Feuille d'exercices d'analyse

Séries numériques

Exercice n°1

Etudier la nature des séries de terme général:

$$\frac{\ln n}{n^2}$$
, $\frac{n}{\ln(e^n-1)}$, $\frac{n^{\ln n}}{(\ln n)^n}$, $\frac{n^n}{4^n \cdot n!}$, $\frac{\sqrt{n+1}-\sqrt{n}}{n}$, $e^{-n^2} \ln n$.

Exercice n°2

Montrer la convergence et calculer la somme des séries:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}, \quad \sum_{n=2}^{\infty} \ln(1 + \frac{(-1)^n}{n}), \quad \sum_{n=1}^{\infty} \frac{1}{3^n}.$$

Exercice n°3

Soient $u_n = \frac{(-1)^n}{\sqrt{n}}$ et $v_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

Étudier la nature des séries (u_n) et (v_n) .

Exercice n°4

Soient (u_n) et (v_n) deux séries à termes positifs telles que : $\forall n \geq N, \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$.

- 1) Montrer que si $\sum v_n$ converge alors $\sum u_n$ converge.
- 2) En déduire la convergence de la série de terme général $u_n = \frac{1 \times 3 \times 5 \times \cdots \times (2n-1)}{2 \times 4 \times 6 \times \cdots \times (2n+2)}$ (on prendra $v_n = n^{-\alpha}$ avec $1 < \alpha < 3/2$ et on utilisera le DL à l'ordre 1 de $\frac{v_{n+1}}{v_n} \frac{u_{n+1}}{u_n}$).

Exercice n°5

- 1) Soient (a_n) une suite de réels et (b_n) une suite de complexes. On suppose que:
 - \bullet la suite (a_n) est décroissante et converge vers 0,
 - il existe une constante K > 0 telle que pour tous entiers naturels $n \le m$ on ait $\left| \sum_{p=n}^m b_p \right| \le K$,

Montrer que la série $\sum a_n b_n$ est convergente.

2) Etudier la nature des séries de terme général:

$$\frac{\cos n}{n^2}$$
, $\frac{\cos n}{n}$, $\frac{\cos^2 n}{n}$, $\frac{e^{in\alpha}}{n}$ avec $\alpha \in [0, 2\pi]$.

Intégrales

Exercice n°6

Soit $f:[0,1]\to\mathbb{R}$. On suppose qu'il existe un réel k>0 tel que $\forall x,y\in[0,1], |f(x)-f(y)|\leq k|x-y|$. On pose $\alpha_n=\int_0^1 f(t)\,dt-\frac{1}{n}\sum_{i=1}^n f(\frac{i}{n})$. Montrer que $|\alpha_n|\leq\frac{k}{2n}$.

Exercice n°7

Soient f et g deux fonctions continues sur un intervalle [a,b] avec $a \le b$ à valeurs réelles que, pour tout $x \in [a,b]$, on ait $f(x)g(x) \ge 1$. Montrer que $\int_a^b f(x) \, dx \int_a^b g(x) \, dx \ge (b-a)^2$.

Exercice n°8 (CAPES 1994)

Pour tout x > 0, on pose $f(x) = \sum_{k=0}^{|x|} \frac{\sqrt{x^2 - k^2}}{x^2}$.

Montrer que f(x) admet une limite finie lorsque x tend vers $+\infty$. Calculer cette limite.

Exercice n°9

Nature et calcul éventuel des intégrales suivantes:

$$\int_0^1 \frac{\ln(1-x^2)}{x^2} dx, \quad I(\alpha) = \int_0^\infty \frac{dx}{(1+x^2)(1+x^{\alpha})}, \quad \alpha \in \mathbb{R}.$$

(pour le calcul de la seconde, on pourra remarquer que $I(\alpha) = I(-\alpha)$ et calculer $I(\alpha) + I(-\alpha)$.)

Exercice n°10 (CAPES 1993)

Montrer que pour tout x > 0, l'intégrale $\int_0^{+\infty} \frac{t \sin t}{x^2 + t^2} dt$ converge (on pourra effectuer une intégration par parties).

Exercice n°11 (CAPES 1991)

- 1) Soient $f, g : \mathbb{R}^+ \to \mathbb{R}$ continues et telles que $\int_0^{+\infty} f^2$ et $\int_0^{+\infty} g^2$ convergent. Montrer que l'intégrale $\int_0^{+\infty} fg$ converge absolument.
- 2) Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et admettant une limite ℓ (finie ou non) en $+\infty$. Montrer que si $\int_0^{+\infty} f$ converge alors $\ell = 0$.

2

Exercice n°12

- 1) Montrer que l'intégrale $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$ converge pour $\alpha \in]0, \infty[$.
- 2) Etablir une relation de récurrence entre $\Gamma(\alpha)$ et $\Gamma(\alpha+1)$. En déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.

Exercice n°13

Comparer la convergence des intégrales $\int_1^\infty \frac{\sin x}{\sqrt{x}} dx$ et $\int_1^\infty \ln(1 + \frac{\sin x}{\sqrt{x}}) dx$.

Exercice n°14 (CAPES 1986)

1) Soit f une fonction continue 2π -périodique. Montrer que pour tout réel a

$$\int_{a}^{a+2\pi} f(t)dt = \int_{-\pi}^{\pi} f(t)dt.$$

2) Montrer que pour toutes fonctions continues 2π -périodiques f et g, la fonction h définie par

$$h(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)g(t)dt$$

est continue et 2π -périodique.

Suites et séries de fonctions

Exercice n°15

Étudier la convergence simple et uniforme des suites de fonctions suivantes:

- 1) $f_n: [0, +\infty[\longrightarrow \mathbb{R} \text{ définie par } f_n(x) = \ln(x + \frac{1}{n}), \text{ avec } n \in \mathbb{N}^*.$
- 2) $g_n:[0,1]\longrightarrow \mathbb{R}$ définie par $g_n(x)=\frac{ne^{-x}+x^2}{n+x}$, avec $n\in\mathbb{N}^*$.
- 3) $h_n: [0, +\infty[\longrightarrow \mathbb{R} \text{ définie par } h_n(x) = nx^2e^{-nx}, \text{ avec } n \in \mathbb{N}.$
- 4) $k_n: [0, +\infty[\longrightarrow \mathbb{R} \text{ définie par } k_n(x) = \frac{nx}{1+n^3x^2}, \text{ avec } n \in \mathbb{N}.$

Exercice n°16

Soit $f_n: [0, +\infty[\longrightarrow \mathbb{R} \text{ définie par } f_n(x) = \frac{n+x}{nx+1}, \text{ avec } n \in \mathbb{N}.$

- 1) Étudier la convergence simple de la suite $(f_n)_n$.
- 2) Trouver les intervalles sur lesquels la convergence est uniforme.
- 3) Étudier la convergence de la suite $(f'_n)_n$.

Exercice n°17

Soit $f_n:[0,2]\longrightarrow \mathbb{R}$ définie par $f_n(x)=\frac{x^n}{x^n+1}$, avec $n\in\mathbb{N}$.

- 1) Étudier la convergence simple de la suite $(f_n)_n$.
- 2) Trouver les intervalles sur lesquels la convergence est uniforme.
- 3) Montrer que $\lim_{n\to\infty} \int_0^2 f_n(t)dt = 1$.

Exercice n°18

Montrer que la série de fonctions $\sum_{n\geq 1} (-1)^n \frac{n+x^2}{n^2}$ ne converge absolument en aucun x réel mais que cette série converge uniformément sur tout compact de \mathbb{R} .

3

Exercice n°19

Étudier la convergence simple, uniforme et normale des séries de fonctions suivantes:

- 1) $f_n: [0, +\infty[\longrightarrow \mathbb{R} \text{ définie par } f_n(x) = \frac{nx^2}{n^3 + x^2}.$
- 2) $g_n: [0, +\infty[\longrightarrow \mathbb{R} \text{ définie par } g_n(x) = \frac{n+x}{n^3+x^2}.$
- 3) $h_n: [0, +\infty[\longrightarrow \mathbb{R} \text{ définie par } h_n(x) = \frac{1}{1+x^n}.$

Exercice n°20

Soit $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f_n(x) = \frac{x}{(x^2+1)^n}$, avec $n \in \mathbb{N}^*$.

- 1) Montrer que les sommes partielles de la série de terme général f_n sont bornée et continue sur \mathbb{R} .
- 2) Calculer la somme S de la série entière.
- 3) Montrer que S n'est ni continue, ni bornée sur \mathbb{R} .
- 4) Conclusion?

Exercice n°21

Soit $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f_n(x) = (-1)^{n+1} \frac{e^{-nx}}{n}$, avec $n \in \mathbb{N}^*$.

- 1) Étudier la convergence simple, normale et uniforme de la série de fonctions de terme général f_n .
- 2) Montrer que la somme f de la série de fonctions est de classe C^1 sur $]0, +\infty[$.
- 3) Calculer f.

Exercice n°22

Soit $\zeta: \mathbb{R} \to \mathbb{R}$, $x \mapsto \sum_{n=1}^{\infty} \frac{1}{n^x}$. On définit ainsi la fonction Zeta de Riemann.

- 1) Quel est le domaine de définition de la fonction ζ ?
- 2) Montrer que ζ est strictement décroissante et convexe. En déduire que $\lim_{x\to 1^+}\zeta(x)=+\infty$.
- 3) Montrer que pour tout $x \ge 2$ et tout $N \ge 1$ on $a : 1 \le \zeta(x) \le \sum_{n=1}^{N} \frac{1}{n^x} + \sum_{n \ge N+1} \frac{1}{n^2}$. En déduire que $\lim_{x \to +\infty} \zeta(x) = 1$.
- 4) Montrer que ζ est de classe C^{∞} et que $\forall p \in \mathbb{N}^*, \forall x > 1, \zeta^{(p)}(x) = \sum_{n \geq 2} \frac{(-\ell n \, n)^p}{n^x}$. Retrouver ainsi le résultat de la question 2).
- 5) Pour $n \ge 2$ et x > 0, montrer les inégalités $\int_n^{n+1} t^{-x} dt \le n^{-x} \le \int_{n-1}^n t^{-x} dt$.
- 6) En déduire que pour x > 1 et $N \ge 2$ on a : $\frac{N^{1-x}}{x-1} \le \sum_{n > N} \frac{1}{n^x} \le \frac{(N-1)^{1-x}}{x-1}$.
- 7) Montrer que $\zeta(x) 1$ $\underset{x \to +\infty}{\sim} 2^{-x}$ et que $\zeta(x)$ $\underset{x \to 1}{\sim} \frac{1}{x-1}$.

Exercice n°23 (CAPES 1997)

Pour tout entier $k \ge 1$, on pose $f_k : x > 0 \longmapsto \frac{1}{k^{x+1}}$.

1) Montrer que pour tout entier $r \geq 1$, la série de fonctions $\left[f_k^{(r)}\right]$ converge normalement sur tout intervalle $\left[\alpha, +\infty\right]$ $(\alpha > 0)$.

4

- 2) En déduire que la fonction $S: x>0 \longmapsto \sum_{k\geq 1} \frac{1}{k^{x+1}}$ est de classe C^{∞} .
- 3) Montrer que S est décroissante et convexe.

Exercice n°24

Soit $f:[0,1]\to\mathbb{R}$ bornée.

- 1) Montrer que la série $\sum t^n f(t)$ est uniformément convergente sur tout intervalle [0,a] où 0 < a < 1. Donner une condition nécessaire et suffisante pour que cette série converge simplement sur [0,1].
- 2) Montrer que la convergence de cette série de fonctions est uniforme sur [0,1] si et seulement si f est dérivable en 1 et f(1) = f'(1) = 0.

Exercice n°25

La limite supérieure d'une suite de nombres réels $(a_n)_n$ est définie par

$$\lim \sup_{n \to \infty} a_n = \lim_{p \to \infty} (\sup_{n \ge p} a_n).$$

- 1) Soit $(b_n)_n$ une suite de réels positifs. Montrer que si la limite supérieure de $(b_n^{1/n})_n$ est strictement inférieure à 1, alors la série numérique $\sum_n b_n$ converge, alors que si elle est strictement supérieure à 1, la série $\sum_n b_n$ diverge.
- 2) En déduire que le rayon de convergence R de la série entière $\sum_n a_n z^n$ satisfait:

$$\frac{1}{R} = \lim \sup_{n \to \infty} |a_n|^{1/n}.$$

- 3) Donner le rayon de convergence des séries entières $\sum_n n! z^n$, $\sum_n \frac{1}{n!} z^n$, $\sum_n z^n$, $\sum_n \frac{1}{n} z^n$.
- 4) Montrer que les séries entières $\sum a_n z^n$ et $\sum na_n z^n$ ont même rayon de convergence.

Exercice n°26

On définit la fonction cosinus sur \mathbb{R} par $\cos x = Re(e^{ix})$.

- 1) Montrer que $\cos x + 1 = 2\cos^2(\frac{x}{2})$ pour $x \in \mathbb{R}$.
- 2) Montrer que $\cos 2 \le 0$.
- 3) Montrer qu'il existe $\alpha > 0$ tel que cos $\alpha = 0$ et tel que pour $0 \le x < \alpha$, on ait cos x > 0.
- 4) Montrer que cos : $\mathbb{R} \longrightarrow [-1, 1]$ est surjective.

Exercice n°27 (CAPES 2002)

Exercice n°27] (CAPES 2002) Soit $f: \mathbb{R} \to \mathbb{C}$ développable en série entière au voisinage de $0: \forall x \in]-R, R[, f(x) = \sum_{n\geq 0} a_n x^n]$.

Montrer que si f est dérivable sur \mathbb{R} et vérifie $\forall x \in \mathbb{R}$, $f(x) = xf'(\frac{x}{2})$ alors f est polynomiale sur \mathbb{R} .

Exercice n°28 (d'après CAPES 1996)

Montrer que l'équation différentielle $-t^2y''(t) - 2ty'(t) + y(t) = Arctan t$ admet une solution développable en série entière au voisinage de 0.

Exercice n°29 (d'après CAPES 1986)

Soit f la fonction définie sur \mathbb{R} par $f(t) = |\sin \frac{t}{2}|$.

- 1) Donner l'allure de la représentation graphique de f.
- 2) Montrer que f est développable en série de Fourier.
- 3) Calculer ses coefficients de Fourier trigonométriques.

Exercice n°30 (d'après CAPES 1986)

Pour tout entier naturel n, on désigne par f_n la fonction 2π -périodique paire définie sur $[0,\pi]$ par $f(t) = \sin(2n+1)\frac{t}{2}$.

- 1) Donner l'allure de la représentation graphique de f_1 .
- 2) Montrer que f_n est développable en série de Fourier.
- 3) Calculer les coefficients de Fourier trigonométriques de f_n .

Exercice n°31 (CAPES 1997)

Pour $x \neq 0$ fixé, on considère la fonction $f(2\pi)$ -périodique définie sur $[-\pi, \pi]$ par $f(t) = \operatorname{ch} xt$.

- 1) Montrer que f est paire, continue et de classe C^1 par morceaux sur \mathbb{R} .
- 2) Calculer les coefficients de Fourier trigonométriques de f.
- 3) Montrer que f est somme de sa série de Fourier et en déduire que $\pi \coth(\pi x) \frac{1}{x} = \sum_{n \ge 1} \frac{2x}{x^2 + n^2}$.

Exercice n°32

Soit λ un réel non nul de] -1,1[. Pour tout réel x, on pose $f(x) = \frac{1}{1-2\lambda\cos x + \lambda^2}$.

- 1) Montrer que la série de Fourier de f converge normalement vers f sur \mathbb{R} . Ecrire l'égalité qui en résulte, sans chercher à calculer les $a_n(f)$ (qu'on notera simplement a_n).
- **2)** (a) Montrer que pour tout n de \mathbb{N}^* , on a : $\lambda a_{n+1} (1 + \lambda^2)a_n + \lambda a_{n-1} = 0$.
 - (b) En déduire l'existence de deux réels α et β tels que : $\forall n \in \mathbb{N}, a_n = \alpha \lambda^n + \frac{\beta}{\lambda^n}$.
 - (c) Montrer que $\beta = 0$. Calculer a_0 et en déduire l'expression de a_n .
- 3) Déduire de ce qui précède que : $\forall x \in \mathbb{R}, \forall \lambda \in]-1, 1[, \frac{1-\lambda^2}{1-2\lambda\cos x+\lambda^2}=1+2\sum_{n=1}^{+\infty}\lambda^n\cos nx.$
- 4) Retrouver ce résultat en utilisant un développement en série entière.