

Analyse et Probabilités 3

Contrôle continu du 10 octobre 2019 - CORRIGÉ

Questions de cours (3)

(3 points)

- 1) Si f et g sont des fonctions ayant des développements limités au même ordre n en 0 et si g(0)=0 alors f(g(x)) a un développement limité à l'ordre n en 0. Si A(x) est la partie régulière du développement limité de f(x) et B(x) celle du développement de g(x), alors la partie régulière du développement limité de f(g(x)) est le tronqué $T_n(A(B(x)))$.
- 2) Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. On dit que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont équivalentes s'il existe une fonction ε avec $\lim_{n\to+\infty} \varepsilon(n)=0$ telle que $\forall n\in\mathbb{N},\ u_n=v_n(1+\varepsilon(n))$.
- 3) On pose $S_n = \sum_{k=0}^n u_k$ et $T_n = \sum_{k=0}^n v_k$. On remarque que pour tout $n \ge 0$, on a $S_n \le T_n$. Si $\sum v_n$ converge, alors la suite convergente $(T_n)_{n \in \mathbb{N}}$ est majorée et donc la suite croissante (car $\forall n \in \mathbb{N}, S_{n+1} - S_n = u_{n+1} \ge 0$) $(S_n)_{n \in \mathbb{N}}$ est majorée. En conséquence, cette suite converge et donc la série $\sum u_n$ converge.

Remarques : • Une définition (contrairement à une proposition) ne devrait pas comporter de « si et seulement si ».

• Il ne faut pas confondre $\sum u_n$ qui désigne « l'objet » série avec $\sum_{k=1}^n u_k$ qui désigne un réel (ou un complexe).

Exercice n°1 (4 points)

- 1) On a $e^X = 1 + X + \frac{X^2}{2} + X^2 \varepsilon(X)$ avec $\lim_{X \to 0} \epsilon(X) = 0$. D'autre part, $\sqrt{1+X} = 1 + \frac{1}{2}X - \frac{X^2}{8} + X^2 \varepsilon(X)$ avec $\lim_{X \to 0} \epsilon(X) = 0$.
- 2)a) Puisque X=3x $\xrightarrow[x\to 0]{}$ 0 on déduit du deuxième développement (théorème de substitution) : $\sqrt{1+3x}=1+\frac{3}{2}x-\frac{9}{8}x^2+x^2\varepsilon(x)$. De même, $\sqrt{1+2x}=1+x-\frac{1}{2}x^2+x^2\varepsilon(x)$. Finalement, $\sqrt{1+3x}-\sqrt{1+2x}-\frac{x}{2}=-\frac{5}{8}x^2+x^2\varepsilon(x)$.
 - b) De même, on obtient $e^{3x} = 1 + 3x + \frac{9x^2}{2} + x^2 \varepsilon(x)$ et $e^{2x} = 1 + 2x + 2x^2 + x^2 \varepsilon(x)$. Comme $\sin x = x + x^2 \varepsilon(x)$, on a finalement $e^{3x} e^{2x} \sin(x) = \frac{5}{2}x^2 + x^2 \varepsilon(x)$.
- 3) On déduit de la question précédente que

$$\frac{e^{3x} - e^{2x} - \sin(x)}{\sqrt{1 + 3x} - \sqrt{1 + 2x} - \frac{x}{2}} = \frac{\frac{5}{2}x^2 + x^2\varepsilon(x)}{-\frac{5}{8}x^2 + x^2\varepsilon(x)} = \frac{\frac{5}{2} + \varepsilon(x)}{-\frac{5}{8} + \varepsilon(x)} \longrightarrow -4.$$

Remarques : • Pour écrire des égalités, il est impératif de conserver les restes.

- \bullet Si on applique un théorème du cours, il faut au préalable en vérifier les hypothèses.
- Lorsqu'on fait tendre x vers 0 dans une expression, il est tout à fait impensable d'avoir « du x » dans le résultat.

Exercice $n^{\circ}2$ (4.5 points + 1 point)

- 1) On écrit $\tan x = \sin x \cdot \frac{1}{\cos x}$ avec $\cos x = 1 \frac{x^2}{2} + o(x^3)$ et $\sin x = x \frac{x^3}{3!} + o(x^3)$. On a alors : $\frac{1}{\cos x} = \frac{1}{1 \left(\frac{x^2}{2} + o(x^3)\right)}. \text{ Comme } \frac{1}{1 X} = 1 + X + X\varepsilon(X), \text{ en appliquant le théorème de substitution } (\cot X = \frac{x^2}{2} + o(x^3) \xrightarrow[x \to 0]{} 0) : \frac{1}{\cos x} = 1 + \frac{x^2}{2} + o(x^2). \text{ Par parité, ce développement est aussi un développement à l'ordre 3. Enfin, on utilise le théorème sur le produit pour obtenir : <math display="block">\tan x = T_3 \left((x \frac{x^3}{3!})(1 + \frac{x^2}{2}) \right) + o(x^3). \text{ Finalement } \tan x = x + \frac{x^3}{3} + o(x^3).$
- 2) On déduit de la question précédente que, pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\setminus\{0\}, f(x)] = \frac{1}{1+\frac{1}{3}x^2+o(x^2)}$. La fonction au dénominateur ne s'annulant pas en 0, le théorème sur le quotient s'applique et f a donc un développement limité à l'ordre 2. Comme en 1), on obtient ce développement en partant de $\frac{1}{1+X} = 1-X+X\varepsilon(X)$ et en appliquant le théorème de substitution. On obtient ainsi $f(x) = 1-\frac{1}{3}x^2+x^2\varepsilon(x)$ avec $\lim_{x\to 0} \epsilon(x) = 0$.
- 3) En particulier, $\lim_{x\to 0} f(x) = 1$. Comme f est clairement continue sur $] \frac{\pi}{2}, \frac{\pi}{2}[\setminus\{0\}, f]$ est finalement prolongeable par continuité en posant f(0) = 1. On peut aussi écrire, pour $x \in] \frac{\pi}{2}, \frac{\pi}{2}[\setminus\{0\}, f]$ est finalement prolongeable par continuité en posant f(0) = 1. On peut aussi écrire, pour $x \in] \frac{\pi}{2}, \frac{\pi}{2}[\setminus\{0\}, f]$ est donc dérivable en f'(0) = 0.
- 4) f est dérivable sur $] \frac{\pi}{2}, \frac{\pi}{2} [\setminus \{0\}]$ et on a $\forall x \in] \frac{\pi}{2}, \frac{\pi}{2} [\setminus \{0\}]$ $f'(x) = \frac{\tan x x(1 + \tan^2 x)}{\tan^2 x} = \frac{\frac{\tan x x}{x^2}}{\left(\frac{\tan x}{x}\right)^2} x$

Comme $\frac{\tan x - x}{x^2}$ et $\left(\frac{\tan x}{x}\right)^2$ admettent tous deux un développement limité à l'ordre 1 en 0 (le deuxième ne s'annulant pas en 0), il en est de même de f'. Le théorème de dérivation des développements limités s'applique alors et, compte tenu de la question 2), on a $f'(x) = -\frac{2}{3}x + x\varepsilon(x)$ avec $\lim_{x\to 0} \epsilon(x) = 0$. En particulier, f' est dérivable en 0 et on a $f''(0) = -\frac{2}{3}$.

Remarques: • On pouvait bien sûr donner directement le développement limité en 0 de tan x mais il était indispensable de savoir justifier proprement le calcul du développement de f.

• Les hypothèses du théorème de dérivation ont trop souvent été ignorées.

Exercice n°3 (3,5 points)

- 1) On a $|u_n| \underset{n \to +\infty}{\sim} \frac{n \cdot 2^n}{n!} = v_n$. Comme $\frac{v_{n+1}}{v_n} = \frac{2}{n} \xrightarrow{n \to +\infty} 0 < 1$, la série <u>positive</u> $\sum v_n$ converge (règle de d'Alembert) et donc $\sum u_n$ (théorème d'équivalence pour les séries positives) converge absolument donc converge.
- 2) On a $n^{\frac{5}{4}}|u_n| = \frac{1}{n^{\frac{1}{4}} + \frac{\sin^2 n}{n^{\frac{1}{4}}}} \xrightarrow{n \to \infty} 0$ donc (critère de Riemann) $\sum u_n$ converge absolument et donc converge.
 - Remarques : 1) La série proposée est clairement négative (à partir du rang 2) et il n'était donc pas envisageable de lui appliquer directement la règle de d'Alembert.
 - 2) La série proposée est alternée mais chercher à appliquer le CSSA s'avérait périlleux, la décroissance de la suite $(|u_n|)$ n'étant pas claire.

Exercice n°4 (5 points)

- 1) Soit $n \ge 1$. On a $X = \frac{(-1)^n}{\sqrt{n}}$ $\xrightarrow{n \to \infty}$ 0 et $\ln (1+X) \underset{X \to 0}{\sim} X$ donc $w_n \underset{n \to +\infty}{\sim} \frac{(-1)^n}{\sqrt{n}} = u_n$.
- 2) On en déduit que $|w_n| \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}} = |u_n|$. Comme $\sum \frac{1}{\sqrt{n}}$ diverge (série de Riemann avec $\frac{1}{2} \leqslant 1$), $\sum u_n$ et $\sum w_n$ ne convergent pas absolument.
- 3) $\sum \frac{(-1)^n}{\sqrt{n}}$ converge d'après le critère spécial aux séries alternées. En effet, c'est une série alternée et la suite $\left(\left|\frac{(-1)^n}{\sqrt{n}}\right| = \frac{1}{\sqrt{n}}\right)_{n \in \mathbb{N}^*}$ est décroissante (car la fonction racine carrée est croissante et positive) et converge vers 0.
- 4) Le développement limité en 0 de $X \mapsto \ln(1+X)$ à l'ordre 2 est : $\ln(1+X) = X \frac{1}{2}X^2 + X^2\varepsilon(X)$ avec $\lim_{X\to 0} \varepsilon(X) = 0$. Or $X = \frac{(-1)^n}{\sqrt{n}} \xrightarrow[n\to +\infty]{} 0$ donc $w_n = \frac{(-1)^n}{\sqrt{n}} \frac{1}{2}\frac{1}{n} + \frac{1}{n}\varepsilon_1(n)$ avec $\lim_{n\to \infty} \varepsilon_1(n) = 0$. Par suite, $u_n w_n \underset{n\to +\infty}{\sim} \frac{1}{2}\frac{1}{n}$. Comme $\sum \frac{1}{n}$ diverge (série harmonique), la série $\sum (u_n w_n)$ est divergente. On en déduit finalement que $\sum w_n$ diverge comme somme d'une série convergente et d'une série divergente (puisque $u_n = (u_n w_n) + w_n$).
 - Remarques : Il était inutile d'aller chercher un développement limité à l'ordre 3 de $\ell n (1 + X)$.

 Il était par contre indispensable de conserver le reste de ce développement et de l'incorporer à l'étude