

Analyse et Probabilités 3

Éléments de correction du test du 3/12/21

Questions de cours : voir le cours.

QCM

- 1. La série $\sum u_n$ converge, mais pas absolument :
 - (a) $u_n = \frac{\ln n}{n^2}$

Faux : $u_n \ge 0$, donc si la série converge, elle converge absolument aussi.

C'est effectivement le cas puisque $n^{3/2}|u_n|$ tend vers 0 quand n tend vers l'infini (par croissances comparées), d'où la convergence par la règle de Riemann.

(b) $u_n = \frac{(-1)^n}{n}$

Vrai, c'est une série vérifiant le critère spécial des séries alternées, par contre en valeur absolue on trouve la série harmonique qui diverge.

(c) $u_n = \frac{\cos n}{n^3}$

Faux, elle converge absolument par comparaison avec une série de Riemann convergente : $0 \le$ $|u_n| \leq \frac{1}{n^3}$.

(d) $u_n = \frac{\sin n}{n}$

Vrai d'après le cours.

- 2. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{1+x^2}$. Alors :
 - (a) $u_n = \sum_{k=1}^n \frac{1}{n^2 + k^2}$ est une somme de Riemann associée à f sur [0, 1].

Faux : on a $u_n \leq \sum_{k=1}^n \frac{1}{n^2} = \frac{1}{n}$, donc la suite $(u_n)_n$ tend vers 0.

(b) $v_n = \sum_{k=1}^{2n} \frac{n}{n^2 + k^2}$ est une somme de Riemann associée à f sur [0, 2].

Vrai, on a $v_n = \frac{1}{n} \sum_{k=1}^{2n} f(\frac{k}{n})$ donc v_n est une somme de Riemann pour f sur [0,2] associée à la subdivision $\{1/n, 2/n, \dots, (2n-1)/n, 2\}$.

(c) La limite de $w_n = \sum_{k=1}^{2n} \frac{n^2}{4n^2+k^2}$ est $\frac{\pi}{8}$. Faux : on a $w_n \ge \sum_{k=1}^{2n} \frac{n^2}{4n^2+4n^2} = \frac{n}{4}$, et donc w_n tend vers l'infini quand n tend vers l'infini.

- 3. Soit $f:[a,b]\to\mathbb{R}$ une fonction positive intégrable :
 - (a) Alors $\int_a^b f$ est positive.

Vrai, c'est la positivité de l'intégrale (voir le cours).

(b) Si $\int_a^b f = 0$, alors f est la fonction nulle sur [a, b].

Faux, par exemple si f prend la valeur 1 en 0 et est nulle sur [0,1]. Le résultat est vrai par contre si on suppose de plus f continue.

(c) La fonction $x \mapsto \int_a^x f$ est dérivable.

Faux en général, un contre-exemple a été vu en cours.

(d) La fonction $x \mapsto \int_a^x f$ est monotone.

Vrai. Si on appelle F cette fonction, on a $F(x) - F(y) = \int_y^x f$ qui est positif si $y \le x$ par positivité de l'intégrale.

- 4. La fonction F définie sur \mathbb{R} par $F(x) = \int_{3x}^{x^2} \ln(2+\sin t) dt$:
 - (a) est dérivable de dérivée donnée par $F'(x) = \ln(2 + \sin x^2) \ln(2 + \sin(3x))$. Faux, la valeur de F'(0) est $-3 \ln 2$ d'après 4(b), et non 0.
 - (b) est dérivable de dérivée donnée par $F'(x) = 2x \ln(2 + \sin x^2) 3\ln(2 + \sin(3x))$. Vrai. Déjà la fonction proposée est dérivable par composition de fonctions dérivables sur \mathbb{R} , à savoir les fonctions $x \mapsto 3x$ et $x \mapsto x^2$, ainsi que $x \mapsto \int_a^x \ln(2 + \sin t) dt$ par continuité de la fonction $t \mapsto \ln(2 + \sin t)$. Il reste à utiliser la formule de dérivation des fonctions composées : si f et g sont dérivables sur \mathbb{R} , alors $f \circ g$ est dérivable sur \mathbb{R} de dérivé $(f \circ g)'(t) = g'(t)f'(g(t))$.
 - (c) est dérivable de dérivée donnée par $F'(x) = \int_3^{2x} \frac{\cos t}{2+\sin t} dt$. Faux, la valeur de F'(0) est $-3 \ln 2$ d'après 4(b), et non 0.
 - (d) n'est pas dérivable. Faux, voir 4(b).
- 5. L'intégrale généralisée converge :
 - (a) $\int_1^{+\infty} \frac{dx}{x^2}$. Vrai d'après le cours, c'est une intégrale de Riemann convergente. Plus précisément la fonction $x\mapsto \frac{1}{x^2}$ est continue donc localement intégrable sur $[1,+\infty[$. De plus une primitive est donnée par $t\mapsto \frac{-1}{t}$ qui admet une limite finie en $+\infty$.
 - (b) $\int_0^1 \frac{dx}{x^2}$. Faux d'après le cours, c'est une intégrale de Riemann divergente.
 - (c) $\int_0^1 \frac{dx}{\sqrt{x}}$. Vrai d'après le cours, c'est une intégrale de Riemann convergente.
 - (d) $\int_1^{+\infty} \frac{dx}{x \ln x}$. Faux, une primitive est par exemple $t \mapsto \ln \ln t$ qui tend vers l'infini en $+\infty$.