ) =
∑

n≥1

β(A−1

n )u−ndT n,

where

A+1

n = {γ ∈ Ln : f ◦γ(t) = +tn + · · · } and A−1

n = {γ ∈ Ln : f ◦γ(t) = −tn + · · · }.

Theorem 1.5. ([?]) Blow-Nash equivalent Nash function germs have the same naive
zeta function and the same zeta functions with sign.

Remark 1.6. This result is inspired by that of Koike and Parusiński [?] who proved
that these zeta functions, with the Euler characteristic with compact supports in
place of the virtual Poincaré polynomial, are invariant with respect to the blow-
analytic equivalence.
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2. Some computations of virtual Poincaré polynomials

One crucial point in order to prove the invariance of the corank and index of Nash
function germs under blow-Nash equivalence is to compute the following virtual
Poincaré polynomials (see [?]).

Let’s denote by Q the quadratic polynomial:

Q(x, y) =

p
∑

i=1

x2
i −

q
∑

j=1

y2
j

where x = (x1, . . . , xp) and y = (y1, . . . , yq). The virtual Poincaré polynomial of the
algebraic sets

Yp,q = {Q(x, y) = 0}, Y ǫ
p,q = {Q(x, y) = ǫ}

for ǫ ∈ {1,−1} are the following.

Proposition 2.1. ([?]) Assume (p, q) 6= (0, 0).

• β(Yp,q) = up+q−1 − umax{p,q}−1 + umin{p,q}.

• If p ≤ q, then β(Y 1
p,q) = uq−1(up − 1).

• If p > q, then β(Y 1
p,q) = uq(up−1 + 1).

We presented in [?] a proof using a nonsingular compactification of these algebraic
sets in the projective space and computations of the homology of these compactifi-
cations. We give here a different proof. Namely, we use the additivity of the virtual
Poincaré polynomial combined with a well chosen stratification (suggested by F.
Sottile) of the sets Yp,q and Y ǫ

p,q.

Proof. We proceed by the following change of variables. Assume p ≤ q. Then put
ui = xi + yi and vi = xi − yi for i = 1, . . . , p. The new expression for Q is

p
∑

i=1

uivi −

q
∑

j=p+1

y2

j .

Let us compute the virtual Poincaré polynomial of Yp,q. We stratify Yp,q depending
on the vanishing of ui for i = 1, . . . , p. Assume u1 6= 0. Then the value of v1 is
prescribed by

v1 =
−1

u1

(

p
∑

i=2

uivi −

q
∑

j=p+1

y2

j )

and therefore Yp,q ∪ {u1 6= 0} is isomorphic to R
∗ × R

p+q−2, so that

β(Yp,q ∪ {u1 6= 0}) = (u − 1)up+q−2.

Assume now that u1 = 0. Then v1 is free, and we may deal in the same way with
u2: if u2 6= 0 then v2 is fixed and we obtain a contribution of

β(Yp,q ∪ {u1 = 0, u2 6= 0}) = (u − 1)up+q−3.

At the final step u1 = · · · = up−1 = 0, if up 6= 0 then Yp,q ∪ {u1 = · · · = up−1 =
0, up 6= 0} is isomorphic to R

∗ × R
q−1. If up = 0 the remaining equation

−

q
∑

j=p+1

y2

j = 0
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admits only the zero solution, hence β(Yp,q ∪ {u1 = · · · = up = 0}) = up since the
variables v1, . . . , vp are free.

Finally

β(Yp,q) = (u − 1)

p
∑

i=1

up+q−1−i + up = up+q−1 − uq−1 + up.

We proceed similarly in the case of Y 1
p,q. If p ≤ q the remaining equation

−

q
∑

j=p+1

y2

j = 1

does no longer admit a solution, hence

β(Y 1

p,q) = (u − 1)

p
∑

i=1

up+q−1−i = uq−1(up − 1).

In the case p > q the remaining equation is that of a p − q − 1-dimensional sphere.
The virtual Poincaré polynomial of such a sphere is 1 + up−q−1 therefore

β(Y 1

p,q) = (u − 1)

q
∑

j=1

up+q−1−j + uq(1 + up−q−1)

where the uq term in front of 1+up−q−1 comes from the free variables v1, . . . , vq. As
a consequence

β(Y 1

p,q) == up+q−1 − up−1 + uq + up−1 = uq(up−1 + 1).

�

Remark 2.2. Note that we can recover p and q from β(Yp,q) and β(Y 1
p,q). This is

no longer the case if we consider the Euler characteristic with compact supports in
place of the virtual Poincaré polynomial. More precisely, in the latter case we only
recover the parity of p and q.

3. Blow-Nash types of simple singularities

We announce in this section some results concerning the classification of the blow-
Nash types of simple singularities.

As recalled, the corank and index of a Nash function germ are invariant under
blow-Nash equivalence. In order to go further in the classification of singularities,
the next step is to deal with simple singularities. Considering real analytic function
germs, their simple singularities have been classified [?]. A real analytic function
germ with a simple singularity is analytically equivalent to a polynomial germ be-
longing to one of the family

Ak : xk+1 +
∑p

i=1
y2

i −
∑q

j=1
z2

j for k ≥ 2

Dk : x1(±x2
2 ± xk−2

1 ) +
∑p

i=1
y2

i −
∑q

j=1
z2

j for k ≥ 4
E6 : x3

1 ± x4
2 +

∑p

i=1
y2

i −
∑q

j=1
z2

j

E7 : x3
1 + x1x

3
2 +

∑p

i=1
y2

i −
∑q

j=1
z2

j

E8 : x3
1 + x5

2 +
∑p

i=1
y2

i −
∑q

j=1
z2

j

This classification holds for Nash function germs. Indeed, analytically equivalent
Nash function germs are also Nash equivalent by Nash Approximation Theorem [?].
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Now, the question is: are we able to distinguish the blow-Nash types of simple
singularities? I claim that this is possible, using the invariance of the zeta functions
under blow-Nash equivalence.

Claim. Let f, g : (Rd, 0) → (R, 0) be Nash function germs. Assume f and g are
simple. Then f and g are blow-Nash equivalent if and only if f and g are analytically
equivalent.

To give an idea of the proof, let us consider the case of 2-dimensional E6, E7, E8-
singularities. We use the notation

h±
6 (x, y) = x3 ± y4

h7(x, y) = x3 + xy3

h8(x, y) = x3 + y5

Proposition 3.1. The function germs h+

6 , h−
6 , h7, h8 belong to different blow-Nash

equivalence classes.

In order to distinguish their blow-Nash types, we compute the virtual Poincaré
polynomial of some spaces or arcs related to h+

6 , h−
6 , h7, h8.

Lemma 3.2. Take ǫ ∈ {−, +}.

(1) β(Aǫ
4(h

ǫ
6)) = 2u6 whereas β(A−ǫ

4 (hǫ
6)) = β(A4(h7)) = β(A4(h8)) = 0.

(2) β(Aǫ
5(h7)) = (u − 1)u7 whereas β(Aǫ

5(h8)) = u8.

Proof. Let us deal with point (??). We consider arcs of the form

γ(t) = (a1t + a2t
2 + a3t

3 + a4t
4, b1t + b2t

2 + b3t
3 + b4t

4)

with a1, a2, a3, a4, b1, b2, b3, b4 ∈ R. Then

hǫ
6(γ(t)) = a3

1t
3 + (3a2

1a2 + ǫb4

1)t
4 + · · ·

therefore such an arc belongs to Aǫ
4(h

ǫ
6) if and only if a1 = 0 and b4

1 = 1. So Aǫ
4(h

ǫ
6)

is isomorphic to the union of two 6-dimensional affine space and thus

β(Aǫ
4(h

ǫ
6)) = 2u6.

On the other hand A−ǫ
4 (hǫ

6) is empty since b4
1 = −1 does not admit solutions, so

β(A−ǫ
4 (hǫ

6)) = 0.
For the functions h7 and h8 the argument is even simpler because the vanishing

of the t3-coefficient of the series h7(γ(t)) and h8(γ(t)) implies the vanishing of the
t4-coefficient, so that β(A4(h7)) = β(A4(h8)) = 0.

The proof of point (??) is of the same type. Now we consider arcs of the type

γ(t) = (a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5, b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5)

with a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 ∈ R. Such an arc γ belongs to Aǫ
5(h7) if and

only if a1 = 0 and a2b
3
1 = ǫ. The set {(a2, b1) ∈ R

2 : a2b
3
1 = ǫ} is isomorphic to R

∗

therefore Aǫ
5(h7) is isomorphic to R

∗ × R
7.

Finally such an arc γ belongs to Aǫ
5(h8) if and only if a1 = 0 and b5

1 = ǫ thus
Aǫ

5(h8) is isomorphic to R
8. �

Now we can achieve the proof of proposition ??.

Proof. We prove that the function germs h+

6 , h−
6 , h7, h8 have different zeta functions

with signs. Therefore they can not be blow-Nash equivalent by theorem ??.
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First, note that the T 4-coefficient of the positive zeta function of h+

6 is nonzero
whereas that of h−

6 , h7, h8 is zero by lemma ??.??. Therefore h+
6 can not be blow-

Nash equivalent to h−
6 , h7 or h8. Similarly, considering the negative zeta function,

we prove that h−
6 can not belong to the blow-Nash equivalence classes of h7 and

h8. Finally, the T 5-coefficient of the zeta functions with sign of h7 and h8 differ by
lemma ??.??, thus h7 and h8 also belong to different blow-Nash classes. �

Remark 3.3. Note that proposition ?? still holds considering the more general set-
ting of the blow-analytic equivalence (compare with remark ??). Indeed, we recover
the Euler characteristic with compact supports from the virtual Poincaré polyno-
mial by evaluating it at −1. After this evaluation, we are still able to distinguish
the Euler characteristics of the different spaces of arcs involved in lemma ??.
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