Université de Rennes 1 L1 2017-2018

Module AG2 Feuille d'exercices $n^{\circ}8$

Applications linéaires en dimension finie

1. Applications linéaires et matrices

Exercice 1. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Donner l'expression de f((x, y, z)) où $f : \mathbb{R}^3 \to \mathbb{R}^3$ est l'application linéaire qui envoie e_1 sur son opposé, qui envoie e_2 sur le vecteur nul et qui envoie e_3 sur la somme des trois vecteurs e_1, e_2, e_3 . Donner la matrice de f dans la base canonique.

Exercice 2. Donner la matrice associée aux applications linéaires $f_i: \mathbb{R}^2 \to \mathbb{R}^2$ dans la base canonique :

- (1) f_1 la symétrie par rapport à l'axe (Oy),
- (2) f_2 la symétrie par rapport à l'axe (y = x),
- (3) f_3 la projection orthogonale sur l'axe (Oy),
- (4) f_4 la rotation d'angle $\frac{\pi}{4}$.

Calculer quelques matrices associées à $f_i \circ f_j$ et, lorsque c'est possible, à f_i^{-1} .

Exercice 3. Calculer la matrice associée aux applications linéaires $f_i: \mathbb{R}^3 \to \mathbb{R}^3$ dans la base canonique :

- (1) f_1 l'homothétie de rapport λ ,
- (2) f_2 la réflexion par rapport au plan (Oxz),
- (3) f_3 la rotation d'axe (Oz) d'angle $-\frac{\pi}{2}$,
- (4) f_4 la projection orthogonale sur le plan (Oyz).

Exercice 4. (1) Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f((x, y, z)) = (x - 2y - 3z, 2y + 3z). Donner une base du noyau de f, une base de l'image de f et vérifier le théorème du rang.

- (2) Faire de même avec $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f((x, y, z)) = (-y + z, x + z, x + y).
- (3) Faire de même avec l'application linéaire $f: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ qui à X^k associe X^{k-1} pour $1 \le k \le n$ et qui à 1 associe 0.

Exercice 5. Lorsque c'est possible, calculer la dimension du noyau, le rang et dire si f peut être injective, surjective, bijective :

- Une application linéaire surjective $f: \mathbb{R}^7 \to \mathbb{R}^4$.
- Une application linéaire injective $f: \mathbb{R}^5 \to \mathbb{R}^8$.
- Une application linéaire surjective $f: \mathbb{R}^4 \to \mathbb{R}^4$.
- Une application linéaire injective $f: \mathbb{R}^6 \to \mathbb{R}^6$.

Exercice 6. Soient
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 5 & 6 & 1 \\ 7 & 8 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 2 & -1 & 7 \\ 4 & 3 & -1 & 11 \\ 0 & -1 & 2 & -4 \\ 3 & 3 & -2 & 11 \end{pmatrix}$. Calculer $\operatorname{rg}(A)$ et $\operatorname{rg}(B)$. Déterminer une base du novau et une base de l'image pour chacune des applications linéaires f_A et f_B associées à A et B dans les bases

du noyau et une base de l'image pour chacune des applications linéaires f_A et f_B associées à A et B dans les bases canoniques.

Exercice 7. Soient A et B deux matrices carrées de même taille n telles que AB = 0 et A + B est inversible. Montrer que rg A + rg B = n.

Exercice 8. Soit E un espace vectoriel et f une application linéaire de E dans lui-même telle que $f^2 = f$.

- (1) Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- (2) Supposons que E soit de dimension finie n. Posons $r = \dim \operatorname{Im} f$. Montrer qu'il existe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E telle que $f(e_i) = e_i$ si $i \leq r$ et $f(e_i) = 0$ si i > r. Déterminer la matrice de f dans cette base \mathcal{B} .

Exercice 9. Soit f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$ définie en posant pour tout $P(X) \in \mathbb{R}_n[X]$: f(P(X)) = P(X+1) + P(X-1) - 2P(X).

- (1) Montrer que f est linéaire et que son image est incluse dans $\mathbb{R}_n[X]$.
- (2) Dans le cas où n=3, donner la matrice de f dans la base $(1,X,X^2,X^3)$. Déterminer ensuite, pour une valeur de n quelconque, la matrice de f dans la base $(1,X,\ldots,X^n)$.
- (3) Déterminer le noyau et l'image de f. Calculer leurs dimensions respectives.
- (4) Soit Q un élément de l'image de f. Montrer qu'il existe un unique $P \in \mathbb{R}_n[X]$ tel que : f(P) = Q et P(0) = P'(0) = 0.

2. Changement de bases

Exercice 10. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f((x,y)) = (2x+y, 3x-2y), Soit $v = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \in \mathbb{R}^2$ avec ses coordonnées dans la base canonique \mathcal{B}_0 de \mathbb{R}^2 . Soit $\mathcal{B}_1 = (\begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix})$ une autre base de \mathbb{R}^2 .

(1) Calculer la matrice de f dans la base canonique.

- (2) Calculer les coordonnées de f(v) dans la base canonique.
- (3) Calculer la matrice de passage de \mathcal{B}_0 à \mathcal{B}_1 .
- (4) En déduire les coordonnées de v dans la base \mathcal{B}_1 , et de f(v) dans la base \mathcal{B}_1 .
- (5) Calculer la matrice de f dans la base \mathcal{B}_1 .

Exercice 11. Même exercice dans \mathbb{R}^3 avec $f:\mathbb{R}^3\to\mathbb{R}^3$ définie par f((x,y,z))=(x-2y,y-2z,z-2x), avec $v = \begin{pmatrix} 3\\-2 \end{pmatrix} \in \mathbb{R}^3 \text{ et } \mathcal{B}_1 = \left(\begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix} \right).$

Exercice 12. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique (e_1, e_2, e_3) est

$$A = \left(\begin{array}{rrr} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{array}\right).$$

Montrer que les vecteurs

$$e'_1 = 2e_1 + 3e_2 + e_3$$
, $e'_2 = 3e_1 + 4e_2 + e_3$, $e'_3 = e_1 + 2e_2 + 2e_3$

forment une base de \mathbb{R}^3 et calculer la matrice de f par rapport à cette base.

Exercice 13. Soient trois vecteurs e_1, e_2, e_3 formant une base de \mathbb{R}^3 . On note ϕ l'application linéaire définie par $\phi(e_1) = e_3, \ \phi(e_2) = -e_1 + e_2 + e_3 \ \text{et} \ \phi(e_3) = e_3.$

- (1) Écrire la matrice A de ϕ dans la base (e_1, e_2, e_3) . Déterminer le noyau de cette application.
- (2) On pose $f_1 = e_1 e_3$, $f_2 = e_1 e_2$, $f_3 = -e_1 + e_2 + e_3$. Calculer e_1, e_2, e_3 en fonction de f_1, f_2, f_3 . Les vecteurs f_1, f_2, f_3 forment-ils une base de \mathbb{R}^3 ?
- (3) Calculer $\phi(f_1), \phi(f_2), \phi(f_3)$ en fonction de f_1, f_2, f_3 . écrire la matrice B de ϕ dans la base (f_1, f_2, f_3) et trouver
- (4) On pose $P = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$. Vérifier que P est inversible et calculer P^{-1} . Quelle relation lie A, B, P et P^{-1} ?

Exercice 14. Soit f l'endomorphisme de \mathbb{R}^2 de matrice $A = \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix}$ dans la base canonique. Soient $e_1 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ et $e_2 = \begin{pmatrix} -2\\5 \end{pmatrix}$.

- (1) Montrer que $\mathcal{B}' = (e_1, e_2)$ est une base de \mathbb{R}^2 et déterminer $\mathrm{Mat}_{\mathcal{B}'}(f)$.
- (2) Calculer A^n pour $n \in \mathbb{N}$.
- (3) Déterminer l'ensemble des suites réelles qui vérifient $\forall n \in \mathbb{N}$ $\begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n \frac{2}{3}y_n \end{cases}.$

Exercice 15. Soient A, B deux matrices carrées semblables (i.e. il existe P inversible telle que $B = P^{-1}AP$). Montrer que

- (1) si l'une est inversible, l'autre aussi,
- (2) si l'une est idempotente, l'autre aussi
- (3) si l'une est nilpotente, l'autre aussi,
- (4) si $A = \lambda I$, alors A = B.
- (5) A et B ont même trace.

Exercice 16. Soit $A \in M_2(k)$. Montrer que A est semblable à sa transposée tA .