# **Irregular parabolic bundles**

Frank Loray (CNRS / Univ Rennes 1)

COFECUB workshop

november 2021

a work in progress with Arata Komyo and Masa-Hiko Saito (Kobe Univ)

#### rank 2 parabolic bundles on curves

Fix  $D = t_1 + \cdots + t_n$  reduced divisor on a smooth curve C.

**Definition:** A rank 2 (quasi-)parabolic bundle on C is a pair (E, l) where:

- $E \rightarrow C$  rank 2 holomorphic vector bundle
- $l = (l_1, \ldots, l_n)$  a parabolic structure on E:  $l_i \subset E|_{t_i}$  linear 1-dim subspace

#### **Stability condition**

Fix weights 
$$\boldsymbol{\mu} = (\mu_1, \dots, \mu_n) \in [0, 1]^n$$

For a line bundle  $L \subset E$ , define:

$$\mathsf{stab}_L(E, \mathbf{l}) = \underbrace{\mathsf{deg}(E) - 2 \,\mathsf{deg}(L)}_{usual} + \sum_{L|t_i \neq l_i} \mu_i - \sum_{L|t_i = l_i} \mu_i \qquad \in \mathbb{R}$$

 $stab(E, l) = Inf \{ stab_L(E, l) ; L \subset E \text{ a line bundle} \} \in \mathbb{R}$ 

**Definition:** semi-stable (resp. stable)  $\Leftrightarrow$  stab  $\geq$  0 (resp. > 0)

### Moduli spaces of parabolic bundles

Mehta-Seshadri 80, Bhosle 89, Boden-Hu 95, Biswas-Holla-Kumar 2010, Araujo-Fassarella-Kaur-Massarenti 2021

**Theorem:** The moduli space of  $\mu$ -semi-stable degree d parabolic bundles  $(E, \mathbf{l})$  on (C, D) admits a GIT quotient  $\operatorname{Bun}_{\mu,d}^{ss}(C, D)$  which is projective and irreducible of dimension 4g - 3 + n (or empty).

### Moduli spaces of parabolic connections

Nitsure 93, Arinkin-Lysenko 97, Inaba-Iwasaki-Saito 2006, L.-Saito 2015

**Theorem:** The moduli space of  $\mu$ -semi-stable  $\nu$ -parabolic connections  $(E, l, \nabla)$  admits a GIT quotient  $\operatorname{Con}_{\mu,\nu}^{ss}(C,D)$  which is quasi-projective and irreducible of dimension 2(4g-3+n). It is holomorphic symplectic (on smooth locus). The bundle map

Bun :  $\operatorname{Con}_{\mu,\nu}^{ss}(C,D) \dashrightarrow \operatorname{Bun}_{\mu,d}^{ss}(C,D)$ ;  $(E,l,\nabla) \mapsto (E,l)$ 

is Lagrangian with affine fibers.

### **Remarks**:

- 1) locus of stable bundles/connections is open and smooth.
- 2) for generic weights  $\mu$ , semi-stable  $\Rightarrow$  stable ( $\Rightarrow$  smooth)
- 3)  $\operatorname{Bun}_{\mu,d}^{ss}(C,D)$  depends on  $\mu$ , but not its birational type (wall-crossing)

Moving weights: geometry of quartic Del Pezzo surfaces



**Fig. 2.** Projective charts V,  $\hat{V}$ , and  $V_i$ 's and Del Pezzo geometry.

L.-Saito, IMRN 2015

**Irregular parabolic bundle**: ( $\leftrightarrow$  irregular connections)  $D = n_1[t_1] + \cdots + n_k[t_k]$  effective on C

Consider D as a non reduced scheme, with structure sheaf  $\mathcal{O}_D := \mathcal{O}/\mathcal{O}(D)$ .

Parabolic structure on a rank 2 vector bundle  $E \to C$ : a line bundle  $l \subset E|_D = E \otimes \mathcal{O}_D$ . Denote  $l = (l_1, \ldots, l_n)$  $\rightsquigarrow (E, l)$  irregular quasi-parabolic bundle.

**Stability condition**: Fix weights  $\mu = (\mu_1, \dots, \mu_k) \in [0, 1]^k$ 

For a line bundle 
$$L \subset E$$
, define:  
stab<sub>L</sub>(E,  $l$ ) = deg(E) - 2 deg(L) +  $\sum_{i=1}^{k} \left( n_i - 2 \left( l_i \cdot L |_{n_i[t_i]} \right) \right) \mu_i \in \mathbb{R}$ 

where  $l_i \cdot L|_{n_i[t_i]}$  := intersection multiplicity  $\in \{0, 1, \dots, n_i\}$ .

#### Moduli spaces of irregular parabolic bundles

Yokogawa 93, Bhosle 96

**Theorem:** The moduli space of  $\mu$ -semi-stable degree d irregular parabolic bundles  $(E, \mathbf{l})$  on (C, D) admits a GIT quotient  $\operatorname{Bun}_{\mu,d}^{ss}(C, D)$  which is projective and irreducible of dimension 4g - 3 + n  $(n = \sum_k n_k)$ .

! Here, a more general definition of parabolic bundles is used (filtration of sheaves).

**Example:** Let  $C = \mathbb{P}^1$ ,  $D = n_1[t_1] + \cdots + n_k[t_k]$  and  $n = \sum n_i$ . Set  $\mu_1 = \ldots = \mu_k =: \mu$  and  $\frac{1}{n} < \mu < \frac{1}{n-2}$ .

Then  $\operatorname{Bun}_{\mu,-1}^{ss}(\mathbb{P}^1,D) = \left\{ (\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-1),l) \ ; \ l_i \cdot \mathcal{O}_{\mathbb{P}^1} = 0 \right\} \simeq \mathbb{P}^{n-3}$ 

# Main chart $Bun^0(\mathbb{P}^1, 2[0] + [t_1] + [t_2] + [t_3]) \simeq \mathbb{P}^2$





# **Special bundles in** $Bun^0(\mathbb{P}^1, 2[0] + [t_1] + [t_2] + [t_3])$





# **Special bundles in** $Bun^0(\mathbb{P}^1, 2[0] + [t_1] + [t_2] + [t_3])$



# **Special bundles in** $Bun^0(\mathbb{P}^1, 2[0] + [t_1] + [t_2] + [t_3])$





Infinitesimally close bundles in  $\mathfrak{Bun}(\mathbb{P}^1, 2[0] + [t_1] + [t_2] + [t_3])$ 



# **Blowing-up the main chart** $Bun^{0}(\mathbb{P}^{1}, 2[0] + [t_{1}] + [t_{2}] + [t_{3}])$



 $\rightsquigarrow$  Quartic Del Pezzo surface

# New special bundles in $\mathfrak{Bun}(\mathbb{P}^1, 2[0] + [t_1] + [t_2] + [t_3])$



## More special bundles in $\mathfrak{Bun}(\mathbb{P}^1, 2[0] + [t_1] + [t_2] + [t_3])$



## **Irregular elementary transformations**



## Irregular elementary transformations as composition of classical ones



## Action of elementary transformations on lines



Automorphism group:  $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 = \langle \text{elem}_{t_1+t_2}, \text{elem}_{t_2+t_3}, \text{elem}_{2[0]} \rangle$ 

## Action of elementary transformations on lines



Automorphism group:  $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 = \langle \text{elem}_{t_1+t_2}, \text{elem}_{t_2+t_3}, \text{elem}_{2[0]} \rangle$ 



Obrigado !