REAL ALGEBRA

In this lecture:

- Artin-lang Hearem

 Real Nullstellensatz

 Positiv-stellensatz

 Hilbert 17, Artin soluhan.

Let R be a real closed field.

I ARTIN-LANG THEOREN

We begin with a consequence of the Tarski-Seidenberg principle.

Proposition 4.1.1. Let R_1 be a real closed extension of R. Let $\mathcal{B}(X)$ be a boolean combination of polynomial equations and inequalities in the variables $X = (X_1, \ldots, X_n)$, with coefficients in R. If $\mathcal{B}(y)$ holds true for some $y \in R_1^n$, then $\mathcal{B}(x)$ holds true for some $x \in R^n$.

Proof By induction on m.

If m=0, no variable so OX!

If m>1, assume the result for m-1. By

Tarski-Seidenberg theorem (version with real fields)

there exists a boolean combination C(X') of polynomial equations and inequalities in the variables $X' = (X_1, \ldots, X_{n-1})$, with coefficients in R, such that, for every real closed field R_2 containing R and every $x' = (x_1, \ldots, x_{n-1}) \in R_2^{n-1}$, $\mathcal{B}(x', X_n)$ has a solution in R_2 if and only if C(x') holds true.

Therefore, if $y = (y_1, \ldots, y_n)$ is a solution of $\mathcal{B}(X)$ in \mathbb{R}_1^n ,

then $y' = (y_1, \ldots, y_{n-1})$ is a solution of $\mathcal{C}(X')$ in R_1^{n-1} . By induction, $\mathcal{C}(X')$ has a solution $x' = (x_1, \ldots, x_{n-1})$ in R^{n-1} . Hence, there exists $x_n \in R$, such that $x = (x', x_n)$ is a solution of $\mathcal{B}(X)$ in R^n .

As a consequence:

Theorem 4.1.2 (Artin-Lang Homomorphism Theorem). Let R be a real closed field and A an R-algebra of finite type. If there exists an R-algebra homomorphism $\varphi: A \to R_1$ into a real closed extension R_1 of R, then there exists an R-algebra homomorphism $\psi: A \to R$.

Proof. We may assume A to be of the form $R[X_1, \ldots, X_n]/I$, where I is the ideal of $R[X_1, \ldots, X_n]$ generated by P_1, \ldots, P_m .

Then
$$\varphi : \frac{R[X_1, ..., X_m]}{(P_1, ..., P_m)} \longrightarrow R_1$$
. Let b_i be the image of the

class of X_i by φ . Then (b_1, \ldots, b_n) is a solution of the system of equations $P_1 = \cdots = P_m = 0$ in R_1^n .

By Proposition 4.1.1, this system of equations also has a solution (a_1, \ldots, a_n) in R^n . The homomorphism $\overline{\psi} : R[X_1, \ldots, X_n] \to R$ defined by $\overline{\psi}(X_i) = a_i$ obviously induces a homomorphism $\psi : A \to R$.

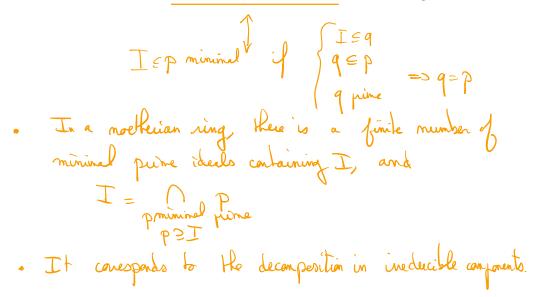
The homomorphism theorem is used to prove the real Nullstellensatz, which characterizes the ideal of polynomials vanishing on an algebraic set.

Definition 4.1.3. Let A be a commutative ring. An ideal I of A is said to be real if, for every sequence a_1, \ldots, a_p of elements of A, we have

$$a_1^2 + \cdots + a_p^2 \in I \implies a_i \in I$$
, for $i = 1, \ldots, p$.

Counter-example (x2+y2) in R[x,y]

Lemma 4.1.5. Every real ideal I of a commutative ring A is radical. Moreover, if A is noetherian, then all minimal prime ideals containing I are real.



Proof. If $a^n \in I$, n > 1, then $a^{n/2} \in I$ if n is even, and $a^{(n+1)/2} \in I$ if n is odd. In both cases the exponent has decreased, and we get $a \in I$ by iterating this process.

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_q$ be the minimal prime ideals of A containing I. We can assume q > 1. If, for instance, \mathfrak{p}_1 is not real, then we can find $a_1, \ldots, a_p \in A \setminus \mathfrak{p}_1$, such that $a_1^2 + \cdots + a_p^2 \in \mathfrak{p}_1$. Choose $b_i \in \mathfrak{p}_i \setminus \mathfrak{p}_1$, for $i = 2, \ldots, q$, and set $b = \prod_{i=2}^q b_i$. Then $(a_1b)^2 + \cdots + (a_pb)^2 \in \bigcap_{i=1}^q \mathfrak{p}_i = I$, but $a_1b \notin \mathfrak{p}_1$, which is a contradiction.

a, Ep, and 6 & p,

A second lemma:

Lemma Let A be a commutative ring and I \in A prime ideal. Then

I is a real ideal \iff Fract is a real field.

Proof Let as , = ap \in A. Then $a_1^2 + \dots + a_p^2 \in I \iff$ $a_1^2 + \dots + a_p^2 = 0 \in F$ for A_1^2 So that

I real \iff Face A_1 real.

boy the characterization of real fields.

Here is the real version of the classical Nullotellensaty.

[3.3. Risler, 1970]

Theorem 4.1.4 (Real Nullstellensatz). Let R be a real closed field and I an ideal of $R[X_1, \ldots, X_n]$. Then $I = \mathcal{I}(\mathcal{Z}(I))$ if and only if I is real.

Proof of = . Assume $P_1^2 + \dots P_n^2 \in I$.

For $\alpha \in Z(I)$, we have $(P_1^2 + \dots + P_n^2)(\alpha) = 0$ so $P_1(\alpha) = \dots = P_n(\alpha) = 0$.

Then $P_i \in S(Z(I))$, so $P_i \in I$ $\forall i$

Theorem	4.1.4 (Real	Nullste	ellensatz). Let	R b	e a	real	closed	field	and
I an ideal	of $R[X_1,\ldots,$	X_n]. The	$en\ I=\mathcal{I}($	$\mathcal{Z}(I))$	if ar	nd or	nly i	fI is η	real.	

Proof of E . First I = 3 (Z(I)) as usual. . Assume P&I. We are going to prove P& J(Z(I)) lence the equality . $T = \bigcap_{i=1}^{n} p_i$ with p_i the minimal prime deals containing I. It suffices to proves the result for any Pi. · By a Lemma: I real -> pi real. So now we assume I to be a real prime ideal. . Let S be the multiplicative set generated by Fin RIX A= (REX) C = France REXT the ring RIX localized at S. · Choose an ordering on the real field (by a Lemma) Frac RIX . Let R, denote the real closure of Frac RIV. We have a natural inclusion:

A -> (RIX) -> Frac RIX -> R, ·By Artin-lang Theorem, we obtain an R-algebra marphism

RIM
$$\begin{array}{c} (RIM) \\ (\overline{I}) \\ ($$

Proposition If $P \in R[X_1,...,X_n]$ is ineducible, and there exist a, $b \in R^n$ with P(a|P(b| < 0)) then (P) is real.

Idea of proof

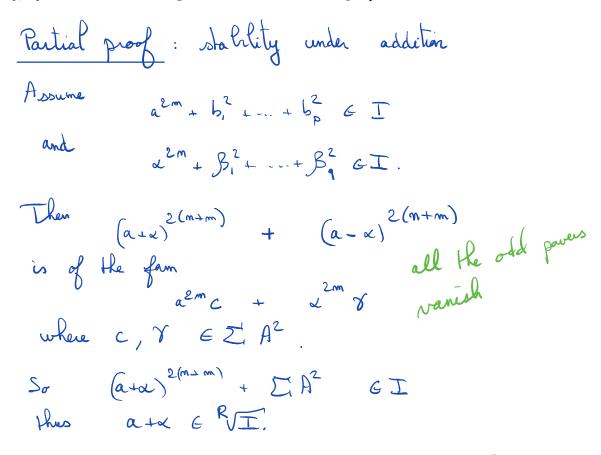
- . one can show $\dim \mathbb{Z}(\mathbb{P}) = n-1$
- . Hen leight I (ZPI) = 1
- . (P) is prime of leight 1
- · (P) & B (Z(P)) , so equality.

The real Nullstellensatz leads to the notion of real radical!

Proposition 4.1.7. Let A be a commutative ring and I an ideal of A. Then

$$\sqrt[R]{I} = \{ a \in A \mid \exists m \in \mathbb{N} \ \exists b_1, \dots, b_p \in A \ a^{2m} + b_1^2 + \dots + b_p^2 \in I \}$$

is the smallest real ideal of A containing I. The ideal $\sqrt[R]{I}$, called the real radical of I, is the intersection of all real prime ideals containing I (or is A itself, if there is no real prime ideal containing I).



Corollary 4.1.8. Let $I \subset R[X_1, ..., X_n]$ be an ideal. Then $P \in \mathcal{I}(\mathcal{Z}(I))$ if and only if there exist finitely many polynomials $Q_1, ..., Q_p$ and an integer $m \in \mathbb{N}$, such that $P^{2m} + Q_1^2 + \cdots + Q_p^2 \in I$. In short, $\mathcal{I}(\mathcal{Z}(I)) = \sqrt[R]{I}$.

Ŋ

Proof. The real Nullstellensatz says that $\mathcal{I}(\mathcal{Z}(I))$ is the smallest real ideal containing I, that is, by Proposition 4.1.7, the ideal $\sqrt[R]{I}$.

Going further the study, one could study inequalities too in an algebraic manner

[Stongle, 1974] in a ring, but same definition as in a field.

Theorem 4.4.2. Let R be a real closed field. Let $(f_j)_{j=1,\ldots,s}$, $(g_k)_{k=1,\ldots,t}$ and $(h_\ell)_{\ell=1,\ldots,u}$ be finite families of polynomials in $R[X_1,\ldots,X_n]$. Denote by P the cone generated by $(f_j)_{j=1,\ldots,s}$, M the multiplicative monoid generated by $(g_k)_{k=1,\ldots,t}$ and I the ideal generated by $(h_\ell)_{\ell=1,\ldots,u}$. Then the following properties are equivalent:

(i) The set

 $\{x \in R^n \mid f_j(x) \geq 0 , \ j=1,\ldots,s, \quad g_k(x) \neq 0 , \ k=1,\ldots,t, \ h_\ell(x) = 0 , \ \ell=1,\ldots,u\}$

is empty.

(ii) There exist $f \in P$, $g \in M$ and $h \in I$ such that $f + g^2 + h = 0$.

Toward the proof

(ii)=S(i) If $f_{i}(\alpha x \ge 0)$ $\forall j$, then $f(\alpha x \ge 0)$ If $g_{i}(\alpha x \ne 0)$ $\forall k$, then $g(\alpha x \ne 0)$ and $g^{2}(\alpha x \ne 0)$.

Thus $f(\alpha x + g^{2}(\alpha x) > 0)$. In particular $f(\alpha x \ne 0)$.

Since $f(\alpha x + g^{2}(\alpha x) > 0)$. In particular $f(\alpha x \ne 0)$.

Since $f(\alpha x + g^{2}(\alpha x) > 0)$, at least one $f(\alpha x + g^{2}(\alpha x) > 0)$.

(i) => (ii) More involved, use the so-called "formal Positiv-stellensaty" + Artin. lang theorem.

A (geometric) Positivistellensatz follows:

Definition For a real algebraic set $V \in \mathbb{R}^m$, denote by P(V). The ring $P(V) = \mathbb{R}[X_1, -, X_m]$ of polynomial functions on V.

Corollary 4.4.3 (Positivstellensatz). Let $V \subset \mathbb{R}^n$ be an algebraic set, $g_1, \ldots, g_s \in \mathcal{P}(V)$ and

$$W = \{x \in V \mid g_1(x) \ge 0, \ldots, g_s(x) \ge 0\}.$$

Let P be the cone of $\mathcal{P}(V)$ generated by g_1, \ldots, g_s , and let $f \in \mathcal{P}(V)$. Then:

- (i) $\forall x \in W \ f(x) \ge 0 \Leftrightarrow \exists m \in \mathbb{N} \ \exists g, h \in P \ fg = f^{2m} + h$.
- (ii) $\forall x \in W \ f(x) > 0 \Leftrightarrow \exists g, h \in P \ fg = 1 + h$.
- (iii) $\forall x \in W \ f(x) = 0 \Leftrightarrow \exists m \in \mathbb{N} \ \exists g \in P \ f^{2m} + g = 0.$

Proofs of & Take x & W.

(i): g, h & P so g & 20 and h & 20.

Then f & h & 20 so f & g & 20.

Then f & h & 20 so f & 20.

Then f & g & 20, Hen f & 20.

In any case, f & 20.

(ii) Some idea: | + h & 21 & f & g & 21.

Since g & 20, it follows g & 20 and f & 20.

(iii) gen >0 and f 2 m =0 so gen = for =0

Corollary 4.4.3 (Positivstellensatz). Let $V \subset \mathbb{R}^n$ be an algebraic set, $g_1, \ldots, g_s \in \mathcal{P}(V)$ and

$$W = \{x \in V \mid g_1(x) \ge 0, \ldots, g_s(x) \ge 0\}.$$

Let P be the cone of $\mathcal{P}(V)$ generated by g_1, \ldots, g_s , and let $f \in \mathcal{P}(V)$. Then:

- (i) $\forall x \in W \ f(x) \ge 0 \Leftrightarrow \exists m \in \mathbb{N} \ \exists g, h \in P \ fg = f^{2m} + h$.
- (ii) $\forall x \in W \ f(x) > 0 \Leftrightarrow \exists g, h \in P \ fg = 1 + h$.
- (iii) $\forall x \in W \ f(x) = 0 \Leftrightarrow \exists m \in \mathbb{N} \ \exists g \in P \ f^{2m} + g = 0.$

Proof. Let u_1, \ldots, u_k generate $\mathcal{I}(V)$. We denote by the same symbol polynomials in $R[X_1, \ldots, X_n]$ and their restrictions to V.

For (i), we apply Theorem 4.4.2 to the set

$$\{x \in R^n \mid g_1(x) \ge 0, \ldots, g_s(x) \ge 0, -f(x) \ge 0, f(x) \ne 0, \ldots = u_k(x) = 0\},\$$

169 < 0

obtaining g and h in P, m in N, such that $h - fg + f^{2m} = 0$.

$$\begin{aligned}
\exists F \in \text{ cane generated by } & \text{gi and } -f \\
\exists G \in \text{ monoid} & & \\
\exists H \in \text{ ideal} & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

II HILBERT 17th PROBLED

Theorem 6.1.1. Let R be a real closed field and $f \in R[X_1, ..., X_n]$. If f is nonnegative on R^n , then f is a sum of squares in the field of rational functions $R(X_1, ..., X_n)$.

Proof. We have seen that in a field F, ΣF^2 is

the intersection of the positive cones for all orderings.

So if the conclusion is not valid, there exists an ordering \leq on $R(X_S, -, X_m)$ such that f is megahive.

Denote K the real closure of $(R(X_S, -, X_m), \leq)$.

Then $-f \in K_+ = K^2$ so -f has a square

. Then $-\beta \in K_{+}=K^{2}$ so $-\beta$ has a square root in K, noted $V-\beta$

As a consequence, there exists an R-algebra homomorphism

 $\frac{\mathbb{R}[X_{2},-,X_{m}][T]}{(\beta^{T^{2}+1})} \xrightarrow{T} \qquad \qquad \downarrow \frac{1}{\sqrt{\beta}}$

. By Artin-lang Theorem, there excits an R-algebra homomorphism $\frac{R[X_1,-,X_n][T]}{(gT^2+1)} \longrightarrow R$

. Such a maybean is given by the evaluation at $(a, t) \in \mathbb{R}^m \times \mathbb{R}$ satisfying $\{(x) t^2 + 1 = 0\}$. In particular $\{(x) t^2 + 1 = 0\}$.

Remark Via the Positivstellensaly, one has a more precise version. Recall:

Corollary 4.4.3 (Positivstellensatz). Let $V \subset \mathbb{R}^n$ be an algebraic set, $g_1, \ldots, g_s \in \mathcal{P}(V)$ and

$$W = \{x \in V \mid g_1(x) \ge 0, \ldots, g_s(x) \ge 0\}.$$

Let P be the cone of $\mathcal{P}(V)$ generated by g_1, \ldots, g_s , and let $f \in \mathcal{P}(V)$. Then: (i) $\forall x \in W \ f(x) \geq 0 \Leftrightarrow \exists m \in \mathbb{N} \ \exists g, h \in P \ fg = f^{2m} + h$.

. With $V=R^m=W$, we have $P=Z^{\dagger}R[X_1,-X_1]^2$ so $f\geq 0$ on $R^m=\exists m\in W$, $\exists g,h\in ZR[X_1,-X_1]^2:fg=f^{2m}h$. Then $f(f^{2m}+h)=f^2q=g_1$ is a sum of squares

Note: The national functions f_1 ,—, f_n are well-defined outside the zero set of f ($f(\alpha) \neq 0 \Rightarrow f^2(\alpha) + h(\alpha) > 0$)

They can be extended by continuity on their set of poles by the value O as follows

Actually: take $\alpha_0 \in \mathbb{Z}(f)$.

By the Couve Selection Lemma,

There exists a continuous semi-algebraic couve $Y: [0,1) \rightarrow \mathbb{R}^n$ such that $S(0,1) \subseteq \mathbb{R}^n \mathbb{Z}(f)$ and $Y(0) = \alpha$.

Then

so that $\sum_{i=1}^{n} \left(\int_{i}^{\infty} \sigma(H)^{2} \right) = 0$ and thus $\int_{i}^{\infty} \sigma(H) = 0$

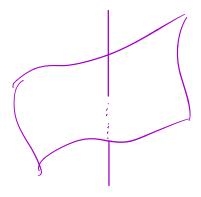
Such functions are called "continuous national functions" $\frac{x^3}{x^2 y^2} \quad \text{on } \mathbb{R}^2.$

Remark Hilbert 17th problem is felse on a real field Fa instance, take: · F = R(t) with the ordering O+ . He real closure of (F, O+) is R((+th)) alg . consider $f(x) = (x^2 + b)^2 - b^3 \in F[x]$ e Fa $\alpha \in F$, $\alpha = \frac{P(E)}{q(E)}$ for $P, q \in \mathbb{R}[H]$ which page 1 $f(x) = \left(\frac{p(t)^2 + q^2(t)}{q^2(t)}\right)^2 - t^3 = \frac{\left(p(t)^2 + q(t)^2\right)^2 + t^3 q(t)^4}{q(t)^4}$ and the numerator equals pt,4 + +2(1-t)qt,4 - 2t p2(+, q2(+) Its sign is given by the term of smaller order; ·if p(01 \neq 0, it is p614 . If p(0) = 0, then q(0) \$\neq 0 \since prg=1 and it is t 2q\alpha^4 In any case the sign is positive. . However of is not a sum of squares. . Actually, of is negative on I and I where: I - (Vt(1-VF), V + (1+VF)) . I has at most 4 roots. · \(\(\alpha_{\pm} \) = \(\begin{align*} \begin{align*} \(\alpha_{\pm} \begin{align*} \begin{align*} \delta_{\pm} \begin{align*} \delta_{\ so the roots are { ± a+ } . Between 0.4 and a_- b is negative: $f(VF) = -t^3 < 0$.

E. Artin also considered Hilbert's 17^{th} problem for an irreducible algebraic subset V of \mathbb{R}^n , instead of \mathbb{R}^n . This is different from the case of affine space: a polynomial that is a sum of squares in $R(X_1, \ldots, X_n)$ is clearly nonnegative on \mathbb{R}^n , but an element of $\mathcal{P}(V)$ that is a sum of squares in $\mathcal{K}(V)$ (the field of fractions of $\mathcal{P}(V)$) is not necessarily nonnegative everywhere on \mathbb{R}^n

Example 6.1.8. Let V be the Cartan umbrella in \mathbb{R}^3 , given by the equation $x^3 = z(x^2 + y^2)$. Then $f = x^2 + y^2 - z^2 \in \mathcal{P}(V)$ is negative on the stick x = y = 0 outside the origin. Nevertheless, f is a sum of squares in $\mathcal{K}(V)$:

$$f = x^2 + y^2 - \frac{x^6}{(x^2 + y^2)^2} = \frac{3x^4y^2 + 3x^2y^4 + y^6}{(x^2 + y^2)^2} .$$



Remark this phenmenum has to do with the singularities of the Cartan umbrebla.