Irregular parabolic bundles

Frank Loray (CNRS / Univ Rennes 1)
COFECUB workshop

november 2021
a work in progress with Arata Komyo and Masa-Hiko Saito (Kobe Univ)

rank 2 parabolic bundles on curves

Fix $D=t_{1}+\cdots+t_{n}$ reduced divisor on a smooth curve C.
Definition: A rank 2 (quasi-)parabolic bundle on C is a pair (E, l) where:

- $E \rightarrow C$ rank 2 holomorphic vector bundle
- $l=\left(l_{1}, \ldots, l_{n}\right)$ a parabolic structure on $E:\left.l_{i} \subset E\right|_{t_{i}}$ linear 1-dim subspace

Stability condition

Fix weights $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right) \in[0,1]^{n}$

For a line bundle $L \subset E$, define:
$\operatorname{stab}_{L}(E, \boldsymbol{l})=\underbrace{\operatorname{deg}(E)-2 \operatorname{deg}(L)}_{\text {usual }}+\sum_{\left.L\right|_{t_{i}} \neq l_{i}} \mu_{i}-\sum_{\left.L\right|_{t_{i}}=l_{i}} \mu_{i} \quad \in \mathbb{R}$
$\operatorname{stab}(E, \boldsymbol{l})=\operatorname{Inf}\left\{\operatorname{stab}_{L}(E, \boldsymbol{l}) ; L \subset E\right.$ a line bundle $\} \quad \in \mathbb{R}$
Definition: semi-stable (resp. stable) \Leftrightarrow stab ≥ 0 (resp. >0)

Moduli spaces of parabolic bundles

Mehta-Seshadri 80, Bhosle 89, Boden-Hu 95, Biswas-Holla-Kumar 2010, Araujo-Fassarella-Kaur-Massarenti 2021

Theorem: The moduli space of μ-semi-stable degree d parabolic bundles (E, l) on (C, D) admits a GIT quotient $\operatorname{Bun}_{\mu, d}^{s s}(C, D)$ which is projective and irreducible of dimension $4 g-3+n$ (or empty).

Moduli spaces of parabolic connections

Nitsure 93, Arinkin-Lysenko 97, Inaba-Iwasaki-Saito 2006, L.-Saito 2015

Theorem: The moduli space of μ-semi-stable $\boldsymbol{\nu}$-parabolic connections (E, l, ∇) admits a GIT quotient $\operatorname{Con}_{\mu, \nu}^{s s}(C, D)$ which is quasi-projective and irreducible of dimension $2(4 g-3+n)$. It is holomorphic symplectic (on smooth locus). The bundle map

$$
\text { Bun : } \operatorname{Con}_{\mu, \nu}^{s s}(C, D) \rightarrow \operatorname{Bun}_{\mu, d}^{s s}(C, D) ;(E, l, \nabla) \mapsto(E, l)
$$

is Lagrangian with affine fibers.

Remarks:

1) locus of stable bundles/connections is open and smooth.
2) for generic weights $\boldsymbol{\mu}$, semi-stable \Rightarrow stable (\Rightarrow smooth)
3) $\operatorname{Bun}_{\boldsymbol{\mu}, \boldsymbol{d}}^{s s}(C, D)$ depends on $\boldsymbol{\mu}$, but not its birational type (wall-crossing)

Moving weights: geometry of quartic Del Pezzo surfaces

Fig. 2. Projective charts V, \hat{V}, and V_{i} 's and Del Pezzo geometry.
L.-Saito, IMRN 2015

Irregular parabolic bundle: (\leftrightarrow irregular connections) $D=n_{1}\left[t_{1}\right]+\cdots+n_{k}\left[t_{k}\right]$ effective on C

Consider D as a non reduced scheme, with structure sheaf $\mathcal{O}_{D}:=\mathcal{O} / \mathcal{O}(D)$.

Parabolic structure on a rank 2 vector bundle $E \rightarrow C$:
a line bundle $\left.\boldsymbol{l} \subset E\right|_{D}=E \otimes \mathcal{O}_{D}$. Denote $\boldsymbol{l}=\left(l_{1}, \ldots, l_{n}\right)$
$\rightsquigarrow(E, l)$ irregular quasi-parabolic bundle.

Stability condition: Fix weights $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right) \in[0,1]^{k}$

For a line bundle $L \subset E$, define:
$\operatorname{stab}_{L}(E, l)=\operatorname{deg}(E)-2 \operatorname{deg}(L)+\sum_{i=1}^{k}\left(n_{i}-2\left(\left.l_{i} \cdot L\right|_{n_{i}\left[t_{i}\right]}\right)\right) \mu_{i} \quad \in \mathbb{R}$
where $\left.l_{i} \cdot L\right|_{n_{i}\left[t_{i}\right]}:=$ intersection multiplicity $\in\left\{0,1, \ldots, n_{i}\right\}$.

Moduli spaces of irregular parabolic bundles

Yokogawa 93, Bhosle 96

Theorem: The moduli space of μ-semi-stable degree d irregular parabolic bundles (E, l) on (C, D) admits a GIT quotient $\operatorname{Bun}_{\mu, d}^{s s}(C, D)$ which is projective and irreducible of dimension $4 g-3+n\left(n=\sum_{k} n_{k}\right)$.
! Here, a more general definition of parabolic bundles is used (filtration of sheaves).

Example: Let $C=\mathbb{P}^{1}, D=n_{1}\left[t_{1}\right]+\cdots+n_{k}\left[t_{k}\right]$ and $n=\sum n_{i}$. Set $\mu_{1}=\ldots=\mu_{k}=: \mu$ and $\frac{1}{n}<\mu<\frac{1}{n-2}$.

Then $\operatorname{Bun}_{\mu,-1}^{s s}\left(\mathbb{P}^{1}, D\right)=\left\{\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1), l\right) ; l_{i} \cdot \mathcal{O}_{\mathbb{P}^{1}}=0\right\} \simeq \mathbb{P}^{n-3}$

Main chart $\operatorname{Bun}^{0}\left(\mathbb{P}^{1}, 2[0]+\left[t_{1}\right]+\left[t_{2}\right]+\left[t_{3}\right]\right) \simeq \mathbb{P}^{2}$

Special bundles in $\operatorname{Bun}^{0}\left(\mathbb{P}^{1}, 2[0]+\left[t_{1}\right]+\left[t_{2}\right]+\left[t_{3}\right]\right)$

Infinitesimally close bundles in $\mathfrak{B u n}\left(\mathbb{P}^{1}, 2[0]+\left[t_{1}\right]+\left[t_{2}\right]+\left[t_{3}\right]\right)$

Blowing-up the main chart $\operatorname{Bun}^{0}\left(\mathbb{P}^{1}, 2[0]+\left[t_{1}\right]+\left[t_{2}\right]+\left[t_{3}\right]\right)$

\rightsquigarrow Quartic Del Pezzo surface

New special bundles in $\mathfrak{B u n}\left(\mathbb{P}^{1}, 2[0]+\left[t_{1}\right]+\left[t_{2}\right]+\left[t_{3}\right]\right)$

More special bundles in $\mathfrak{B u n}\left(\mathbb{P}^{1}, 2[0]+\left[t_{1}\right]+\left[t_{2}\right]+\left[t_{3}\right]\right)$

Irregular elementary transformations

Irregular elementary transformations as composition of classical ones

Action of elementary transformations on lines

Automorphism group: $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2=\left\langle\right.$ elem $_{t_{1}+t_{2}}$, elem $_{t_{2}+t_{3}}$, elem $\left._{2[0]}\right\rangle$

Action of elementary transformations on lines

Automorphism group: $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2=\left\langle\right.$ elem $_{t_{1}+t_{2}}$, elem $_{t_{2}+t_{3}}$, elem $\left._{2[0]}\right\rangle$

Obrigado !

