In

ł

Portionality de Cal cul de la décampérition : orbites de
$$[1, ..., n_{f}]$$
 sous
 $\{0^{-1}\}$ (Vair par experiptive LUJ, $+K$ 5.4)
De (0) et de l'invité de la décampérition, ou déclair que tret tre 6 Su soit
(a) hayais soi elles out le même nombre de cycles de l'angreun i den triques dans
l'an décampérition.
Application, space le tote que tri, $v \in 6S$, définite par (1)
 $v = (\frac{n}{2}, \frac{2}{3}, \frac{4}{5}, \frac{5}{6}, \frac{7}{2})$, $t = (\frac{n}{2}, \frac{2}{3}, \frac{4}{2}, \frac{5}{6}, \frac{7}{2})$
 $v = (\frac{n}{2}, \frac{2}{3}, \frac{4}{5}, \frac{5}{6}, \frac{7}{2})$, $t = (\frac{n}{2}, \frac{2}{3}, \frac{4}{2}, \frac{5}{6}, \frac{7}{2})$
 $v = (\frac{n}{2}, \frac{2}{3}, \frac{4}{5}, \frac{5}{6}, \frac{7}{2})$, $t = (\frac{n}{2}, \frac{2}{3}, \frac{4}{2}, \frac{5}{6}, \frac{7}{2})$
 $v = (\frac{n}{2}, \frac{2}{3}, \frac{4}{5}, \frac{5}{6}, \frac{7}{2}, \frac{7}{2})$, $t = (\frac{n}{2}, \frac{2}{3}, \frac{4}{2}, \frac{5}{6}, \frac{7}{2})$
 $v = (\frac{n}{2}, \frac{2}{3}, \frac{4}{5}, \frac{5}{6}, \frac{7}{2})$, $t = (\frac{n}{2}, \frac{2}{3}, \frac{1}{2}, \frac{7}{6}, \frac{7}{2}, \frac{7}{2})$
 $v = (\frac{n}{2}, \frac{2}{3}, \frac{4}{5}, \frac{5}{6}, \frac{7}{2})$, $t = (\frac{n}{2}, \frac{7}{2}, \frac{7}{2}$

$$\frac{1}{12} \frac{1}{12} \frac$$

(4) $E(\sigma) = det(4(\sigma))$? det: 4 (Sn) ____ (mashime 21 Sn Papes B) masnit det = 1 Soit $\forall \sigma \in S_n$, $\det(\ddagger(\sigma)) = \varepsilon(\sigma)$ citle cer. c- $\det \Psi((12)) = \det \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & -2 \end{pmatrix}$ et on conclut par(3).

(5)
$$H = \langle (A, 1), (A, 2, 3, ..., n) \rangle$$
: S?
 $A'' = \int_{a}^{a} \int_{$

4) Le cas porticulier de Six Exervice : D(A4) = V4 = gId, (12)(34), (33)(24), (14)(23) }(8) Ag et Vy sont les sents fais groupes mormaux (man tribianx) de (e'ventuellement: Sq 2 V4 X S3) 5) Simplicite théorème 5.1 (Galois, 1830), An st Rimple pour m>5. premie: m = 5, comptage des clases de carjugarison dans A_5 (cfargument donné dans le CCA du 13/1/2020, [P], I-8, [U], Ex 7.10, 7.11) • m > 5 Récurrence sur n'ou on renamère directement au Cas n=5 ([P], I.8), ou (Davo taus les cas, on mantre que si H JAn et H 2/Id J, alas H cartient un 3-gcle et danci H: An en vert u du Hisseine 2.2 et le fait que les 3-gcles sont Cajuque's dans An) (nollaire 5.2 (n≥5) Dans Sn, la leste des sous-grape normant st { Ital, An, Sm } ([P], F.8, Crollaine 8.5) (méquerre (n. »5) Soit Hr Sn. En regardant l'action

(*) Vrai aussi pour n 25, mle fait à la main

(8) we use remaining problem in aire
on =
$$D(5_{4}) = A_{4}$$

Repe : on point planger D_{4} daws S_{4} (et D_{11} c.s. S_{11} en
 $S_{2} = D_{4} = \begin{pmatrix} (2+1), (1 > 3 + 4) \end{pmatrix}$
 $S_{10 \times 1} = \frac{1}{2} \begin{pmatrix} 2 \\ 10 \times 1 \end{pmatrix} \begin{pmatrix} 2 \\ 10 \times 1$

Quelques moto son la structure de produit semi-direct (280) sur 54: on a V4 \$ 54 et Sz T Sy, en identiant Sz à 1TE Sy | T(4) = 4 } on vérifie que S3 1 V4 = { ±d}. Par suite V453 = 54 $(\mu_{1})_{3} = |V_{4}|_{3} = |V_{4}|_{3} = 4 \times 6 = |S_{4}|$ on obtient donc une structure de PSD $S_4 = V_4 \rtimes S_3$ on peut de plus vérigrer que le morplisme structurel S3 -, Aut(V4) associé à l'action So Vy par canjugaison strun isomorphisme. on dit alses que S4 st l'holomorphe de Vy (cf [D], erenie 3.3.12)

(9) On martre que An et simple, n >5 par récurrence en admettant le résultat pour m=5.

La stratégie st la suivante:

Soit H & An, n>6, H & lIdy. On a aussi An-15 An en Voyant An-2 comme { JEAn | JEn S = n}. Remaique que HAAn-277An-1 Il subsit also de montres que HAAn-2 & lIdz. En effet, por récemence, on peut conclure que HAAn-2 = An-2. En particulier, H contientem 3. cycle et puisque los 3. 19 des sont conjugués claus An et engendent An, d'en orésulte que H = Am

Grunnent montrer que HOAne # 1745?
soit
$$\sigma \in H_1 + 744$$
?
1) Si $\sigma \to 0$ = n = 0 k
2) Si $\sigma \to 0$; on transe $\sigma \in An$ tel que $\sigma = \sigma \sigma \sigma \sigma = \sigma \sigma \sigma$
et $\sigma \equiv \sigma \sigma \tau = \neq \sigma$. En considérant $\sigma' = (\sigma = \sigma \sigma \tau') = \sigma^{-1}$ on strenero
à r).
transe
transe
transe
Point culturel: On peut montrer qu'il n'y a pus de
gauges simple ($\neq 2/\rho_{PP}$ grenne) d'order $\in [1, 59]$ et que
As at le seul grage simple d'ordre $\in O$ Cif [Pi]: chap I, Eausen
E. 2) et F. 6)
~~V~~
~~for~~
 $\sigma = \sigma = S_{n-1}$ (here $S_{n-1}H_{1-n} \parallel 0$
 $\sigma = \sigma = S_{n-2}$
 $f = S_{n-2}$

Conséquences (de la conséquence) Exercites 1) Soit Kun cops et $n \ge 5$ et $f \in K[x_1, ..., x_n]$. Montrer que le nombre de différent polynômes obtenus à partir de g en permutant les variables $X_1, ..., X_n$ est a) = 1b) = 2 (11) c) > M 2) Monthenque $\{S_5 \ge PGL(2, \mathbb{F}_5), \mu is que (13) (A_5 \ge PSL(2, \mathbb{F}_5))$ ((P], II Prop 5-3) Dans ([P], Poc. cit), on trave aussi $(SL(2, F_2) = PSL(2, F_2) = S_3$ (12) $/ P SL(2, \mathbb{H}_3) = A_4$ $PSL(2, F_u) = A_5$ (stimples (sendes exceptions pourni les PSL(2, TZ), m>2) on constate que PSL(2, Fy) 2 PSL(2, F5) (2A5): C3t un des cas exceptionnels d'isomaplisme (if liste claus [2], fin du chap IV) 6) Loint culturel On conneit au mains une dézaine de démonstrations de . Simplifité de An (1775). L'article joint en annexe (in english) la simplifie de An (m35). en présente 5.

11) 1) soit Kun copi et
$$n \ge 5$$
 et $f \in K[x_1, \dots, x_n]$ Natur que
le nombre de différent pelprovnes obtenur à partir de f
l'en permutant les variables $(x_1, \dots, x_n \text{ est } a) = 1$
 $k) = 2$
 $c) \stackrel{\text{or}}{\gg} n$
Aglieatin invedict du print ():
on le unde l'action
 $S_n \cap K[X_1, \dots, X_n]$
 $O((r(m, \dots, x_n)) = \mathbb{P}(X_{0rin}^{-1}, \dots, X_{0rin}^{-1})$ (on met $0^{-\frac{1}{2}}$ pau avai un
 $O((r(m, \dots, x_n)) = \mathbb{P}(X_{0rin}^{-1}, \dots, X_{0rin}^{-1})$ (on met $0^{-\frac{1}{2}}$ pau avai un
 $O((r(m, \dots, x_n)) = \mathbb{P}(X_{0rin}^{-1}, \dots, X_{0rin}^{-\frac{1}{2}})$
 $ure (H = Stab (P) et en armaquant que ce qu'a cherche est
le andurnel de Calate de P sous Sn, qui vant ISal: ISu: FJ.
H
NU Nomeque qu'alimate; on avaire la durte projective $\mathbb{P}(f_1^{-1})$
Su $\overline{\mathbb{F}}_1$ (ie: l'excelle dis duits rectruicles du $\overline{\mathbb{F}}_q$ ev $\overline{\mathbb{F}}_q^2$).
On a une partitie $\overline{\mathbb{F}}_1^{-\frac{1}{2}}$ of $= 11$ $D - \{0\}$
 $D \in \mathbb{P}[\mathbb{F}_q^2)$
Conne $\neq D = q$, on a deu
 $\frac{1^{\frac{1}{2}-1}}{q-1} = q+1$ element dans $\mathbb{P}(\overline{\mathbb{F}}_q^2)$ a pau noyau
 $l = \frac{1}{2}$ a pau noyau
 $l = \frac{1}{2}$ or $\mathbb{P}[\mathbb{F}_q^2)$ a pau noyau
 $l = \frac{1}{2}$ a ce t action matuelle
 $U(2, \overline{\mathbb{F}}_q) \longrightarrow S_{\mathbb{P}}(\overline{\mathbb{F}}_q^2)$
 $q_k: \mathbb{P}(L(2, \overline{\mathbb{F}}_q)) \longrightarrow S_{\mathbb{P}}(\overline{\mathbb{F}}_q^2)$$

Immexe (culturelle)

KEITH CONRAD

1. INTRODUCTION

A finite group is called *simple* when it is nontrivial and its only normal subgroups are the trivial subgroup and the whole group.

For instance, a finite group of prime size is simple, since it in fact has no non-trivial proper subgroups at all (normal or not). A finite abelian group G not of prime size, is not simple: let p be a prime factor of |G|, so G contains a subgroup of order p, which is a normal since G is abelian and is proper since |G| > p. Thus, the abelian finite simple groups are the groups of prime size.

When $n \ge 3$ the group S_n is not simple because it has a nontrivial normal subgroup A_n . But the groups A_n are simple, provided $n \ge 5$.

Theorem 1.1 (C. Jordan, 1875). For $n \ge 5$, the group A_n is simple.

The restriction $n \ge 5$ is optimal, since A_4 is not simple: it has a normal subgroup of size 4, namely $\{(1), (12)(34), (13)(24), (14)(23)\}$. The group A_3 is simple, since it has size 3, and the groups A_1 and A_2 are trivial.

We will give five proofs of Theorem 1.1. Section 2 includes some preparatory material and later sections give the proofs of Theorem 1.1. In the final section, we give a quick application of the simplicity of alternating groups and give references for further proofs not treated here.

2. Preliminaries

We give two lemmas about alternating groups A_n for $n \ge 5$ and then two results on symmetric groups S_n for $n \ge 5$.

Lemma 2.1. For $n \ge 3$, A_n is generated by 3-cycles. For $n \ge 5$, A_n is generated by permutations of type (2, 2).

Proof. That the 3-cycles generate A_n for $n \ge 3$ has been seen earlier in the course. To show permutations of type (2, 2) generate A_n for $n \ge 5$, it suffices to write any 3-cycle (*abc*) in terms of such permutations. Pick $d, e \notin \{a, b, c\}$. Then note

$$abc) = (ab)(de)(de)(bc).$$

The 3-cycles in S_n are all conjugate in S_n , since permutations of the same cycle type in S_n are conjugate. Are 3-cycles conjugate in A_n ? Not when n = 4: (123) and (132) are not conjugate in A_4 . But for $n \ge 5$ we do have conjugacy in A_n .

Lemma 2.2. For $n \ge 5$, any two 3-cycles in A_n are conjugate in A_n .

(

KEITH CONRAD

Proof. We show every 3-cycle in A_n is conjugate within A_n to (123). Let σ be a 3-cycle in A_n . It can be conjugated to (123) in S_n :

$$(123) = \pi \sigma \pi^{-1}$$

for some $\pi \in S_n$. If $\pi \in A_n$ we're done. Otherwise, let $\pi' = (45)\pi$, so $\pi' \in A_n$ and $\pi' \sigma \pi'^{-1} = (45)\pi \sigma \pi^{-1}(45) = (45)(123)(45) = (123).$

Example 2.3. The 3-cycles (123) and (132) are not conjugate in A_4 . But in A_5 we have

$$(132) = \pi(123)\pi^{-1}$$

for $\pi = (45)(12) \in A_5$.

Most proofs of the simplicity of the groups A_n are based on Lemmas 2.1 and 2.2. The basic argument is this: show any non-trivial normal subgroup $N \triangleleft A_n$ contains a 3-cycle, so N contains every 3-cycle by Lemma 2.2, and therefore N is A_n by Lemma 2.1.

The next lemma will be used in our fifth proof of the simplicity of alternating groups.

Lemma 2.4. For $n \ge 5$, the only nontrivial proper normal subgroup of S_n is A_n . In particular, the only subgroup of S_n with index 2 is A_n .

Proof. The last statement follows from the first since any subgroup of index 2 is normal. Let $N \triangleleft S_n$ with $N \neq \{(1)\}$. We will show $A_n \subset N$, so $N = A_n$ or S_n .

Pick $\sigma \in N$ with $\sigma \neq (1)$. That means there is an *i* with $\sigma(i) \neq i$. Pick $j \in \{1, 2, ..., n\}$ so $j \neq i$ and $j \neq \sigma(i)$. Let $\tau = (ij)$. Then

$$\sigma\tau\sigma^{-1}\tau^{-1} = (\sigma(i) \ \sigma(j))(ij).$$

Since $\sigma(i) \neq i$ or j and $\sigma(i) \neq \sigma(j)$ (why?), the 2-cycles $(\sigma(i) \sigma(j))$ and (ij) are unequal, so their product is not the identity. That shows $\sigma \tau \neq \tau \sigma$.

Since $N \triangleleft S_n$, $\sigma \tau \sigma^{-1} \tau^{-1}$ lies in N. By construction, $\sigma(i) \neq i$ or j. If $\sigma(j) \neq i$ or j, then $(\sigma(i) \sigma(j))(ij)$ has type (2, 2). If $\sigma(j) = i$ or j, $(\sigma(i) \sigma(j))(ij)$ is a 3-cycle. Thus N contains a permutation of type (2, 2) or a 3-cycle. Since $N \triangleleft S_n$, N contains all permutations of type (2, 2) or all 3-cycles. In either case, this shows (by Lemma 2.1) that $N \supset A_n$.

Remark 2.5. There is an analogue of Lemma 2.4 for the "countable" symmetric group S_{∞} consisting of all permutations of $\{1, 2, 3, ...\}$. A theorem of Schreier and Ulam (1933) says the only nontrivial proper normal subgroups of S_{∞} are $\bigcup_{n\geq 1}S_n$ and $\bigcup_{n\geq 1}A_n$, which are the subgroup of permutations fixing all but a finite number of terms and its subgroup of even permutations.

Remark 2.6. From Lemma 2.4, any homomorphic image of S_n which is not an isomorphism has size 1 or 2. In particular, there is no surjective homomorphism $S_n \to \mathbf{Z}/(m)$ for m > 2.

Theorem 2.7. For $n \ge 5$, any proper subgroup of S_n other than A_n has index at least n. Moreover, any subgroup of index n is isomorphic to S_{n-1} .

Proof. Let H be a proper subgroup of S_n other than A_n , and let m > 1 be the index of H in S_n . We want to show $m \ge n$. Assume m < n. The left multiplication action of S_n on S_n/H gives a group homomorphism

$$\varphi \colon S_n \to \operatorname{Sym}(S_n/H) \cong S_m.$$

By hypothesis, m < n, so φ is not injective. Let K be the kernel of φ , so $K \subset H$ and K is non-trivial. Since $K \triangleleft S_n$, Lemma 2.4 says $K = A_n$ or S_n . Since $K \subset H$, we get $H = A_n$ or S_n , which contradicts our initial assumption about H. Therefore $m \ge n$.

Now let H be a subgroup of S_n with index n. Consider the left multiplication action of S_n on S_n/H . This is a homomorphism $\ell \colon S_n \to \operatorname{Sym}(S_n/H)$. Since S_n/H has size n, $\operatorname{Sym}(S_n/H)$ is isomorphic to S_n . The kernel of ℓ is a normal subgroup of S_n which lies in H(why?). Therefore the kernel has index at least n in S_n . Since the only normal subgroups of S_n are 1, A_n , and S_n , the kernel of ℓ is trivial, so ℓ is an isomorphism. What is the image $\ell(H)$ in $\operatorname{Sym}(S_n/H)$? Since gH = H if and only if $g \in H$, $\ell(H)$ is the group of permutations of S_n/H which fixes the "point" H in S_n/H . The subgroup fixing a point in a symmetric group isomorphic to S_n is isomorphic to S_{n-1} . Therefore $H \cong \ell(H) \cong S_{n-1}$.

Theorem 2.7 is false for n = 4: S_4 contains the dihedral group of size 8 as a subgroup of index 3. An analogue of Theorem 2.7 for alternating groups will be given in Section 8; its proof uses the simplicity of alternating groups.

Corollary 2.8. Let F be a field. If $f \in F[X_1, ..., X_n]$ and $n \ge 5$, the number of different polynomials we get from f by permuting its variables is either 1, 2, or at least n.

Proof. Letting S_n act on $F[X_1, \ldots, X_n]$ by permutations of the variables, the polynomials we get by permuting the variables of f is the S_n -orbit of f. The size of this orbit is $[S_n : H]$, where $H = \text{Stab}_f = \{\sigma \in S_n : \sigma f = f\}$. By Theorem 2.7, this index is either 1, 2, or at least n.

3. First proof

Our first proof of Theorem 1.1 is based on the one in [2, pp. 149–150]. We begin by showing A_5 is simple.

Theorem 3.1. The group A_5 is simple.

Proof. We want to show the only normal subgroups of A_5 are $\{(1)\}$ and A_5 . This will be done in two ways.

Our first method involves counting the sizes of the conjugacy classes. There are 5 conjugacy classes in A_5 , with representatives and sizes as indicated in the following table.

Rep.	(1)	(12345)	(21345)	(12)(34)	(123)
Size	1	12	12	15	20

If A_5 has a normal subgroup N, then N is a union of conjugacy classes – including $\{(1)\}$ – whose total size divides 60. However, no sum of the above numbers which includes 1 is a factor of 60 except for 1 and 60. Therefore N is trivial or A_5 .

For the second proof, let $N \triangleleft A_5$ with |N| > 1. We will show N contains a 3-cycle. It follows that $N = A_n$ by Lemmas 2.1 and 2.2.

Pick $\sigma \in N$ with $\sigma \neq (1)$. The cycle structure of σ is (abc), (ab)(cd), or (abcde), where different letters represent different numbers. Since we want to show N contains a 3-cycle, we may suppose σ has the second or third cycle type. In the second case, N contains

$$((abe)(ab)(cd)(abe)^{-1})(ab)(cd) = (be)(cd)(ab)(cd) = (aeb).$$

In the third case, N contains

$$((abc)(abcde)(abc)^{-1})(abcde)^{-1} = (adebc)(aedcb) = (abd).$$

Therefore N contains a 3-cycle, so $N = A_5$.

KEITH CONRAD

Lemma 3.2. When $n \ge 5$, any $\sigma \ne (1)$ in A_n has a conjugate $\sigma' \ne \sigma$ such that $\sigma(i) = \sigma'(i)$ for some *i*.

For example, if $\sigma = (12345)$ in A_5 then $\sigma' = (345)\sigma(345)^{-1} = (12453)$ has the same value at i = 1 as σ does.

Proof. Let σ be a non-identity element of A_n . Let r be the longest length of a disjoint cycle in σ . Relabelling, we may write

$$\sigma = (12 \dots r)\pi,$$

where (12...r) and π are disjoint.

If $r \geq 3$, let $\tau = (345)$ and $\sigma' = \tau \sigma \tau^{-1}$. Then $\sigma(1) = 2, \sigma'(1) = 2, \sigma(2) = 3$, and $\sigma'(2) = 4$. Thus $\sigma' \neq \sigma$ and both take the same value at 1.

If r = 2, then σ is a product of disjoint transpositions. If there are at least 3 disjoint transpositions involved, then $n \ge 6$ and we can write $\sigma = (12)(34)(56)(...)$ after relabelling. Let $\tau = (12)(35)$ and $\sigma' = \tau \sigma \tau^{-1}$. Then $\sigma(1) = 2, \sigma'(1) = 2, \sigma(3) = 4$, and $\sigma'(3) = 6$. Again, we see $\sigma' \ne \sigma$ and σ and σ' have the same value at 1.

If r = 2 and σ is a product of 2 disjoint transpositions, write $\sigma = (12)(34)$ after relabelling. Let $\tau = (132)$ and $\sigma' = \tau \sigma \tau^{-1} = (13)(24)$. Then $\sigma' \neq \sigma$ and they both fix 5.

Now we prove Theorem 1.1.

Proof. We may suppose $n \ge 6$, by Theorem 3.1. For $1 \le i \le n$, let A_n act in the natural way on $\{1, 2, \ldots, n\}$ and let $H_i \subset A_n$ be the subgroup fixing i, so $H_i \cong A_{n-1}$. By induction, each H_i is simple. Note each H_i contains a 3-cycle (build out of 3 numbers other than i).

Let $N \triangleleft A_n$ be a nontrivial normal subgroup. We want to show $N = A_n$. Pick $\sigma \in N$ with $\sigma \neq \{(1)\}$. By Lemma 3.2, there is a conjugate σ' of σ such that $\sigma' \neq \sigma$ and $\sigma(i) = \sigma'(i)$ for some *i*. Since *N* is normal in A_n , $\sigma' \in N$. Then $\sigma^{-1}\sigma'$ is a non-identity element of *N* which fixes *i*, so $N \cap H_i$ is a non-trivial subgroup of H_i . It is also a normal subgroup of H_i since $N \triangleleft A_n$. Since H_i is simple, $N \cap H_i = H_i$. Therefore $H_i \subset N$. Since H_i contains a 3-cycle, *N* contains a 3-cycle and we are done.

Alternatively, we can show $N = A_n$ when $N \cap H_i$ is non-trivial for some *i* as follows. As before, since $N \cap H_i$ is a non-trivial normal subgroup of H_i , $H_i \subset N$. Without referring to 3-cycles, we instead note that the different H_i 's are conjugate subgroups of A_n : $\sigma H_i \sigma^{-1} =$ $H_{\sigma(i)}$ for $\sigma \in A_n$ Since $N \triangleleft A_n$ and N contains H_i , N contains every $H_{\sigma(i)}$ for all $\sigma \in A_n$. Since $\sigma(i)$ can be any element of A_n as σ varies in A_n , N contains every H_i . Any permutation of type (2, 2) is in some H_i since $n \ge 5$, so N contains all permutations of type (2, 2). Every permutation in A_n is a product of permutations of type (2,2), so $N \supset A_n$. Therefore $N = A_n$.

4. Second proof

Our next proof is taken from [6, p. 108]. It does not use induction on n, but we do need to know A_6 is simple at the start.

Theorem 4.1. The group A_6 is simple.

Proof. We follow the first method of proof of Theorem 3.1. Here is the table of conjugacy classes in A_6 .

Rep.	(1)	(123)	(123)(456)	(12)(34)	(12345)	(23456)	(1234)(56)
Size	1	40	40	45	72	72	90

A tedious check shows no sum of these sizes, which includes 1, is a factor of 6!/2 except for the sum of all the terms. Therefore the only non-trivial normal subgroup of A_6 is A_6 . \Box

Now we prove the simplicity of A_n for larger n by reducing directly to the case of A_6 .

Proof. Since A_5 and A_6 are known to be simple by Theorems 3.1 and 4.1, pick $n \ge 7$ and let $N \triangleleft A_n$ be a non-trivial subgroup. We will show N contains a 3-cycle.

Let σ be a non-identity element of N. It moves some number. By relabelling, we may suppose $\sigma(1) \neq 1$. Let $\tau = (ijk)$, where i, j, k are not 1 and $\sigma(1) \in \{i, j, k\}$. Then $\tau \sigma \tau^{-1}(1) = \tau(\sigma(1)) \neq \sigma(1)$, so $\tau \sigma \tau^{-1} \neq \sigma$. Let $\varphi = \tau \sigma \tau^{-1} \sigma^{-1}$, so $\varphi \neq (1)$. Writing

$$\varphi = (\tau \sigma \tau^{-1}) \sigma^{-1},$$

we see $\varphi \in N$. Now write

$$\varphi = \tau (\sigma \tau^{-1} \sigma^{-1}),$$

Since τ^{-1} is a 3-cycle, $\sigma\tau^{-1}\sigma^{-1}$ is also a 3-cycle. Therefore φ is a product of two 3-cycles, so φ moves at most 6 numbers in $\{1, 2, \ldots, n\}$. Let H be the copy of A_6 inside A_n corresponding to the even permutations of those 6 numbers (possibly augmented to 6 arbitrarily if in fact φ moves fewer numbers). Then $N \cap H$ is non-trivial (it contains φ) and it is a normal subgroup of H. Since $H \cong A_6$, which is simple, $N \cap H = H$. Thus $H \subset N$, so N contains a 3-cycle.

5. Third proof

Our next proof is by induction, and uses conjugacy classes instead of Lemma 3.2. It is based on [9, §2.3].

Lemma 5.1. If $n \ge 6$ then every non-trivial conjugacy class in S_n and A_n has at least n elements.

The lower bound n in Lemma 5.1 is actually quite weak as n grows. But it shows that the size of each non-trivial conjugacy class in S_n and A_n grows with n.

Proof. For $n \ge 6$, pick $\sigma \in S_n$ with $\sigma \ne (1)$. We want to look at the conjugacy class of σ in S_n , and if $\sigma \in A_n$ we also want to look at the conjugacy class of σ in A_n , and our goal in both cases is to find at least n elements in the conjugacy class.

<u>Case 1</u>: The disjoint cycle decomposition of σ includes a cycle with length greater than 2. Without loss of generality, $\sigma = (123...)...$

For $3 \leq k \leq n$, fix a choice of $\ell \notin \{1, 2, 3, k\}$ (which is possible since $n \geq 5$) and let $\alpha_k = (2k\ell)$ and $\beta_k = (3k\ell)$. Then $\alpha_k \sigma \alpha_k^{-1}$ has the effect $1 \to 1 \to 2 \to k$ and $\beta_k \sigma \beta_k^{-1}$ has the effect $1 \to 1 \to 2 \to 2$ and $2 \to 2 \to 3 \to k$. This tells us that the conjugates

$$\alpha_3 \sigma \alpha_3^{-1}, \ldots, \alpha_n \sigma \alpha_n^{-1}, \beta_3 \sigma \beta_3^{-1}, \ldots, \beta_n \sigma \beta_n^{-1}$$

are all different from each other: the conjugates by the α 's have different effects on 1, the conjugates by the β 's have different effects on 2, and a conjugate by an α is not a conjugate by a β since they have different effects on 1. Since these conjugates are different, the number of conjugates of σ is at least 2(n-2) > n. Because α_k and β_k are 3-cycles, if $\sigma \in A_n$ then these conjugates are in the A_n -conjugacy class of σ .

<u>Case 2</u>: The disjoint cycle decomposition of σ only has cycles with length 1 or 2. Therefore without loss of generality σ is a transposition or a product of at least 2 disjoint transpositions.

KEITH CONRAD

If σ is a transposition, then its S_n -conjugacy class is the set of all transpositions (ij) where $1 \leq i < j \leq n$, and the number of these permutations is $\binom{n}{2} = \frac{n^2 - n}{2}$, which is greater than n for $n \geq 6$.

If σ is a product of at least 2 disjoint transpositions, then without loss of generality $\sigma = (12)(34)\ldots$, where the terms in \ldots don't involve 1, 2, 3, or 4.

For $5 \le k \le n$, let $\alpha_k = (12)(3k)$, $\beta_k = (13)(2k)$, and $\gamma_k = (1k)(23)$. Then $\alpha_k \sigma \alpha_k^{-1}$ has the effect

$$1 \rightarrow 2 \rightarrow 1 \rightarrow 2, 2 \rightarrow 1 \rightarrow 2 \rightarrow 1, k \rightarrow 3 \rightarrow 4 \rightarrow 4,$$

 $\beta_k \sigma \beta_k^{-1}$ has the effect

 $1 \rightarrow 3 \rightarrow 4 \rightarrow 4, \ 3 \rightarrow 1 \rightarrow 2 \rightarrow k, \ k \rightarrow 2 \rightarrow 1 \rightarrow 3,$

and $\gamma_k \sigma \gamma_k^{-1}$ has the effect

$$2 \rightarrow 3 \rightarrow 4 \rightarrow 4, \quad 3 \rightarrow 2 \rightarrow 1 \rightarrow k, \quad k \rightarrow 1 \rightarrow 2 \rightarrow 3.$$

The conjugates of σ by the α 's are different from each other since they take different elements to 4, the conjugates of σ by the β 's are different from each other since they take different elements to 3, and the conjugates of σ by the γ 's are different from each other since they take different elements to 3. Conjugates of σ by an α and a β are different since they send 1 to different places, conjugates of σ by an α and a γ are different since they send 2 to different places, and conjugates of σ by a β and a γ are different since they send different elements to 4 (1 for the β 's and 2 for the γ 's). In total the number of conjugates of σ we have written down (which are all conjugates by 3-cycles, hence they are conjugates in A_n if $\sigma \in A_n$) is 3(n-4), and $3(n-4) \ge n$ if $n \ge 6$.

Now we prove Theorem 1.1.

Proof. We argue by induction on n, the case n = 5 having already been settled by Theorem 3.1. Say $n \ge 6$. Let $N \triangleleft A_n$ with $N \ne \{(1)\}$. Since N is normal and non-trivial, it contains non-identity conjugacy classes in A_n . By Lemma 5.1, any non-identity conjugacy class in A_n has size at least n when $n \ge 6$. Therefore, by counting the trivial conjugacy class and a non-trivial conjugacy class in N, we see $|N| \ge n + 1$.

Using a wholly different argument, we now show that $|N| \leq n$ if $N \neq A_n$, which will be a contradiction. Pick $1 \leq i \leq n$. Let $H_i \subset A_n$ be the subgroup fixing i, so $H_i \cong A_{n-1}$. In particular, H_i is a simple group by induction. Notice each H_i contains a 3-cycle.

The intersection $N \cap H_i$ is a normal subgroup of H_i , so simplicity of H_i implies $N \cap H_i$ is either $\{(1)\}$ or H_i . If $N \cap H_i = H_i$ for some *i*, then $H_i \subset N$. Since H_i contains a 3-cycle, N does as well, so $N = A_n$ by Lemmas 2.1 and 2.2. (This part resembles part of our first proof of simplicity of A_n , but we will now use Lemma 5.1 instead of Lemma 3.2 to show the possibility that $N \cap H_i = \{(1)\}$ for all *i* is absurd.)

Suppose $N \neq A_n$. Then, by the previous paragraph, $N \cap H_i = \{(1)\}$ for all *i*. Therefore each $\sigma \neq (1)$ in *N* acts on $\{1, 2, ..., n\}$ without fixed points (otherwise σ would be a nonidentity element in some $N \cap H_i$). That implies each $\sigma \neq (1)$ in *N* is completely determined by the value $\sigma(1)$: if $\tau \neq (1)$ is in *N* and $\sigma(1) = \tau(1)$, then $\sigma\tau^{-1} \in N$ fixes 1, so $\sigma\tau^{-1}$ is the identity, so $\sigma = \tau$.

There are only n-1 possible values for $\sigma(1) \in \{2, 3, ..., n\}$, so $N - \{(1)\}$ has size at most n-1, hence $|N| \leq n$. We already saw from Lemma 5.1 that $|N| \geq n+1$, so we have a contradiction.

 $\mathbf{6}$

6. Fourth proof

Our next proof, based on [3, p. 50], is very computational.

Proof. Let $N \triangleleft A_n$ be a non-trivial normal subgroup. We will show N contains a 3-cycle. Pick $\sigma \in N, \sigma \neq (1)$. Write

$$\sigma = \pi_1 \pi_2 \cdots \pi_k,$$

where the π_j 's are disjoint cycles. In particular, they *commute*, so we can relabel them at our convenience. Eliminate any 1-cycles from the product.

<u>Case 1</u>: Some π_i has length at least 4. Relabelling, we can write

$$\pi_1 = (12 \cdots r)$$

with $r \ge 4$. Let $\varphi = (123)$. Then $\varphi \sigma \varphi^{-1} \in N$ and

$$\varphi \sigma \varphi^{-1} = \varphi \pi_1 \varphi^{-1} \pi_2 \cdots \pi_k$$

= $\varphi \pi_1 \varphi^{-1} \pi_1^{-1} \sigma$
= $(123)(123 \cdots r)(132)(r \cdots 21)\sigma$
= $(124)\sigma$,

so (124) = $\varphi \sigma \varphi^{-1} \sigma^{-1} \in N$.

<u>Case 2</u>: Each π_i has length ≤ 3 , and at least two have length 3 (so $n \geq 6$). Without loss of generality, $\pi_1 = (123)$ and $\pi_2 = (456)$. Let $\varphi = (124)$. Then

$$\varphi \sigma \varphi^{-1} = \varphi \pi_1 \pi_2 \varphi^{-1} \pi_3 \cdots \pi_k$$

= $\varphi \pi_1 \pi_2 \varphi^{-1} \pi_2^{-1} \pi_1^{-1} \sigma$
= $(124)(123)(456)(142)(465)(132)\sigma$
= $(12534)\sigma$,

so $\varphi \sigma \varphi^{-1} \sigma^{-1} = (12534) \in N$. Now run through Case 1 with this 5-cycle to find a 3-cycle in N.

<u>Case 3</u>: Exactly one π_i has length 3, and the rest have length ≤ 2 . Without loss of generality, $\pi_1 = (123)$ and the other π_i 's are 2-cycles. Then $\sigma^2 = \pi_1^2$ is in N, and $\pi_1^2 = (132)$.

<u>Case 4</u>: All π_i 's are 2-cycles, so necessarily k > 1. Write $\pi_1 = (12)$ and $\pi_2 = (34)$. Let $\varphi = (123)$. Then

$$\varphi \sigma \varphi^{-1} = \varphi \pi_1 \pi_2 \varphi^{-1} \pi_3 \cdots \pi_k$$

= $\varphi \pi_1 \pi_2 \varphi^{-1} \pi_2^{-1} \pi_1^{-1} \sigma$
= $(123)(12)(34)(132)(34)(12)\sigma$
= $(13)(24)\sigma$,

 \mathbf{SO}

$$\varphi \sigma \varphi^{-1} \sigma^{-1} = (13)(24) \in N.$$

Let $\psi = (135)$. Then

$$(13)(24)\psi(13)(24)\psi^{-1} = (13)(24)(135)(13)(24)(153)$$

= (13)(135)(13)(153)
= (135),

so N contains a 3-cycle.

7. FIFTH PROOF

Our final proof is taken from [8, p. 295].

Let $N \triangleleft A_n$ with N not $\{(1)\}$ or A_n . We will study N as a subgroup of S_n . By Lemma 2.4, N is not a normal subgroup of S_n . This means the normalizer of N inside S_n is a proper subgroup, which contains A_n , so

(7.1)
$$A_n = \mathcal{N}_{S_n}(N).$$

For any transposition τ in S_n , $\tau \notin N_{S_n}(N)$ by (7.1), so $\tau N \tau^{-1} \neq N$. Since $N \triangleleft A_n$ and $\tau N \tau^{-1}$ is a subgroup of A_n , the product set $N \cdot \tau N \tau^{-1}$ is a subgroup of A_n . We have the chain of inclusions

$$N \cap \tau N \tau^{-1} \subset N \subset N \cdot \tau N \tau^{-1} \subset A_n,$$

where the first and second are strict.

We will now show, for any transposition τ in S_n , that

(7.2)
$$N \cap \tau N \tau^{-1} \triangleleft S_n, \quad N \cdot \tau N \tau^{-1} \triangleleft S_n.$$

The proof of (7.2) is a bit tedious, so first let's see why (7.2) leads to a contradiction.

It follows from (7.2) and Lemma 2.4 that

(7.3)
$$N \cap \tau N \tau^{-1} = \{(1)\}, \quad N \cdot \tau N \tau^{-1} = A_r$$

for any transposition τ in S_n . By (7.3), $|A_n| = |N| \cdot |\tau N \tau^{-1}| = |N|^2$, so $n! = 2|N|^2$. This tells us |N| must be even, so N has an element, say σ , of order 2. Then σ is a product of disjoint 2-cycles. There is a transposition ρ in S_n which commutes with σ : just take for ρ one of the transpositions in the disjoint cycle decomposition of σ . Then

$$\sigma = \rho \sigma \rho^{-1} \in N \cap \rho N \rho^{-1}.$$

From (7.3), using ρ for the arbitrary τ there, $N \cap \rho N \rho^{-1}$ is trivial, so we have a contradiction. (As another way of reaching a contradiction from the equation $n! = 2|N|^2$, we can use Bertrand's postulate – proved by Chebyshev – that there is always a prime strictly between m and 2m for any m > 1. That means, taking m = n!/4, the ratio n!/2 can't be a perfect square.)

It remains to check the two conditions in (7.2). In both cases, we show the subgroups are normalized by A_n and by τ , so the normalizer contains $\langle A_n, \tau \rangle = S_n$.

First consider $N \cap \tau N \tau^{-1}$. It is clearly normalized by τ . Now pick any $\pi \in A_n$. Then $\pi N \pi^{-1} = N$ since $N \triangleleft A_n$, and

(7.4)
$$\pi(\tau N \tau^{-1}) \pi^{-1} = \tau(\tau^{-1} \pi \tau) N(\tau^{-1} \pi^{-1} \tau) \tau^{-1} = \tau N \tau^{-1}$$

since $\tau^{-1}\pi\tau \in A_n$. Therefore

$$\pi(N \cap \tau N \tau^{-1}) \pi^{-1} = \pi N \pi^{-1} \cap \pi \tau N \tau^{-1} \pi^{-1} = N \cap \tau N \tau^{-1},$$

so A_n normalizes $N \cap \tau N \tau^{-1}$.

Now we look at $N \cdot \tau N \tau^{-1}$. Pick an element of this product, say

$$\sigma = \sigma_1 \tau \sigma_2 \tau^{-1},$$

where $\sigma_1, \sigma_2 \in N$. Then, since $N \triangleleft A_n$,

$$\tau \sigma \tau^{-1} = \tau \sigma_1 \tau \sigma_2 \tau^{-2} = \tau \sigma_1 \tau \sigma_2 \in \tau N \tau^{-1} \cdot N = N \cdot \tau N \tau^{-1},$$

which shows τ normalizes $N \cdot \tau N \tau^{-1}$.

Now pick any $\pi \in A_n$. To see π normalizes $N \cdot \tau N \tau^{-1}$, pick σ as before. Then

$$\pi \sigma \pi^{-1} = \pi \sigma_1 \pi^{-1} \cdot \pi (\tau \sigma_2 \tau^{-1}) \pi^{-1}.$$

The first factor $\pi \sigma_1 \pi^{-1}$ is in N since $N \triangleleft A_n$. The second factor is in $\pi \tau N \tau^{-1} \pi^{-1}$, which equals $\tau N \tau^{-1}$ by (7.4).

8. Concluding Remarks

The standard counterexample to the converse of Lagrange's theorem is A_4 : it has size 12 but no subgroup of index 2. For $n \ge 5$, the groups A_n also have no subgroup of index 2, since any index-2 subgroup of a group is normal and A_n is simple.

In fact, something stronger is true.

Corollary 8.1. For $n \geq 5$, any proper subgroup of A_n has index at least n.

This is an analogue of Theorem 2.7.

Proof. Let H be a proper subgroup of A_n , with index m > 1. Consider the left multiplication action of A_n on A_n/H . This gives a group homomorphism

$$\varphi \colon A_n \to \operatorname{Sym}(A_n/H) \cong S_m.$$

Let K be the kernel of φ , so $K \subset H$ (why?) and $K \triangleleft A_n$. By simplicity of A_n , K is trivial. Therefore A_n injects into S_m , so $(n!/2) \mid m!$, which implies $n \leq m$.

The lower bound of n is sharp since $[A_n : A_{n-1}] = n$. Corollary 8.1 is false for n = 4: A_4 has a subgroup of index 3.

Remark 8.2. What the proof of Corollary 8.1 shows more generally is that if G is a finite simple group and H is a subgroup with index m > 1, then there is an embedding of G into S_m , so $|G| \mid m!$. With G fixed, this divisibility relation puts a lower bound on the index of any proper subgroup of G.

A reader who wants to see more proofs that A_n is simple for $n \ge 5$ can look at [4, pp. 247-248] or [5, pp. 32–33] for another way of showing a non-trivial normal subgroup contains a 3-cycle, or at [1, §1.7] or [7, pp. 295–296] for a proof based on the theory of highly transitive permutation groups.

References

- N. L. Biggs, A. T. White, "Permutation Groups and Combinatorial Structures," Cambridge Univ. Press, Cambridge, 1979.
- [2] D. Dummit, R. Foote, "Abstract Algebra," 3rd ed., J. Wiley, 2004.
- [3] T. Hungerford, "Algebra," Springer-Verlag, New York, 1980.
- [4] N. Jacobson, "Basic Algebra I," 2nd ed., W. H. Freeman, New York, 1985.
- [5] S. Lang, "Algebra," revised 3rd ed., Springer-Verlag, New York, 2002.
- [6] J. Rotman, "Advanced Modern Algebra," Prentice-Hall, Upper Saddle River, 2002.
- [7] W. R. Scott, "Group Theory," Dover, New York, 1987.
- [8] M. Suzuki, "Group Theory I," Springer-Verlag, Berlin, 1982.
- [9] R. Wilson, "The Finite Simple Groups," Springer-Verlag, New York, 2009,