Contrôle continu du 26 octobre 2018

Les notes de cours, calculatrices et téléphones ne sont pas autorisés. On justifiera soigneusement tous les résultats énoncés. Durée : 2 heures.

Questions de cours

- (1) Énoncer l'inégalité de Cauchy-Schwarz dans un espace vectoriel euclidien.
- (2) Donner la définition d'une matrice orthogonale.
- (3) Donner un exemple de matrice à coefficients réels qui n'est pas triangularisable sur \mathbb{R} .

Exercice 1. Soient
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ des vecteurs de \mathbb{R}^3 .

- (1) Vérifier que l'espace engendré par v_1 et v_2 forme un plan H de \mathbb{R}^3 . Quel est l'annulateur H^o de H?
- (2) Compléter la famille (v_1, v_2) en une base (v_1, v_2, v_3) de \mathbb{R}^3 . Calculer la base duale associée.
- (3) On considère \mathbb{R}^3 muni du produit scalaire canonique. Orthonormaliser la famille (v_1, v_2, v_3) par le procédé de Gram-Schmidt.
- (4) Donner la décomposition QR de la matrice de $M_3(\mathbb{R})$ dont les colonnes sont formées par les vecteurs v_1 , v_2 et v_3 .

Exercice 2. Considérons les matrices suivantes dans $M_3(\mathbb{R})$:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- (1) Calculer les polynômes caractéristiques et minimaux de A, B et C.
- (2) Parmi A, B et C, lesquelles de ces matrices sont diagonalisables?
- (3) La matrice A est-elle semblable à C? La matrice B est-elle semblable à C?

Exercice 3. Soit A la matrice donnée par
$$A = \begin{pmatrix} 4 & 1 & -1 \\ -2 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
.

- (1) Calculer le polynôme caractéristique π_A et le polynôme minimal μ_A de A.
- (2) La matrice A est-elle diagonalisable sur \mathbb{R} ?
- (3) Justifier que A est triangularisable sur \mathbb{R} . Donner sa forme de Jordan J.
- (4) Déterminer $P \in GL_3(\mathbb{R})$ telle que $P^{-1}AP$ soit égale à J.
- (5) Donner la décomposition de Dunford-Jordan de A.