CONNAISSANCES MATHÉMATIQUES ÉLÉMENTAIRES POUR LE L2

Connaissances de base à maîtriser à l'issue du L1

Exercice 1

(Nombres décimaux, rationnels, radicaux)

Addition, soustraction, multiplication, division de nombres décimaux, rationnels, de radicaux.

- 1.— Comparer les nombres réels 1/0.999, 1 et 1/0.99.
- 2.— 3+1/7 est-il un entier relatif? un nombre décimal?
- **3.** Comparer 3 + 1/7, 3 + 10/71 et 355/113.
- **4.** Comparer $\sqrt{156}$ et $1 + \sqrt{155}$.
- 5.— Simplifier $\sqrt[4]{81}$.

Exercice 2

(Écriture en base 2)

- 1.— Écrire 13 en base 2.
- **2.** Écrire en base 10 le nombre qui s'écrit $\overline{10011}$ en base 2.

Exercice 3

(Manipulation de puissances)

- 1.— Comparer 10^{100} et 100^{10} .
- **2.** En remarquant que $1024 = 2 \times 512$, comparer $(1024)^5$ et $(512)^6$.

Exercice 4

(Nombres complexes)

- **1.** Écrire le nombre complexe $\frac{1+i}{2-i}$ sous la forme a+ib avec $a,b\in\mathbb{R}$.
- **2.** Soit x un réel, quel est le module de $\exp(ix)$?
- **3.** Résoudre dans \mathbb{R} l'équation $x^2 = 16$.
- **4.** Résoudre dans \mathbb{C} l'équation $z^2 2z 3 = 0$.
- **5.** Résoudre dans \mathbb{C} l'équation $z^2 = 1 + i$.
- **6.** Résoudre dans \mathbb{C} l'équation $z^2 2z 1 2i = 0$.

Exercice 5 (Pourcentages)

- 1.— Si on augmente une quantité de 3% puis on diminue le résultat de 3%, revient-on à la quantité initiale?
- 2.— Le montant a des annuités fixes de remboursement en n années d'un emprunt d'une somme S au taux annuel de $\tau\%$ est donné par la formule

$$a = S. \frac{\tau/100}{1 - (1 + \tau/100)^{-n}}.$$

Je veux rembourser 500 euros par an pendant 20 ans. Combien puis-je emprunter au taux de 4%?

 $\bf 3.$ — Une population augmente de 30% par an. Quelle est son taux d'augmentation en deux ans ?

Date: 9 septembre 2011.

- 4.— J'ai placé mon argent sur un livret. La somme a doublé en dix ans. À quel taux annuel l'ai-je placé? (on demande la formule permettant de déterminer ce taux).
- 5.— Une population a un taux d'accroissement de 10% par an. En combien d'années doublera-t-elle? (on demande la formule permettant de déterminer ce nombre).

Exercice 6

(Éléments de logique)

- 1.— Quelle est la contraposée de "si n^2 n'est pas multiple de 4 alors n est impair"? Cette proposition est-elle vraie?
- **2.** Quelle est la négation de "si n est impair alors n^2 est impair"?
- **3.** Quelle est la négation de "si n^2 n'est pas multiple de 4 alors n est impair"?
- 4.— Nier la phrase "Tous les membres de la famille étaient dans la cuisine".
- 5.— Nier la phrase "Il portait un chapeau et des lunettes".
- **6.** La proposition $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, (xy+1=0 \Longrightarrow x=0)$ est-elle vraie?

Exercice 7

(Savoir déterminer si un entier de taille raisonnable est premier)

Le nombre 2011 est-il premier? et le nombre 2013?

Exercice 8

(Décomposer en facteurs premiers un nombre entre 1 et 1000)

Décomposer en produits de facteurs premiers les nombres 442×6 et 507.

Exercice 9

(Suites arithmétiques et géométriques)

- 1.— Donner l'exemple d'une suite qui n'est ni arithmétique, ni géométrique.
- 2.— Expliciter les six premiers termes de la suite arithmétique de terme initial 5 et de raison 1.
- 3.— Expliciter les six premiers termes de la suite géométrique de terme initial 5 et de raison 1.
- **4.** Énoncer puis démontrer la formule donnant la somme des n premiers termes d'une suite arithmétique, puis d'une suite géométrique. 5.— Calculer $\sum_{k=3}^{2000} 6 \times 5^k$.

Exercice 10

(Polynômes et suites arithmétiques)

- **1.** Existe-t-il un polynôme P tel que pour tout x on ait $x^6 1 = (x 1)P(x)$?
- 2.— Si oui, en trouver un?

Exercice 11

(Fonctions numériques)

On appelera fonction numérique toute fonction de \mathbb{R} dans \mathbb{R} .

- 1.— Donner un exemple de deux fonctions numériques dérivables qui ont partout la même dérivée mais qui ne sont pas égales.
- 2.— Donner un exemple d'une fonction numérique continue sur \mathbb{R} qui n'est pas dérivable en 0.
- **3.** Déterminer les extrema de la fonction $[-1,1] \to \mathbb{R}, x \mapsto 1-|x|$.
- **4.** Déterminer les extrema de la fonction $[-1,1] \to \mathbb{R}, x \mapsto \frac{1}{x^2+1}$.

5.— Donner si elles existent les limites des fonctions $x \mapsto \exp(2x)/2x$, $x \mapsto \sin(x)$, $x \mapsto x/\exp(x)$ et $x \mapsto \ln(2x)/2x$ quand x tend vers $+\infty$.

Exercice 12 (Géométrie)

- 1.— Indiquer une construction à la règle et au compas permettant de diviser en trois parties d'égales longueurs un segment donné.
- **2.** Quelles sont toutes les applications du plan dans lui-même que l'on peut obtenir en composant une ou deux symétries orthogonales?
- 3.— Donner une définition et une propriété fondamentale de la médiatrice d'un segment.
- 4.— Montrer que les médiatrices des côtés d'un triangle sont concourantes.
- 5.— Montrer que la somme des angles d'un triangle est un angle plat.

Exercice 13

(Fonctions numériques classiques)

Savoir dériver, établir les tableaux de variations, représenter les éléments principaux (tangentes horizontales, extrema, limites, asymptotes...) du graphe des fonctions classiques : polynômes, fractions rationnelles, radicaux, logarithme, exponentielle, fonctions trigonométriques et trigonométriques hyperboliques et leurs composées.

- 1.— Exprimer les solutions de l'équation ln(x) = 3 à l'aide d'une fonction classique.
- **2.** Étudier le signe de $\exp(x) x$.
- 3.— Établir le tableau de variations et le graphe des fonctions ln et $\sqrt{\ }$.
- **4.** Étudier la fonction $x \mapsto x/\ln x$ sur son ensemble de définition.
- 5.— Soient a et b deux nombres réels. À quelle condition nécessaire et suffisante sur a et b existe-t-il un nombre θ tel que $a = \cos \theta$ et $b = \sin \theta$?
- **6.** Choisir parmi 0, 1, 1/2 la meilleure valeur approchée de l'équation $\exp(x) = 1.005$.
- 7.— Choisir parmi 0, 1, 1/2 la meilleure valeur approchée de l'équation $\exp(2x) = 1.005$.

Exercice 14

(Plus grand élément, maximum)

- 1.— Est-il vrai que toute partie non vide et majorée d'un ensemble a un plus grand élément?
- 2.— Soit x un nombre réel strictement positif. Exprimer en fonction de x en utilisant la fonction partie entière le plus grand nombre entier naturel k tel que $k^2 < x$.

Exercice 15

(Équation différentielle)

Quelle équation différentielle simple satisfait la fonction exponentielle? et la fonction $x \mapsto \exp(2x)$?

Exercice 16

(Résolutions graphiques d'équations ou d'inéquations)

1.— Résoudre dans \mathbb{R} l'inéquation

$$|x-1| < 2.$$

2.— Résoudre dans \mathbb{R} l'inéquation

$$|x - 2| \ge 3$$

3.— Résoudre dans \mathbb{R} l'inéquation

$$|x-1| + |x+3| < 2$$

4.— Résoudre dans \mathbb{R} l'inéquation

$$|x-1| + |x| < 3$$

5.— Résoudre dans \mathbb{R} l'inéquation

$$|x-1| - |x+3| \ge 2$$

Exercice 17 (Limites de suites)

- 1.— Une suite qui n'est pas croissante est-elle nécessairement décroissante? (justifier)
- 2.— Une suite croissante tend-elle nécessairement vers $+\infty$? (justifier)
- 3.— Une suite tendant vers $-\infty$ est-elle décroissante à partir d'un certain rang?
- **4.** Donner un exemple de suite tendant vers $+\infty$ telle que pour tout entier $n \ge 1$ on ait $u_{2n} > u_{2n+1}$.
- 5.— Soit (u_n) la suite définie par $u_0 = 1$ et $u_{n+1} = u_n/2 + 1$. Démontrer que pour tout entier naturel n, $u_{n+1} 2 = \frac{u_n 2}{2}$. La suite (u_n) a-t-elle une limite? Si oui, laquelle?

Exercice 18 (Limites)

- 1.— Exprimer de façon intuitive que la fonction $x \mapsto \exp(-x)$ tend vers 0 quand x tend vers $+\infty$.
- **2.** Écrire avec des quantificateurs que la fonction $x \mapsto \exp(-x)$ tend vers 0 quand x tend vers $+\infty$.
- **3.** Donner l'exemple d'une fonction numérique qui n'a pas de limite (finie ou infinie) en $+\infty$.
- 4.— Représenter le graphe d'une fonction numérique qui n'a pas de limite en 1.

Exercice 19 (Limites)

- 1.— Démontrer le "théorème des gendarmes" pour les fonctions lorsque la variable tend vers l'infini.
- 2.— Montrer que la fonction $]0, +\infty[\to \mathbb{R}, x \mapsto \sin(1/x)$ a une limite quand x tend vers $+\infty$. Déterminer cette limite.

Exercice 20 (Continuité)

- 1.— Donner un (deux, trois...) exemple(s) d'une fonction numérique qui n'est pas continue en 0
- 2.— Donner un exemple d'une fonction numérique qui n'est continue en aucun $x \in \mathbb{Z}$.
- **3.** Donner la définition de la continuité d'une fonction numérique d'une variable réelle en un point a de \mathbb{R} .

Exercice 21

(Valeurs intermédiares)

Existe-t-il une fonction numérique f de \mathbb{R} dans \mathbb{R} qui vérifie f(0) = 1 et f(1) = -1 mais qui ne s'annule pas?

- 1.— Énoncer le théorème des valeurs intermédiaires.
- 2.— Quelle est l'utilité principale de ce théorème?

Exercice 23

(Résolution exacte ou approchée)

- 1.— Donner le nombre de solutions de l'équation $x^3 + 2x = 4$ dans l'intervalle [0, 1] puis dans l'intervalle [1, 2].
- 2.— Quel est le produit des solutions complexes de l'équation $x^2 = x + 1$.
- **3.** Montrer que l'équation $x^2 = x + 1$ admet une et une seule solution positive. Donner une valeur approchée par un nombre décimal à 10^{-1} près de la solution positive de l'équation $x^2 = x + 1$.
- 4.— Donner une expression exacte de la solution positive de l'équation $x^2 = x + 1$.
- ${f 5.}$ Discuter en fonction des valeurs du paramètre réel a le nombre de racines réelles de l'équation

$$ax^{3} + (2 - a^{2})x^{2} + (1 - 2a)x - a = 0.$$

Remarque : a est racine.

 ${f 6.}$ — Discuter en fonction de la valeur du paramètre réel a le nombre de racines réelles de l'équation

$$ax^2 - 2ax + 2.$$

7.— Discuter en fonction de la valeur du paramètre a le nombre de racines réelles de l'équation

$$x^2 - a^2x - 2a.$$

8.— Discuter en fonction de la valeur du paramètre a le nombre de racines réelles positives de l'équation

$$x^2 - a^2x - 2a.$$

Exercice 24

(Rédiger un raisonnement par récurrence)

- **1.** On considère la suite numérique définie par $u_0=2$ et pour tout $n\in\mathbb{N},\ u_{n+1}=3u_n-1$. Calculer les cinq premiers termes. Montrer que si $u_p\geq 2$ alors $u_{p+1}\geq 2$. Déterminer le signe de u_{3000} .
- 2.— Montrer que les sommes des entiers impairs jusqu'à un certain rang sont des carrés. Plus précisémment, montrer que pour tout entier naturel ℓ ,

$$\sum_{k=0}^{\ell} 2k + 1 = (\ell+1)^2.$$

Exercice 25

(les fonctions trigonométriques inverses)

Savoir définir les fonctions trigonométriques inverses. Savoir les dériver.

- 1.— Définir la fonction arctan.
- 2.— Établir son tableau de variations.
- 3.— Représenter son graphe (avec la tangente à l'origine et les asymptotes).
- **4.** Quel graphe obtient-on en prenant le symétrique du graphe précédent par rapport à la droite d'équation y = x?

Exercice 26 (Intégration)

Intégrer par parties le produit d'un polynôme par une exponentielle.

- 1.— Calculer $\int_0^2 (x^2 + 3x + 1) \exp(x) dx$. 2.— Calculer $\int_0^1 (4x^2 6x + 1) \exp(-2x) dx$.

Exercice 27 (Primitive)

- 1.— Rappeler les primitives des fonctions numériques $x\mapsto x^5,\ x\mapsto \ln x,\ x\mapsto \sin x,$ $x \mapsto \exp x$.
- **2.** Quelle est la dérivée de la fonction numérique $x \mapsto [\sin(x)]^5$?
- **3.** Déterminer une primitive de la fonction numérique $x \mapsto (\sin^4 x + 3\sin^2 x)\cos(x)$.

Exercice 28 (Calcul d'aire)

Déterminer l'aire de la surface de \mathbb{R}^2 d'équations $(1 \le x \le 2, y \le x^2)$.

Exercice 29 (Congruences)

- 1.— Quel est le chiffre des unités de 3 à la puissance 251?
- 2.— Que vaut 11 à la puissance 237 modulo 6?

Exercice 30

(Injectivité, surjectivité)

- 1.— Soit A, B deux ensembles et f une application de A dans B; définir "f est surjective".
- **2.** Écrire à l'aide de quantificateurs le fait que l'application f n'est pas surjective.
- 3.— Donner un exemple d'application injective non surjective de \mathbb{R} dans \mathbb{R} .
- **4.** Donner un exemple d'application surjective non injective de \mathbb{R} dans \mathbb{R} .
- 5.— Soit $f: E \to F$ et $g: H \to G$ deux applications. À quelle condition peut-on définir $f \circ q$?
- **6.** Soit f et q deux applications d'un ensemble E dans lui-même. Démontrer que $f \circ q$ injective implique q injective.
- 7.— Définir l'image réciproque d'une partie Y de B.

Exercice 31

(Algorithme d'Euclide de recherche du pgcd)

- 1.— Déterminer pqcd(442,510).
- 2.— Déterminer un couple de Bézout pour 442 et 510, c'est à dire un couple d'entiers relatifs (u, v) tel que 442u + 510v = pgcd(442, 510).

Exercice 32

(Droites et système)

- 1.— Représenter graphiquement les droites d'équation 3x + 2y = -1 et 4x 2y = 5.
- **2.** Résoudre le système d'inconnu $(x, y) \in \mathbb{R}^2$,

$$\begin{cases} 3x + 2y = -1\\ 4x - 2y = 5 \end{cases}$$

3.— Représenter graphiquement les droites d'équation -2x + y = -1 et 4x - 2y = 5.

4.— Résoudre le système d'inconnu $(x,y) \in \mathbb{R}^2$,

$$\begin{cases} -2x + y = -1\\ 4x - 2y = 5 \end{cases}$$