Real algebraic geometry; homework

For february 12th

Exercice 1.

(1) Is the exponential function $exp : \mathbb{R} \to \mathbb{R}$ semi-algebraic?

Consider the ring \mathcal{F} of germs at the origin $0 \in \mathbb{R}^n$ of C^{∞} and semialgebraic functions with values in \mathbb{R} (namely these functions are defined on some semialgebraic neighborhood, depending of the function, of 0 in \mathbb{R}^n , have values in \mathbb{R} , and are of class C^{∞} and semialgebraic).

(2) Let $f \in \mathcal{F}$. Prove that the function $g:[0,\infty) \to \mathbb{R}$ defined by

$$g(r) = \sup\{|f(x)|; ||x|| \le r\}$$

is semi-algebraic.

Consider the morphism $\phi : \mathcal{F} \to \mathbb{R}[[X_1, \dots, X_n]]$ assigning to a function in \mathcal{F} its Taylor series at the origin.

(3) Prove that ϕ is injective.

Exercice 2.

Let F be an ordered field and K be a field extension of F.

- (1) Let P be a cone in K. Show that P is the intersection of the positive cones K_+ of all orderings in K with $P \subset K_+$ (the intersection being K if there exist no such ordering).
- (2) Show that

$$C = \{a_1b_1^2 + \dots + a_rb_r^2; a_i \in F_+, b_i \in K\}$$

is a cone in K.

- (3) Show that K has an ordering which extends the ordering on F if and only if $-1 \notin C$.
- (4) Show there exists an ordering on $F(X_1, \ldots, X_n)$ extending the ordering on F.
- (5) How many orderings do exist on \mathbb{Q} ?