Study at high frequencies of a stratified waveguide
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ABSTRACT. A waveguide in integrated optics is defined by its refractive index. The guide is
assumed to be invariant in the propagation direction while in the transverse direction it is supposed
to be a compact perturbation of an unbounded stratified medium. We are interested in the high
frequency modes guided by this device.

We consider the problem under the assumptions of weak guidance, so that it reduces to a
two dimensional eigenvalue problem for a scalar field. While a general study has been done in
a previous paper [1], our goal here is to present an asymptotic study at high frequencies, which
illustrates the dispersive character of the stratified guide. We will give the limit as the frequency
tends to oo of the guided modes and characterize this limit as the solution of an eigenproblem.
The technical difficulty lies in the stratified character of the unbounded reference medium.

1 Introduction

A waveguide in integrated optics is defined by its refractive index. In our paper we
shall consider guides invariant in the propagation direction 3, which are composed of a
stratified medium with a compact perturbation in the transverse section, called the core of
the guide, see Figure 1.

Figure 1: Stratified optical guide.

The stratified medium is the reference medium and is intended to guide electromag-
netic waves in one layer. The unboundedness of the reference medium will put obstacles



in the theoretical and numerical studies as well as carry particular phenomena at high fre-
quency. The compact perturbation of the reference medium is designed to confine waves
inside a layer in a neighborhood of the perturbation.

We will work under the assumption of weak guidance, so our problem reduces to
a two dimensional eigenvalue problem for a scalar field. A careful study of the scalar
model has to be carried out before starting with the vectorial model, since it allows to
solve in a much simpler situation a lot of mathematical difficulties due to the stratification
of the unbounded medium. The vectorial model will be studied in a forthcoming work. In
[1], we have presented a general study of electromagnetic waves guided by such devices,
which are waves of the form ¢(z1, ajg)ei(’wot_ﬁx?’) where 1,75 denote the transverse
coordinates, x3 the longitudinal coordinate, ¢, the speed of light in the vacuum, k& the
wave number, and 3 the propagation constant of the mode. The guided modes correspond
to waves of finite transverse energy which propagate without attenuation, i.e. with &
and [ real. We have determined existence conditions of guided modes and bounds for
the number of guided modes. Here we will pursue by a high frequency analysis. The
wave number k£ will be considered as a parameter and taken large, then we will look for
dispersion relations k — (k).

The paper is organized as follows. In the next section we introduce the notations
and present our main results : when the frequency tends to infinity, (i.e. & — oo ), the
guided modes tend to the solutions of the Dirichlet eigenproblem on the set B, where the
refractive index n achieves its maximum, or disappear in the lower bound of its essential
spectrum. In particular we have at least as many guided modes at high frequency as
solutions of the Dirichlet eigenproblem on B, .

In Section 3 we study the eigenvalue problem on the perturbed strip B, . We give
necessary conditions to have eigenpairs of this problem and discuss thoroughly with nu-
merical computations the range of validity of two different criteria. The convergence of
the guided modes to the eigenpairs of the perturbed strip is then proved in Section 4. Fi-
nally Section 5 is devoted to get underestimates for the number of guided modes at high
frequencies. In particular we prove that we can have guided modes which disappear in the
lower bound of the essential spectrum of the Dirichlet eigenproblem on B, . This result
is also illustrated by an example.

Let us introduce the standard notations we shall use all over the paper. R' denotes
the non negative real numbers and R the positive real numbers. For m € N and
QCR? (deN), H"(Q) is the classical Sobolev space of functions with derivatives up
to the order m in L?*(Q2) endowed with the scalar product (-, )., the norm | - [0,

and seminorm | - |, . We denote by big ™(€2) the closure of Z(1Q2), the space of C*
functions with compact support in €2, with respect to the norm || - ||,..o , and by H~™(2)
its dual space. We shall also use the standard differential operators div, V, A.



2 Framework and results

We assume that the guide is invariant in one direction (say Ox3 ) which will be the
propagation direction, and that it is a perturbation of a stratified medium. If the function n
denotes the refractive index, then n is a function of x,zy only, n = n(z;,z) . Outside
the perturbation, the function n is depending only on x,. A guide is represented in
Figure 1. Since we shall study electromagnetic waves harmonic in x3, so later on we will
only represent the transverse section of the guide.

The index function 7 defines a planar waveguide associated to the guide under con-
sideration; it represents the stratified medium without perturbation, see Figure 2.
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Figure 2: Planar waveguide associated.

Theoretical studies of the one dimensional problem (with respect to x5 ) of the planar
waveguide are considered in GUILLOT [3], SCHECHTER [10], or in WILCOX [11]. We
assume that 7 is a piecewise continuous function defined in R and that, if 7 denotes
the supremum of 7,

{ nE) =m if |¢<n o
) <m it el >, |

for some positive number 7. This assumption corresponds to guides with one layer of
maximal index to vertically confine waves. To that category belongs the canonical rib
guide often used in the applications. In fact under this assumption (2.1) and if moreover

limsup 7(§) < 74

|€]—00
(condition which will be implied by our further assumption (2.5)) we have proved in [1]
that the number of guided modes remains bounded as £ tends to oo. Then it is natural
to determine theirs limits.

The refractive index n is a piecewise continuous function defined in R? ; moreover
there exists a compact set K = [—a,a] x [—b,b] C R?, b > 7, such that

forall x = (z1,22) € K n(x) =7(xs). (2.2)



Let n, denote the supremum of n. We assume
Ny =Ny, (2.3)

which is the case under consideration here. The case n, > T, is known from optical
fibers, see [2].

In the asymptotical study of guided modes we often refer to the Dirichlet eigenprob-
lem on the set where n achieves its maximum. We set

B, = Interior{z € R*;n(z) = n,}. (2.4)

To carry out our analysis we add an assumption on 7 . For real positive ¢, let ws be the
set
ws; = {z € R?;dist(z, By) > 6}

and ((0) = nj — sup,e,, n°(z) . Then our hypothesis reads

B, is a Lipschitz domain and for all 6 > 0, ((4) > 0. (2.5)

Remark 2.a The assumption (2.5) is technical. It expresses what is needed to describe
the behavior of guided modes at high frequencies and can be loosened by considering it
in a neighborhood of 0B, . The classical example of the three layers rib guide satisfies
this assumption. In fact the two generic cases, either n has a jump at 0B, or n is a
regular function ( C'!) fulfill the loosened assumption. [ |

Looking for harmonic guided modes under the assumption of weak guidance consists
in determining the real numbers 3, k, the functions u € H'(R?) such that

—Au — kE*n*u=—p*u in R% (2.6)

k is the wave number and [ is the propagation constant of the mode. A classical way
to study these modes is to fix & and to look for (—/%, u). We will keep the same point
of view here, that is £ will be considered as a parameter, while the unknowns will be the
eigenpair (—(% = \,u). By varying k we then get the dispersion relations k — (k).

Thus we define the unbounded operator A, : Z(A;) C L*(R?) — L*(R*) by
PD(A) ={v e H'(R*); Av e L*(R*)} and Agv = —Av — k*n’v for v € D(Ay).
We consider now the problem: find A € R and u € Z(Ay), u # 0, such that
Apu = \u. 2.7

The operator A, has been extensively studied in [1]. It is a bounded from below selfad-
joint operator and its spectrum satisfies o(A;) C [—k*n3,c0). The spectrum consists
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of a continuum, the essential spectrum oes(Ay) , and of a discrete set, the discrete spec-
trum o4(Ay) , which is the set of isolated eigenvalues of finite multiplicity. The essential
spectrum is given by

Jess(Ak) = [W(k), OO) (28)
where f ( ) o 2)
_ . " =kt p?) dy
k)= inf =B (2.9)
v(k) wef;léR) fR 02 dy
©

is the smallest eigenvalue of the Sturm-Liouville operator of the associated planar waveg-
uide.

The point spectrum o,(A;) consists of the discrete spectrum o4(Ay) which is the
set of eigenvalues below 7(k) and of eigenvalues embedded in the essential spectrum.
We can characterize the discrete spectrum with the Min—-Max principle, see [9]. Corre-
sponding to the problem (2.7), we define the Min—Max quantities \,(k), m > 1, by

ME) = nfsup ) (2.10)
Hn € in I () v (v, )0 k2
v#£0

where #,,(H'(R?)) is the set of m -dimensional subspaces of H'(R?*) and ay(-,") :
H'(R?) x H'(R?) — R is given for u,v € H'(R?) by

ag(u,v) = / (VuVv — E*n*uv) dx.
R2

Then

—k*n% < Ai(k) < Aaofk) < Am(k) < ... <7(k)
and if \;(k) = (k) for some j > 1 then Ak has at most (j — 1) eigenvalues be-
low ¥(k). If X\;(k) < 7(k), then A\{(k),...,\;(k) are the first j eigenvalues of Ay,
repeated with their multiplicity.

For a given k& we have only a finite number of eigenvalues below (k) , see [1] for
instance. If N (k) is the number of eigenvalues strictly below (k) , in other words

N(k) = sup{m € N; A, (k) <7(k)},

then N (k) represents the number of guided modes. Using comparison principles we have
got in [1] upper and lower bounds of N (k) for some indices n satisfying to (2.1)—(2.3),
from which existence results are derived. The relevant point here is to study the limit of
Am (k) + k*n? as k tends to oo.

Slmllarly to the set B, defined in (2.4), we associate the Min—Max quantities for

m>1
Vo|? da
o = inf fB+ Ve

2.11)
Ho CHon(HY(BL)) $EHm fB ©? dx
p#£0



where %m(]?[ 1(B,)) is the set of all vector subspaces of big '(B,) of dimension m . The
quantities p,,, characterize the discrete spectrum of the operator A : (A) C L*(By) —
L?(B,) defined by

P(A) = {p e H(B,): Ap € LA(By) Y and Ap = —Ap Vg€ P(A). (2.12)

In the next section we will present a study of the Dirichlet eigenproblem on the perturbed
strip B and give sufficient conditions to have eigenvalues.

In section 4 we will prove the major result of the paper, which is the following.

Theorem 2.1 We assume that n and B, satisfy to the assumptions (2.1)—(2.3) and (2.5).
Then for all m
lim Ay, (k) + E*n% = pi, 7. (2.13)

k—o0

In particular if ji,, is an eigenvalue of A below 0es5(A), then for k large enough
Am (k) is an eigenvalue of Ay, .

3 The Dirichlet eigenproblem on a perturbed strip

Here we present results on the spectrum of A. Let us recall that we assume every-
where hypotheses (2.1)-(2.5). Results on the perturbed strip can be found in the literature,
see for instance the pioneering work [4] or [12, 13] close to the present case. Our tech-
niques are adapted from [1] in the case of B, .

Proposition 3.1 The operator A defined in (2.12) is selfadjoint positive. There holds

7'['2

Oess(A) = [4—772,oo> where 1 is defined in (2.1)

and
o(4) c [ 5, )

2
€+

where e, = sup, g e(x1) with

e(xy) = sup{|za — ya; (x1,2) € By, (21, v2) € B1}.

PROOF. The result about the esssential spectrum is a classical consequence of a compact
perturbation argument, cf [8].

|=1

> . We notice that for a given

L HY (SN H () = L),

Let us now check that the spectrum of A is above

[~

e

|&,+

with e(x;) > 0, the first eigenvalue of the operator —
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w2

-7 being the smallest interval containing By N {(z1,22); x2 € R}, is a2 - So for any
© € P(A), we denote by ¢ its extension by 0 over R? and we have

¢ ? 2
/ (61‘2 (1’1;172)) d.Z’Q Z W /]@2(331,1‘2) dl‘z. (31)

Then we integrate over x; to get

2
/ \Vol*dz > — <p2 dx;
By et

with the Min—Max principle, we conclude. |

Proposition 3.2 (i) The number Np, of eigenvalues of A below % is finite.

(ii) If By contains the rectangle (—d,d) x (—h,h) with h > n, then the following
lower bound holds
M(d7 h) S NB+7

where

M(d,h):H( q) € N* ><N* Z—<ni}‘ (3.2)

(iii) If e(x1) < 2n forall x|, then

0(A) = 0ess(A) and Np_=0.

PROOF.

(1) The key point here is to introduce a Neumann boundary condition to get a lower bound
for the eigenvalues in a comparison principle. Let B, be {x € B,;—a < 271 < a}, see
(2.2). The eigenproblem

—Ap = ap in B,,
e =0 on B, \{(Fa,x,) € B},

0
a_%lf I on {(fa,x,) € By},

admits a sequence {cy,}m>1 of eigenvalues tending to infinity. The eigenvalues c,, are
characterized by the Rayleigh quotient

Vol?dx
Q= sup inf fB Vel

(3.3)
@1yerpm—1€L%(Byg) pEH, p#0 n fB >dx

where H = {p € H'(B,); o =0 o0n dB,\{(*a,z) € B;}}.



Given ¢ € ﬁ[l(B+) , for almost all x,, |z;| > a, we have
T 0p 2 L R
T, T2)|" dry > 0 (w1, T2) day (3.4)
[ gl 15 [ e

and integrating over (—oo, —a) U (a,00) gives

2
Vol*de > — [ ¢*dx
Ca an* Je,

with C, = {(x1,22) € By;|x1| > a} . The Max—Min characterization of 1, is

o 2
Plyepm—1 EL2(B4) e HY(By), p#0 fB+ p*dx
Lpe[‘plv"w‘pmfl}L

and therefore with (3.4) we have

2
P = sup inf fB“ Vil dao + 4% fC“ @ da
m

P1 e pm—1EL2(BY) e HY(By), p£0 fBa p*dz + fca ©*dzx
PE[P1,pm—1]t

We deduce then from the relation for a;,as,a3,a4 € R, a3 >0, a4 >0,

a) + as . (a1 as
>min|—,— |,

as + aq as’ ay
that
[, > sup inf a(p)
" LPlruy‘meleLz(Ba) pEH, p7#0 n ,
PE[P1 5P —1]
where

fBa|V<,0|2dx w2
fBag)de Tan? )

. 2
Hp 2 MIN am,4—772 :

o(p) = min (

Finally we conclude that

(i1) The result can be compared with [13, Lemma 3]. We consider the Dirichlet eigenvalue
problem in the set R = (—d, d) x (—h,h),

—Ap = ap in R,
v = 0 on OR.

The eigenvalues are




With a comparison principle for Dirichlet problems, we conclude that the following bound
holds M(d, h) < Np, .

(ii1) It is an immediate consequence of Proposition 3.1. [ |

When the perturbed strip B, does not contain a rectangle large enough, i.e. when
M(d,h) = 0, then Proposition 3.2 is of no help to prove the existence of at least one
eigenvalue below the essential spectrum. With a different method we can derive the fol-
lowing result.

Proposition 3.3 We assume that the strip B, contains the set
B, = {r € R%;—g(x)) < 29 < g(11) Y, € R},
where the function g : R — R is positive continuous piecewise C* and satisfies

g(x1) =n for|z| > a,

a 2 2 2 12
/ (n* — g°) + K0’y dz, <0, (3.5)
—a g

with k = 1/3+2/n%. Then the operator A has at least one eigenvalue below its essential
2

spectrum [75,00) .

PROOF. By comparison principle it is sufficient to prove the existence of the first eigen-

value for the Laplacian operator A defined in the strip B, . In fact we will construct a

function ¢ € I Y(B,) such that

2 [~
By 4 By

2 m 2
V| dr < o o dux; (3.6)

then with the Min—Max principle we can conclude. We choose ¢ to be the function

o(2) = cos ( ik ) )

29(«'151)

with
1 if—a<z <a,
e~ ollzl-a)  elsewhere.

¢(1) Z{

It is not difficult to check that by choosing « small enough, the inequality (3.6) is satisfied

if
a g(w1) 2
/ / Vol? — —¢?| doydr, < 0.
—a J —g(z1) 4772

Then using the definition of ¢, we can develop the above integral to get the inequality in
(3.5). n



Remark 3.a The criterion (3.5), although technical, can be interpreted in the following
way. We introduce the relative perturbation function f by g = nf. Then the criterion

reads . , -
/a ll _ff +my2f7] dz; < 0; (3.7)

for 7 small the dominant term is the difference term [ [1/f — f]dx.

Due to the term with a derivative of [, the criterion (3.7) can be bad when the boundary
of B, has a step profile. |

Remark 3.b We can have a variant of Proposition 3.3 if we consider the set l§’+ to be

B, ={z e R*0< 2y +n<g(x) Vo, €R},

where ¢ is a continuous function piecewise C! larger than 7. Then the conclusion of
Proposition 3.3 still holds under the assumption

g(x1) =2n for|zy| > a,

“(4n? — %) + R4nPg” 3.8
/(77 g°) +k4n’g dz, <0, (3.8)
a g

with & =1/3 + 1/27%. We choose ¢ to be the function

. [(7(ze + 77))
r)=sin| ——= x1),
ol =sin (T2 ) ()
with ((-) the function introduced in the proof of Proposition 3.3. [

Corollary 3.4 We assume that the strip B, contains the set
B, ={z e R —n<ay <l(x;) Yz, € R},
where the piecewise continuous function { satisfies

{ lxy)>n VY, €R,

measure of {x € By;{(x1) > n} > 0. 39)

Then the operator A has at least one eigenvalue below the essential spectrum.

PROOF. Without loss of generality we can assume that there exists an € > 0 such that

(cere) x (mn + n—) C {r € Bystlm) > n}.

We set
_ o iflyl >,
9(y) = { a(ly] —e)? +n elsewhere.
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It is a simple matter to check that o > 0 can be chosen such that (3.8) holds. ]
So far we have presented two different criteria, the rectangle criterion of Proposi-
tion 3.2 and the integral criterion (3.5) (or (3.8)). One does not imply the other.

With the rectangle criterion, it would be impossible to get Corollary 3.4. Indeed we
can choose a strip B, such that the best choice of d and h > n will lead to M (d, h) =
0, while the operator A has at least one eigenvalue below the essential spectrum.

The end of the section is devoted to numerical examples which illustrate precisely the
range of both criteria.

Example 3.c We consider the two different strips B’ , i = 1,2, represented in Figure 3.
More precisely here the functions ¢°, f* are given by

g =nf, f=1+ef

with
fl(x ) = — cos(z1) —37” <z < 37”,
v 0 elsewhere,
~ -1 |.’L'1| S %7
fQ(xl) = 1 % < |'T1| < 37”7
0 elsewhere,

the real numbers 1 and ¢ are considered as parameters, 0 <7 and 0 <e < 1.

3

A, /S ‘ .

-10 -8 -6 -4 -2 0 2 4 6 8 10 53‘IO -8 -6 -4 -2 0 2 4

o

Figure 3: The two perturbed strips B} and B} with n =2, e=1.

For different values of the parameters (7, ), that is for different sets B} and B? , we
want to know whether the problem has at least one eigenvalue or no eigenvalue, whether
the criteria presented above are valid or not.

In Figure 4 we have collected our theoretical and numerical results. We distinguish sub-
regions with their filling. In the squared subdomain both criteria are valid while in the
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vertically marked subdomain only the integral criterion is valid and in the horizontally
marked subdomain the rectangle criterion only is valid. In the two obliquely marked sub-
domains the discretized eigenproblem has at least one eigenvalue (sparse filling) or two
eigenvalues (dense filling) . Finally the white subdomain represents the case when the
discretized eigenproblem has no eigenvalue below the essential spectrum of A .

1 1

0.9 0.9

08 08
07 07
0.6 \ 0.6
05 05
04 04
03 03
02 02
04 JA J 01

o 0

0 05 1 15 2 25 3 35 4

Figure 4: Results in One -plane for B} and B3 .

In fact we have computed the boundaries of these subdomains by dichotomy proce-
dure. The integral criterion reduces to numerical integrations, with affine regulariza-
tion in the case 2, and the rectangle criterion needs an optimization process in the case
1 and is explicit in the case 2. The computation of the existence limit curves (for 1
or 2 eigenvalues) is much more involved. For a given pair (£,7) we mesh the trun-
cated strip B* = B% N (]0,6[xR) (half of the grey region in Figure 3), we solve an
equivalent eigenvalue problem on B° by introducing transparent boundary condition
on the boundary {(6,x2); —n < z3 < n} and Neumann condition on the boundary
{(0,3); —g;(0) < z2 < ¢;(0)}. We refer to [5] for the method and to [6] for its imple-
mentation in our waveguide case, based on the finite element code MELINA, see [7].

Since we are using a finite element approximation it is not difficult to check with com-
parison principle that we overestimate the non existence region. Anyhow we are working
with several thousands of triangles in B’ and piecewise polynomial of degree 1 approx-
imation to have less than 1 percent of error. Due to the symmetry when we impose a
zero boundary condition on {(0,z3); —g;(0) < xo < ¢;(0)}, we can get the second
eigenvalue.

Notice also that the rectangle criterion gives the second eigenvalue for symmetry reason.
Both results in Figure 4 are essentially similar. Nevertheless we can figure out the effects
of the regularity of B, on the existence region and on the validity of the integral criterion.

[ |

Remark 3.d To the light of the above example, we can look at the rectangle criterion of
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Proposition 3.2 and the integral criterion (3.5), when the strip B, is determined by the
the functions

g=nf, f=1l+ef

and £, n are getting smaller and smaller. If ffa fdz > 0, then for & small enough the
integral criterion (3.5) is satisfied. If ¢ is fixed and 7 small enough, then the rectangle
criterion implies the existence of at least one eigenvalue, as soon as fis strictly positive
somewhere. |

4 Convergence proofs

The goal of the section is to prove Theorem 2.1. In the case of the planar waveguide
characterized by 7, we have studied in [1], Appendix A, the high frequency limit of the
eigenvalues +,,(k) characterized by

[0 = k*n%p?) dy

(k) = inf su , 4.1)
YV (k) Hpn €560 (H(R)) wefm Jo ¥ dy
p#0

where #,(H'(R)) is the set of all m -dimensional subspaces of H'(R). Recall that
the quantity ¥(k) in (2.9) is 7y1(k) . The following result holds.

Proposition 4.1 We assume that T satisfies to (2.1). Then for each m > 1, ~vp(k) +
k?n? , as a function of k > 0, is increasing and

. 2.2 _ M
le%loym(k)+k n; = e

Proposition 4.2 Let A, (k) and j,,,, m > 1, be the Min—-Max quantities defined in
(2.10) and (2.11). Then M, (k) + k*n®, as a function of k > 0, is increasing and
bounded by i, .

PROOF. Forall v € H'(R?), v # 0, and for 0 < k; < ko, we clearly have

/ (|VU|2 + ki (n? — n2)v2) dr < / (|Vv|2 + k3(n2 — nZ)UQ) dz.
R2 R2

We divide both terms by [,, v* dz and take the infsup to get
Am (k1) + kin? < Ap(ka) + k3n’.

Let us get now the bound i, . If 1, = 72/4n?, the result is immediate since we have

the estimates

7'['2

An(k) + K0 < F(k) + K0 < o,
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where the second estimate is given in Proposition 4.1. We assume now that p,, <
72 /4n? , thatis u,, is an eigenvalue of the corresponding eigenproblem on the perturbed

strip. Let w” be a normalized eigenvector associated to y;, i = 1,...,m. To each
w® € H'(B,), we associate the function @) € H'(R?) defined in R? by zero exten-
sion and we set H,, = span{@w), ... @™} . Then we have

Jg2 [VU|* da

Am (k) + k*n3 <

Y

s
veHy,  Jpo 2 dT
vZ£0

since n% —n? = 0 inside the supportof ¢ € H,, . Then clearly forany v € H,,, v # 0,

Jg2 [VU|* da -
fR2 'U2 dx — :U’ma

and the proof is complete. [ |

We deduce from the above result that the limit, limy_, o Ay (k) + ani , exists and is
bounded by p,,, . We will prove now that this limit is actually ,, ; to do it we first prove
an estimate on corresponding eigenfunctions outside B .

Lemma 4.3 We assume that n and B satisfy to the assumptions (2.1)—(2.3) and (2.5).
If { A (k), om(k) Yo is a sequence of eigenpairs of Ay, , normalizedto ||y, (k)|lor2 =
1, then for all 6 > 0, the following holds

Jim [l (R, = 0.

PROOF. We start from the expression
—Apm (k) + k(05 = n*)om(k) = (Am(k) + k"0 )om (k).

Let § > 0 be given and x be a regular function such that 0 < y < 1, x(z) =1 for
r €ws, X(x) =0 for x € wg’}Z . Then we multiply the above equation by x,,(k) and
get

[ Venl) () do k[ =)t () d

— ()\m(k) + k2ni) /RZ x2 (k) d.

So we deduce

/ Vo (k) i+ / Vo (K)o (K) Vx i+ 2 / V(02— i) (k) de
R?2 R2 R2

= (k) + 2n2) é ek (k) dr. (42)
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On the other hand since
[ Fen®Pds 12 [~ @) de = (k) + K02 [ (o) e
R2 R2 R2

we deduce

/ Von(t)ds < pm
R2
2

¢ [ =B ds <
R2

2

Furthermore from the assumption (2.5) we know thatin ws /2 , ni —n” is strictly positive,

bounded from below by ((d/2) > 0. Therefore

sy

Ws /2

o) da <k [ (0 = ) () da <

Ws /2

and then

2 )
/wé/2 o (k) dz < C(5/2)k ) 4.3)

Going back to (4.2), we deduce

/R2 XIVom (k) [* d2 < pimn | 0m (B)[G o5, + 1X 100221V @ (6) 0.2 |0 () 02

and then

([d IVsom(k)Ide) " < CEE2.

In fact there also holds a uniform zero limit in L? norm on wy := Bf :

Corollary 4.4 With the same notations as in Lemma 4.3, the following holds

Jim (B oy = 0.

PROOF. Let us fix a non-tangential outward unit lipschitz field ¥ on the boundary 0B, .

—

Of course, outside the compact set K , cf (2.2), we take v as the outward unit normal
field. Let s+ € R be arc length coordinates s+ ~— x(s+ ) along 0+ B, where 0+ B,
are the two connected components of 0B, . For 5 > 0 small enough, the applications

R X (—¢€p,60) D (5+,t) —> x(s+ ) + ¥

define a bi-lipschitz transform onto a tubular neighborhood of 0B, .
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Using the local coordinates (s ,t) and integrating in ¢ from ¢ = 0 we can prove the
estimate

<C

_ 2 2
IC > 07 Ve < €o, V(,O € Hl(wo)a € 1||(‘0||L2({a:€wo,t<a}) — ||(‘0||H1(wo) :

Let € >0, € <ey.Forany k > ky and m there holds

2 2
o, ceyy < CEllom(®) g

Let § > 0 such that {z € wy, t < ¢} Uws = wy. There exists K large enough such
that for all k¥ > K, p,,/(k*¢(§)) < Ce and thanks to estimate (4.3) we obtain

2 2
lom2s < Cellom®,)-

The combination of the last two inequalities yields the Corollary. |

Now we have all material for the:

PROOF OF THEOREM 2.1. Let L = Np_ be the number of eigenvalues of A below its
essential spectrum. We distinguish the cases m < L and m > L.

Step 1 m < L. From Proposition 4.1, we deduce that for £ large enough

7(1{7) + I{?QTLi > .

In Proposition 4.2, we have proved that A, (k) + ani < o, for m =1,2,...; so for
k large enough and m = 1,..., L, A, (k) is an eigenvalue of A; below its essential
spectrum.

Our goal now is to get for m = 1,..., L and k large enough, an inequality of the form

fim < Am (k) + K0’ + e(k),

with limg_, (k) = 0. Under the assumptions (2.1)—(2.3) and (2.5), and using the
tubular coordinates (s ,t) introduced in the proof of Corollary 4.4, we define for j
large enough the sequence of domains {B;},>1

_ B 1
Bj =B, U{z €w, t <}

Let now p/, be the Min-Max relations associated to the domain B; . There exists a se-
quence of bi-lipschitz transforms x; which are bijective B, onto B;, tending to the
identity as j — oo. By continuity the sequence {y },>1 converges to fi,. Let
1 <m < L and ¢,(k) € H'(R?) (for k large enough) be eigenvectors associated
© An(k) . [l@m(F)llope = 1.

We define the function

¢}

77Z)m(k) = Som(k) - ijngom(k) S HI(B]')

16



with v; € ZL(H'(R?); H/?(9B;)) the trace operator on 0B;, R; : H'/?(0B;) —
H'(B,) alifting operator which can be chosen such that

| Rjvll1,8; < Cllv|l1/2,08

forall v € HY?(9B;) and with C independent of j. The function t,,(k) is extended
by 0 all over R? . Then from Lemma 4.3 we immediately deduce that

[m (k) = m(E)ligz — 0 as k—0. (4.4)

So the subspace
H, = Span{T/h(k), SR wm(k)}

is of dimension m . We start with the estimate of the Rayleigh quotient

fB [V (k)| da < Jrz [Vi(E)|? dx
fB i (k)|? d fR2 lpi(k)|? dx

where the term p’ (k) tends to O as k tends to oo by (4.4); then we take the Min—Max
to deduce

+ 0 (k),

iy < An(k) + K202+ 3 (k).
Letting k tend to oo we conclude.

Step2 m > L.If A\, (k) =7(k) forall k,then we can conclude since Proposition 4.1
yields that y(k)+k*n2 — 7%/(4n?) as k tendsto co. Letnow {A,(k;), om(k;)}j>1 be
a sequence of eigenpairs of Ay with ), (k;) < 7(k;) . Then if lim;_,, )\m(kj)—l—kani <
72/ (4n?) , it is not difficult to argue like in Step 1 to get a contradiction with the fact that
pom = 72/ (407°) . u

Proposition 4.5 In the framework of Theorem 2.1 let m < Np, and {¢m(k)}p>1 be a
sequence of normalized eigenfunctions associated to { (k) }i>1, [|¢m(k) =1.
Then there exists a function ¢,, € H YBy), ©m # 0, such that, only to consider a
subsequence, p,,(k) — @y, in H'(R?), where ¢, is the extension by zero of ©,, over
R?, and (jim, pm) is an eigenpair of A.

PROOF. We prove first that the sequence {¢,,(k)}i>1 is bounded in H'(R?) . From the
variational formulation we get

/|wm )|2dx+k2[w( n? —n2)g2 (k) do < ~— @m(k)d =

Therefore only to consider a subsequence it converges weakly to some ¢, in H'(R?)
and strongly in L*(K).

17



From the variational formulation for (\,(k), ¢ (k)) with the test function ¢ € H'(RR?)
the extension by zero of ) € H'(B,) we deduce

/ Vo (k) Vi dz = (A (k) + k°n?) / Om (k) dz;
By By
taking the limit as k£ — oo we get

/ VoV dz = i / o) d.
By

By

Corollary 4.4 yields that ¢,, = 0 in Bf. Therefore the restriction of ¢, to B, is
clearly in H'(B,).

Finally we need to prove that o, # 0 in B, . We decompose R? in the following
way: R? = Q, UQ,UQf where Q, = {(z1,12) € R%; 21 < —a}, Q, = {(z1,12) €
R?; —a <z <a}, QF ={(x1,22) € R%;z; > a}. Then for ) € H'(R?) we have

Vo (k)Vip do + k2 / (n% — n®)m (k)Y de + R (om(k), )

Q(l a

+R, (pm(k), 1) = (A (k) + K2n2) / om (k) da

a

with

R (pm(k). 1) = / . Ve (k) Vi do — / o) + 1272) oo (R d

Qu

Since A, (k) + k*n2 — pi, < w2/(4n?), we can check by a simple calculation that there
exists a real @ > 0 such that for £ > k

R (om(k)s om(k)) = (7(k) — A(R)) /

o lom (k) [* dz > allom(B)I?

19,

Then with this last estimate, we check that there exists S > 0 such that for k£ > kg

R (om(k), om(k)) = Bllom(B)?  + -

N

So we have C' > 0 independent of %k such that

lom(®) 252 < C / om(R)? de

Now we can use the normalization equation ||, (k)||or2 = 1, the inclusion Q, N By C
K, and Lemma 4.3 to deduce that necessarily

/ |om|? dz > 0.
Q.NB4

18



S Further estimates at high frequencies

From the analysis in Sections 3 and 4, we can deduce bounds on the number of guided
modes at high frequencies. Under the assumptions of Theorem 2.1, we have

lim inf N(k) > Ng_, (5.1)
k—o00
where N (k) and Np, are the numbers of eigenvalues of A;, and A below their essential
spectrum. In Propositions 3.2 and 3.3 we have underestimates of Np, . To get an upper
bound on the number of guided modes under the assumptions (2.1)—(2.3), we can use a
comparison principle see [1] for instance to check that the number of guided modes for
the guide of index
(x) = My ifre K,
m(xe)  elsewhere,

is bounded for large k£ by the number

2 2

P q 1
H(p,q)GN’kXN, ﬁ+$<?}‘

The inequality (5.1) is not an equality in general. This means that we can have guided
modes with limy_,o A, (k) +k*n% — 72 /(4n?) . Itis this phenomenon we want to tackle
here. In fact we will study a case with strict inequality and an other one with equality. In
the case where the set B, is the non perturbed strip, that is

By =R x (—-n,n), (5.2)

we prove that Np, = 0 and limy_,,, N(k) = 1. Indeed at high frequencies only one
mode may exist which is less and less laterally confined, as shown in the example 5.a.
Finally at the end of the section we present an example with no mode at high frequencies;
in that case the inequality (5.1) is in fact an equality.

To the open set Q = (—a,a) x R, we associate the unbounded operator AY :
D(AY) C L*(Q) — L*(Q2) where
D(AY) = {u € H*(Q); % =0on 02} and ANu = —Au— k*n’u.

We first derive a technical result.

Lemma 5.1 We assume that B, = R x (—n,n) and there exists a sequence {k,},>1
tending to oo such that the operator A{ZJ has at least one eigenvalue below 7(k,) .
Let A\, denote such an eigenvalue and ¢, a corresponding eigenfunction normalized to
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leplloe = 1. Then we can extract from {pp}p>1 a subsequence still denoted {p,},>1
satisfying to

v, = ¢ weaklyin H'(Q) for p — oo, (5.3)
©p = ¢ in L*(Q) for p — oo, (5.4)
with
1 T :
o) = i‘\/mcos (ﬂ'ﬁ) if—n <y <1, (5.5)
0 else.
In particular
2

)\p+k§nﬁ_—>47r—772 as p — oo . (5.6)

PROOF. We present a proof in 4 steps. First we bound the sequence {¢),},>; in the norm
||.ll1. - Then we extract a subsequence converging in L?(Q2) . To prove that the limit ¢
is given by (5.5) we check that ¢ is a function of x5 only and finally we prove (5.6).

Step 1. By definition the function ¢, satisfies

M:/KW%F—%M%%M (5.7)
Q

and then
!/W%%mg%+%ﬁ. (5.8)
Q

So with Proposition 4.1 we deduce the bound

2

9 ™

Step 2. The sequence {¢,},>1 is bounded in H*(Q2), so it is bounded in the space
H'(K) . By compact embedding H'(K) C L*(K), we can extract a subsequence still
denoted {¢,},>1 such that

o, — ¢ in HY(Q) and ¢, > ¢ in L*(K) for p — oco.
If we prove that ¢, — 0 in L?*(Q\K), we will have ¢ =0 in Q\K and
0, — ¢ in L*(Q). (5.9

From the equality (5.7) we deduce

/ (|V<,0p|2 + k2(n% — n2)<,012)) do < (ky) + kjn’.
0
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and with Proposition 4.1
2
2 2y, 2 T
— d —. 5.10
/Q(mr n*)e, x<k§4772 (5.10)

Therefore in 2\ K necessarily ¢, =0 as p — oo
Step 3. We prove now that ¢ is a function of z, only. In fact we will check that

22 = (). Let 7(k,,z1) be the first eigenvalue of the operator associated to the planar
wavegulde of index n(zi,.), ;1 € R given. From the Min—Max principle we get for all

ox1
2
/ ( —kinZwZ) dx > /W(Ifz,,,ajl)w2 dx (5.11)
Q Q

and with (5.7) and ¢ = ¢,

e H'(Q)
oY

8x2

a 2
/lﬁ-ms/WM—W%MWWx
[¢) axl (9]

[ ) = a0l g2+ [ [05) ~ 0] 2 da
Q\K K

Let us check that both quantities in the right-hand side of (5.12) tend to 0. Since 7(k,)
< k2n% we deduce from Proposition 4.1 that [y(k,) —7(kp, 21)]

(5.12)

—kf,n”i and _V(kpaxl)
is bounded in £ ; therefore smce ¢, — 0 in L*(Q\K)
/ 7 (kp) — 7 (kp, 1) |05 dzz — 0 for p — oo
O\K

We consider now the second term in the right-hand side of (5.12). The Cauchy-Schwarz

inequality gives

a 1/2
[t = selae < (2 [ ) - Ae0Pan) el
Since the sequence {p,},>1 is bounded in H'(K), itis also bounded in L*(K). From

Proposition 4.1 we know that for almost all z; € (—a, a)
¥(ky,x1) -0 as p— 0.

Y(kp) —7
Consequently with the Lebesgue theorem of dominated convergence we get
/ 7(kp) — F(kp, 1) |0 dz — 0 as p — 0o
Finally the estimate (5.12) leads to
0
P _0 Q. (5.13)
8.1'1
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Step 4. We still need to check (5.5), (5.6). If 1 € H'(Q) is chosen with a support inside
B, N} then the variational formulation leads to

/v%wmm:%ﬁﬁmg/ﬁwm. (5.14)
Q Q

The sequence {k)n3 + Ap},>1 admits a limit, say 4 ; then taking the limit in (5.14) and

using (5.13) we get
dp 0y /
——dr = dz
/Q 0y Oxy : Q v

for all + with support inside B, N . This means that (u, ) is an eigenpair of the
eigenproblem

d* .
—q e in (=1, 1),
p(=n) = ¢(n) =0.
Since A, + k2n? < % , necessarily p = % and ¢ is given by (5.5). ]
Proposition 5.2 A guide with an index satisfying to (5.2) has at most one guided mode at
high frequencies.

PROOF.  Let N™(k) be the number of eigenvalues of the operator AY introduced
before. From classical comparison principles, see Proposition 3.2 or [1] for instance, we
know that N (k) < NV (k). So it is sufficient to verify that

lim sup NV (k) < 1.

k— 00

Ab absurdo we assume that there is a sequence {k,},>: tending to infinity for which
the operator AfY has at least two eigenvalues, A\ (p) and A}'(p), below 7(k,) . Corre-
sponding normalized eigenvectors are denoted ¢;(p) and p9(p) and satisfy

/@1(p)<p2(p) dr =0 forall p. (5.15)
Q

Applying Lemma 5.1 to both sequences {¢1(p)}p>1, {©2(p)}p>1, we deduce for i =
1,2, that ¢;(p) = T ¢ in L*(2) as p — oo. Finally we have a contradiction with

(5.15). [ |
Corollary 5.3 We assume that n satisfies to
A€ =ny if E<—c, W& =m if £>c (5.16)

where the numbers ny,, n; are such that n,. > ny, > ng, to (2.2)-(2.4) and (5.2). If
furthermore

Vo€ R n(z) >7i(x),  measure ({z € R%n(z) >7i(x)}) >0,  (5.17)
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and if the associated planar waveguide has a guided wave, then there exists ko > 0 such
that for k > ky
N(k) = 1.

PROOF. Under the assumptions (5.16), (2.2)—(2.4) and (5.2), we know that N (k) < 1.
Now from Proposition 3.2 in [1] we deduce under our assumptions that N (k) > 1 for k
large enough. u

Example 5.a We illustrate our results in the case where B, = R x (—0.5,0.5) and n
is given by, for z = (71, 1,) € R?,

3.44 for x € By,
_ 3.38 for x € (—1,1) x (0.5,1),
n@) =3 317 for @y < —0.5,
1 elsewhere.

The assumptions of Corollary 5.3 are satisfied. Therefore for & large this guide has only
one guided mode.

|
5

Figure 5: Mesh of the guide used in the computations.

We have computed for different values of £ approximations of the fundamental mode
(Mn(k), pn(k)) and given in Figure 6 its dispersion curve. In the next figures 7, 8, and
9, the corresponding normalized eigenvector ¢y, (k) ; here h represents the discretization
parameter. The asymptotic behavior of the first mode can be described. Its energy is more
and more confined in the set B, as k increases. Since B is invariant by translation in
x1 , the mode is not well horizontally confined for large % .

We have done the computations on the mesh presented in Figure 5, made up of 917 tri-
angles and 517 degrees of freedom with a piecewise P; approximation on the mesh.
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2 2

71(k) + K n,

Ain (K) + K02

0 5 10 15 20 25 30 35 40 45 50

Figure 6: The dispersion curve for the fundamental mode.

For symmetry reason we have restricted the computations in the half plane z; > 0.
As k increases the mode is better vertically confined in the strip B, . That is why we
have computed in an horizontal strip with boundary conditions © = 0. To compute the
mode less and less laterally confined, that is for £ large, the method is much more in-
volved. Here we have used a localized finite element method which consists in using an
exact representation of the solution on the vertical boundaries limiting the computation
domain. We refer to [5] for a presentation of localized finite element methods and to [6]
for its application to optical guides.

Remark 5.b In fact we can describe precisely what is happening for the eigenvector in
the example above. With the same arguments developed in the proof of Lemma 5.1 we
can prove the following result.

We assume that the index satisfies to (5.2) and a mode exists for large k. We denote by
©(k) an eigenfunction associated to the eigenvalue A(k), normalized to || (k)

0,(—a,a) xR

= 1. Then the following properties hold

2
A(k) + k02 — 4”—772 for k tending to oo, (5.18)
2 2 2 m
— k) dr < —— 5.19
/(—a,a)xR(n+ " )90( ) ! k24772, ( )
do(k)
/ (k) dr — 0 for k tending to oo, (5.20)
R2 8.1'1

o(k) = ¢ in L?((—a,a) x R)  for k tending to oo, (5.21)
where ¢ has been defined in (5.5). [ ]
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Figure 7: Fundamental mode with k = 3; Ay ;,(3) + 9n% = 4.343.

Finally we are interested in describing a guide with no mode at high frequencies.
The idea is to choose a guide for which the set B, is strictly included inside the strip
R x (—n,n). With our previous developments we can present a less restrictive situation
than the one in [1].

Proposition 5.4 We assume that there exist two non empty open intervals I, J such that

I'xJCRx(-n,mn),

n(z) < n, < ny ifxelxJ,
(5.22)
By CRx (=n,m\(I x J),
C(0) > ¢ >0 Vé > 0.
Then there exists k, > 0 such that
for k >k, N(k)=0. (5.23)

PROOF. With the comparison principle relative to the index 7 , it suffices to check (5.23)
for the guide with index 7 defined by

SUPzer TI,(Z, .’172) ifrelx (R\(—U, 77))7
A(r) = ny ifz € (Rx (—n,n)\I x J, (5.24)
n(z) elsewhere.

Ab absurdo we assume there exist two sequences {kp}p>1, kp > 0, and {¢p}p>1, ©p €
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Figure 8: Fundamental mode with k = 10; A;,(10) 4+ 100n% = 7.372.

H'(R?), such that

/ goi de = 1,

(—a,a)xR

/ (|V<,0p|2 —kaLZcpZ) dr < W(kp)/g)z dx.
R2 R

Following the proof of Lemma 5.1, we can prove that

2 1/2
lenlh e M(H—) ,
D (—a,a)x 4772

P 2
/ (—a“"”) do< [ ) = Tzl do,
R2 Z1 (—a,a)xR

(5.25)

(5.26)

(5.27)

(5.28)

where 7¥(k,, ) is the first eigenvalue of the operator associated to the planar waveguide

of index n(z1,.).

As in the proof of Lemma 5.1, we can prove that

/(( " R[W(kp) - W(kp,m)](pf, dr — 0 for p tending to oo .
—a,a I)x

(5.29)

Using the estimate (5.27) we can extract a subsequence still denoted {¢,},>1 such that

o, — ¢ weaklyin H'((—a,a) x R) for p — oo,
v, — ¢ in L*(K) for p — oco.
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Figure 9: Fundamental mode with k& = 40; Ay, (40) + 160017 = 9.369.

Since ¢, — 0 in ((—a,a) x R)\K, (similarly to (5.10)), we deduce that
©p — ¢ in L*((—a,a) x R) for p — oo. (5.30)

For zy € I, ¥(ky, 1) = (k) , with
2

F(ky) + ani gl

4—772; e <17 (5.31)

Then with (5.29), (5.30), (5.31), we deduce

and with (5.28)
=0 inIxR and — =0 in R%.

So with (5.30) we get » = 0 in L?((—a,a) x R) and we get a contradiction with (5.25).
]

Remark S.c Let n be the index defined in Figure 10.

We assume that n, > n, > n, and for simplicity that b — 1 = 2a . The first eigenvalue
p for —A in the square (—a,a) x (1,17 + 2a) with homogeneous Dirichlet boundary
2

conditions is p = 5 . If ¢ # 0 is a corresponding eigenvector, we extend it by 0 and
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Figure 10: Guide with no mode at high frequencies

get ¢ € H'(R?) satisfying

Jeo (IVOI? = k?n?¢?) da _ 7r_2 k22
Jge P da 2a2 *

For all k, —k’n% < (k) < —k*ni. For a given k, we could choose n, and a big
enough to have

2
with n, > n, > n,. From the comparison principle we deduce \;(k) < (k). So for
that particular value of £ we have a guided mode at least. For large k&, we will have no

guided modes. |

N R
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