Théorie des groupes

Feuille de TD n° 11

Exercice 1 Montrer qu'un groupe d'ordre pq (avec p et q deux entiers premiers distincts) n'est pas simple.

Exercice 2 Montrer qu'un groupe d'ordre p^2q n'est pas simple (attention au cas p=2 et q=3).

Exercice 3 Montrer qu'un groupe d'ordre p^2q^2 n'est jamais simple (attention au cas p=2 et q=3).

Exercice 4 Soit *G* un groupe d'ordre pqr (avec p > q > r trois entiers premiers). Montrer que $pqr \ge b_p(p-1) + b_q(q-1) + b_r(r-1) + 1$ et en déduire que *G* n'est jamais simple.

Exercice 5 1. Montrer que si $|G| \in \{24, 40, 48, 56\}$ alors G n'est pas simple (si besoin, faire agir G sur un ensembles de Sylows).

2. Déduire de la question précédente et des exercices 1, 2, 3 et 4 qu'un groupe G d'ordre |G| < 60 simple est alors cyclique d'ordre p premier.

Exercice 6 Soit G un groupe simple d'ordre $60 = 2^2 \cdot 3 \cdot 5$.

1. Montrer que les nombres de sous-groupes de Sylow vérifient

$$b_5 = 6$$
, $b_3 \in \{4, 10\}$ et $b_2 \in \{3, 5, 15\}$.

- 2. En faisant agir *G* sur l'ensemble des 3-Sylows, montrer que $\delta_3 = 4$ est exclue. De même, montrer que $\delta_2 = 3$ ne peut survenir.
- 3. Si $\delta_2 = 5$, faire agir G sur les 2-Sylows et montrer que $G \simeq A_5$ (on vérifiera que A_5 a bien les caractéristiques suivantes : $\delta_2(A_5) = 5$, $\delta_3(A_5) = 10$ et $\delta_5(A_5) = 6$).
- 4. Par un argument de comptage, montrer que, si $\delta_2 = 15$, alors il existe S_1 et S_2 des 2-Sylows vérifiant $S_1 \cap S_2 = \{1, g\}$. Montrer que le centralisateur de g a pour ordre $|C_G(g)| = 12$ ou 20 et aboutir à une contradiction.

TD Théorie des groupes

Mercedes Haiech

$7~{\rm d\'ecembre}~2021$

Table des matières

1	TD11	2
	1.1 Exo 1	 2
	1.2 Exo 2	 4
	1.3 Exo 3	 4
	1.4 Exo 4	
	1.5 Exo 5	
	1.6 Exo 6	 4

1 TD11

Théorème 1.1 (Théorème de Sylow (rappel)). Soit G un groupe de cardinal $|G| = p^{\alpha}m$ avec p premier qui ne divise pas m.

- 1. Si H est un p-sous-groupe de G, alors il existe un p-Sylow S tel que $H \subset S$.
- 2. Les p-Sylow sont tous conjugués et leur nombre n_p divise n.
- 3. On a $n_p \equiv 1 \mod (p)$, donc k divise m.

1.1 Exo 1

Exercice 1.1. Montrer qu'un groupe d'ordre pq (avec p et q deux entiers premiers distincts) n'est pas simple.

Démonstration. On suppose que p > q. D'après le théorème de Sylow, il existe un p-Sylow disons S et le nombre de p-Sylow divise q et est congru à 1 modulo p. En particulier $n_p \leq q < p$, et $n_p \equiv 1 \mod (p)$. Finalement le seul choix possible est $n_p = 1$.

Comme tous les p-Sylow sont conjugués et qu'il n'y en a qu'un, on en déduit que S est distingué, donc que le groupe n'est pas simple.

1.2 Exo 2

Exercice 1.2. Montrer qu'un groupe d'ordre p^2q n'est pas simple (attention au cas p=2 et q=3).

Démonstration. On va traiter deux cas selon que p > q ou que q > p.

- Si p > q, alors il existe un p-Sylow et le nombre n_p de p-Sylow vérifie $n_p|q$ et $n_p \equiv 1$ mod (p). En particulier $n_p \leq q < p$, donc $n_p = 1$. Comme tous les p-Sylow sont conjugués, alors S est un sous-groupe distingué.
- Si q > p, alors il existe un q-Sylow S, et le nombre n_q de q-Sylow vérifie $n_q|p^2$ et $n_q \equiv 1 \mod (q)$. En particulier $n_q \in \{1, p, p^2\}$.

Si $n_q = p$ alors comme q > p, on a urait $p \equiv 1 \mod (q)$, ce qui est impossible. Si $n_q = p^2$, alors $p^2 \equiv 1 \mod (q)$, et donc $p \equiv 1 \mod (q)$ ou $p \equiv -1 \mod (q)$. Comme le premier cas est impossible, on a nécessairement $p \equiv -1 \mod (q)$, ce qui implique p = q - 1. Or q étant impair, alors p est pair, ce qui n'est possible que si p = 2 et q = 3. Dans tous les autres cas, on a alors $n_q = 1$, et donc S est distingué.

Si jamais p = 2 et q = 3. Supposons que $n_3 \neq 1$, alors comme $n_3 | 4$ et $n_3 \equiv 1 \mod (3)$, on a $n_3 = 4$. Ainsi le groupe contient quatre 3-Sylow et leur union contient 8 éléments d'ordre 3 (et l'identité). Il ne reste alors de la place que pour un 2-Sylow, qui est alors unique et donc distingué.

1.3 Exo 3

Exercice 1.3. Montrer qu'un groupe d'ordre p^2q^2 n'est jamais simple (attention au cas p=2 et q=3).

Démonstration. Par symétrie, on peut supposer sans perte de généralité que p > q. Il existe un p-Sylow, disons S et le nombre n_p de p-Sylow vérifie $n_p|q^2$ et $n_p \equiv 1 \mod (p)$. En particulier $n_q \in \{1, q, q^2\}$.

Si $n_p = q$ alors comme p > q, on aurait $q \equiv 1 \mod (p)$, ce qui est impossible.

Si $n_p = q^2$, alors $q^2 \equiv 1 \mod (p)$, et donc $q \equiv 1 \mod (p)$ ou $q \equiv -1 \mod (p)$. Comme le premier cas est impossible, on a nécessairement $q \equiv -1 \mod (p)$, ce qui implique q = p - 1. Or p étant impair, alors q est pair, ce qui n'est possible que si q = 2 et p = 3. Dans tous les autres cas, on a alors $n_p = 1$, et donc S est distingué.

Si jamais p=2 et q=3. Comme tous les 3-Sylow sont conjugués on peut définir une action de G sur l'ensemble de ses 3-Sylow. On sait que $n_3|4$ et $n_3\equiv 1 \mod (3)$, alors

 $n_3=1$ ou 4. Supposons que $n_3=4$. Cela induit un morphisme de groupe $\varphi\colon G\to\mathfrak{S}_4$. Or 4!=24 et 24<36, donc φ ne peut pas être injectif et son noyau est un sous-groupe distingué non trivial.

1.4 Exo 4

Exercice 1.4. Montrer qu'un groupe d'ordre pqr (avec p > q > r trois entiers premiers) n'est jamais simple.

Démonstration. Puisque $n_p|qr$ on a que $n_p \in \{1, q, r, qr\}$. Puisque $n_p \equiv 1 \mod (p)$, on ne peut pas avoir $n_p \in \{q, r\}$. Supposons que $n_p = qr$. Alors deux p-Sylow ont une intersection triviale (car engendrés par élément d'ordre p, et si leur intersection est non triviale alors ils sont égaux). Le groupe G contient alors qr(p-1) éléments d'ordre p. Si en outre $n_r, n_q \neq 1$, alors comme $n_r|pq$ et $n_q|pr$, alors $n_r \geqslant q$ et $n_q \geqslant r$ et G contient au moins q(r-1)+r(q-1) éléments d'ordre p ou p. Ainsi, en comptant le neutre pour p0, on a :

$$qr(p-1) + q(r-1) + r(q-1) + 1 \le |G| = pqr$$

En particulier, on a $q(r-1) + r(q-1) + 1 \le qr$, soit encore $q + r \ge qr + 1$. Puisque $2 \le r < q$, on a en particulier $2q + 1 \le 2q$, ce qui est absurde.

Donc $n_p = qr$ donne $n_q = 1$ ou $n_r = 1$, dans tous les cas G possède un sous-groupe distingué.

1.5 Exo 5

Exercice 1.5. 1. Montrer que si $|G| \in \{24, 40, 48, 56\}$ alors G n'est pas simple (si besoin, faire agir G sur un ensembles de Sylows).

- 2. Déduire de la question précédente et des exercices [1.1], [1.2], [1.3] et [1.4] qu'un groupe G d'ordre |G| < 60 simple est alors cyclique d'ordre p premier.
- Démonstration. 1. Si |G| = 24, on fait agir G sur l'ensemble de ses 2-Sylow. On sait que $n_2|3$. Supposons que $n_2 = 3$. Cela donne un morphisme $\varphi \colon G \to \mathfrak{S}_3$. Ce morphisme n'est pas injectif car 3! = 6 < 24. Comme ce morphisme n'est pas l'identité son noyau est un sous-groupe distingué de G non trivial.
 - 2. Si $|G| = 40 = 2^3 \times 5$. Alors $n_5 | 8$ et $n_5 \equiv 1 \mod (5)$. Donc $n_5 \in \{1, 2, 4, 8\}$. Or le seul élément de cet ensemble qui vérifie $n_5 \equiv 1 \mod (5)$ est 1. Donc $n_5 = 1$.
 - 3. Si $|G| = 48 = 2^4 \times 3$ on fait agir G sur l'ensemble de ses 2-Sylow. On sait que $n_2|3$. Supposons que $n_2 = 3$. Cela donne un morphisme $\varphi \colon G \to \mathfrak{S}_3$. Ce morphisme n'est pas injectif car 3! = 6 < 48. Comme ce morphisme n'est pas l'identité son noyau est un sous-groupe distingué de G non trivial.
 - 4. Si |G| = 56 alors $n_7 | 8$ et $n_7 \equiv 1 \mod (7)$. Alors $n_7 \in \{1, 8\}$. Supposons que $n_7 = 8$. Alors deux 7-Sylow disjoints ont une intersection triviale et G possède $8 \times 6 = 48$ éléments d'ordre 7. Il reste donc 56 48 = 8 autres éléments, soit juste assez de place pour un 2-Sylow qui est donc unique et distingué. Dans tous les cas, G n'est pas simple.
 - 5. Soit G un groupe d'ordre < 60 non banal (pas un \mathbf{F}_p). Si p est premier et $\alpha > 1$, alors un groupe d'ordre p^{α} n'est pas simple car son centre n'est pas réduit au neutre (et tout sous-groupe du centre est distingué). Les exercices [1.1] [1.2] [1.3] et [1.4] nous assurent que tout groupe d'ordre pq, p^2q , p^2q^2 et pqr ne sont pas simple. Si jamais un groupe G a un facteur de type p^3q . Comme $3^3 \times 5 > 60$, les seules possibilités sont $|G| \in \{2^3 \times 3, 2^3 \times 5, 2^3 \times 7, 3^3 \times 2\}$. Mais $3^3 \times 2 = 54$ n'est pas simple (on fait comme dans l'exercice [1.1] en considérant les 3-Sylow) et on a vu que dans les autres possibilités G n'est pas simple. Si G a un facteur de type p^4q , alors comme $3^4 = 81 > 60$, et que $2^4 \times 5 = 80 > 60$, la seule possibilité est $|G| = 2^4 \times 3 = 48$. On

a vu qu'un tel groupe n'était pas simple. Comme $2^5 = 32$, on n'aura pas de groupe avec un facteur du type p^5q .

On a couvert toutes les possibilités, donc un groupe G d'ordre |G| < 60 simple est alors cyclique d'ordre p premier.

1.6 Exo 6

Exercice 1.6. Soit G un groupe simple d'ordre $60 = 2^2 \cdot 3 \cdot 5$.

1. Montrer que les nombres de sous-groupes de Sylow vérifient

$$b_5 = 6, \quad b_3 \in \{4, 10\} \quad \text{et} \quad b_2 \in \{3, 5, 15\}.$$

- 2. En faisant agir G sur l'ensemble des 3-Sylows, montrer que $\mathfrak{d}_3=4$ est exclue. De même, montrer que $\mathfrak{d}_2=3$ ne peut survenir.
- 3. Si $\mathfrak{d}_2 = 5$, faire agir G sur les 2-Sylows et montrer que $G \simeq \mathfrak{A}_5$ (on vérifiera que \mathfrak{A}_5 a bien les caractéristiques suivantes : $\mathfrak{d}_2(\mathfrak{A}_5) = 5$, $\mathfrak{d}_3(\mathfrak{A}_5) = 10$ et $\mathfrak{d}_5(\mathfrak{A}_5) = 6$).
- 4. Par un argument de comptage, montrer que, si $\mathfrak{d}_2 = 15$, alors il existe S_1 et S_2 des 2-Sylows vérifiant $S_1 \cap S_2 = \{1, g\}$. Montrer que le centralisateur de g a pour ordre $|C_G(g)| = 12$ ou 20 et aboutir à une contradiction.

 $D\acute{e}monstration$. On n'a jamais $\delta_k = 1$ sinon G ne serait pas distingué.

- 1. D'après le théorème de Sylow, on sait que $\delta_5 \in \{2, 3, 4, 6, 12\}$ et que $\delta_5 \equiv 1 \mod (5)$. Donc nécessairement $\delta_5 = 6$.
 - De même $\delta_3 \in \{2, 4, 5, 10, 20\}$ et $\delta_3 \equiv 1 \mod (3)$, donc nécessairement $\delta_3 \in \{4, 10\}$. De même $\delta_2 \in \{3, 5, 15\}$ et $\delta_3 \equiv 1 \mod (2)$, ce qui n'apporte aucune information supplémentaire.
- 2. Supposons par l'absurde que δ₃ = 4, alors l'action de G sur ses 3-Sylow par conjugaison induit un morphisme ρ: G → S₄. Pour des raisons de cardinalité, ce morphisme n'est pas injectif. Il n'est pas non plus trivial car tous les 3-Sylow sont conjugués. Cela implique que Ker(ρ) est un sous-groupe distingué non trivial de G, ce qui est impossible puisque G est simple.

Les mêmes arguments en faisant agir G sur ses 2-Sylow prouve que $\mathfrak{d}_2 = 3$ est exclu.

- 3. Si $\delta_2 = 5$, alors l'action de G sur ses 2-Sylow induit un morphisme de groupe $\rho \colon G \to \mathfrak{S}_5$. Puisque G est simple et que ρ n'est pas trivial, alors ce morphisme est nécessairement injectif. Donc G s'identifie à un sous-groupe d'ordre 60 de \mathfrak{S}_5 . Un tel groupe G étant distingué dans \mathfrak{S}_5 c'est nécessairement \mathfrak{A}_5 .
- 4. On suppose que $\delta_2 = 15$. Soient S_1 et S_2 deux 2-Sylow distincts. Alors $S_1 \cap S_2$ est un sous-groupe de S_2 donc est d'ordre 1 ou 2 (pas 4 puisque c'est un sous-groupe propre). Supposons que tous les 2-Sylow soient d'intersection triviale. Alors $| \bigcup_{i=1}^{15} S_i | = 3 \times 15 + 1 = 46$. Il existe donc 45 éléments d'ordre 2 ou 4 dans G, mais puisque $\delta_3 = 10$, il y a aussi $2 \times 10 = 20$ éléments d'ordre 3. C'est impossible puisque 45 + 20 > 60.

Donc il existe S_1 et S_2 des 2-Sylows vérifiant $S_1 \cap S_2 = \{1, g\}$.

Par définition $C_G(g) = \{x \in G \mid xg = gx\}$. Puisque $C_G(g)$ est un sous-groupe de G alors $|C_G(g)||60$. De plus, tout groupe d'ordre 4 est abélien, donc $S_1 \subset C_G(g)$, donc $4||C_G(g)|$. Finalement on a $|C_G(g)| \in \{12, 20, 60\}$. Or $|C_G(g)| \neq 60$ puisque sinon on aurait $g \in Z(G)$, ce qui est impossible puisque $Z(G) = \{e\}$ par simplicité de G.

• Supposons que $|C_G(g)| = 20$. On considère l'action de G sur $G/C_G(g)$ (qui est de cardinal 3). Elle induit un morphisme de groupe $\rho \colon G \to \mathfrak{S}_3$. Pour des raisons de cardinalité, ce morphisme n'est pas injectif. Il n'est pas non plus égal à G. Donc son

noyau est un sous-groupe distingué non trivial de G. Ce qui est absurde puisque G est simple.

• Supposons que $|C_G(g)| = 12$. Comme précédemment, on considère l'action de G sur $G/C_G(g)$ (qui est de cardinal 5). Elle induit un morphisme de groupe $\rho \colon G \to \mathfrak{S}_5$. Le noyau de ce morphisme n'est pas tout G. Donc ρ est injectif (sinon G aurait un sous-groupe distingué non trivial) et G s'identifie à un sous-groupe d'ordre 60 de \mathfrak{S}_5 . Or il n'y en a qu'un et c'est \mathfrak{A}_5 . Cependant \mathfrak{A}_5 ne possède que cinq 2-Sylow. C'est absurde.

Donc $\mathfrak{d}_2 = 5$.