Degeneration of line bundles one divisors
along jambs of cores
(joint w/ Amini, Rodriguez, Santana, Santos and Vital)
Example: $\quad x y z+t F=0 \quad F$ general chic

Conyder the system cut out by lines.
How do the divisors degenerate as $t \rightarrow 0$?

How about $x=0$?

$$
\begin{aligned}
& x=0 \quad \Leftrightarrow \quad x=0 \\
& x y z+t F=0 \quad F=0
\end{aligned}
$$

How does this git with the others?
We many $8 x$ the speual wire $x y z=0$ and more the line:

$$
\begin{aligned}
& x-\beta(t) t y-x(t) t z=0 \\
& \longrightarrow \quad x=0 \\
& x y z=0
\end{aligned}
$$

We greed the line and let the wire rave, we feed the cure and let the line vary.

Now :

$$
\begin{aligned}
& x-\beta(t) t y-\gamma l(t) t z=0 \\
& x y Z+t F=0
\end{aligned} \quad \rightarrow \quad x=0
$$

We obtain a net of divizars on $X=0$ wot out by the system of cubs $\left\langle Y^{2} z, Y z^{2}, F\right\rangle$.

Picture:

Several qrestions?

1) Are these all lmets on divizors?
2) What is this surface?
3) $A \mathbb{P}^{n}$ of divisers gires r re to a map to \mathbb{R}^{n}. Do you see $x y z=0$ on the srrfere abore?
4) Let's rephrasc:

A \mathbb{P}^{n} of divises gires rre to a map to $\stackrel{\vee}{\mathrm{R}}$.

What is the dual to the abore swface??
5) Is there a geneval proture?

$$
\left[\begin{array}{cc}
1 & 0
\end{array}\right] \int_{\mathbb{C}^{3}}\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This is a quiver.
And we hure a 3 -dimil represatatus g of $t t$.
The assountad quirer Grassmannian of 1 -dimil sobspaces, $\mathbb{U P}(\mathrm{g})$, is the surjaie we huve drawn!

Its dival?

$$
\left\lfloor\mathbb{P}\left(g^{*}\right)!\right.
$$

Is rt isomorphre to $\operatorname{UP}(g)$?

We'll see...

Geneval theary!

- There are infuilely muny extenwens to 'f $X:=X(\theta)$ is reduable. An exknsen to is deternined by:
deg $(0 \mid \tilde{x})$ where $\vec{x}:=\tilde{x}(\theta)$.
- Given s_{η} there is a unique extensen 10 such that $Z\left(s_{b \mid \tilde{x}}\right)$ is fanite : it's the lmit en \bar{x} of $Z\left(s_{n}\right)$.
$\operatorname{deg}(b / \sqrt{x}):$

$$
v_{\tilde{x}} \xrightarrow[s_{L_{0}}]{s_{L^{\prime}}} \xrightarrow{\sum n_{E E}} \mathcal{L}^{\prime}
$$

where der $\left(\left.b^{\prime}\right|_{\bar{x}}\right)$ is admisuble.

$$
\begin{aligned}
& \Rightarrow \quad \omega_{x}=\pi_{x} \theta_{\tilde{x}} \xrightarrow{\pi_{*} s_{20}^{\prime}} \pi_{\alpha} d^{\prime} \quad \text { flat fanily } x \\
& \text { torsen-pree, rann-1 } \\
& \text { sheures } \\
& \theta_{x} \stackrel{S_{I}}{ } I:=\left.\pi_{\alpha} D^{1}\right|_{X}
\end{aligned}
$$

Sections of torsun-free rank-1 sheares cowropund to certain subschemes of X called psulo-divisors (Hartshorne)
$\theta_{x} \hookrightarrow I \quad \stackrel{\text { dwal }}{\Rightarrow} I^{*} \longleftrightarrow \theta_{x}$ shenj og rilealo or $Z\left(s_{I}\right)$.

The structure of the $I:\left(A_{m i n i},-\right)$

$$
\begin{aligned}
& V:=\{\text { irraducuble components of } x\}
\end{aligned}
$$

There is a demmpositun of $\mathrm{Hd}_{1} V$ in polytopes each corresponding to one I.

Exumple:

The sheaves I_{1}, I_{2}, I_{3} don't decompox as sums (they are simple!) but $I_{4}, I_{5}, I_{6}, I_{7}$ do: they are dexnerations of I_{2}, I_{2}, I_{3}.

Simple sheaks are easer to parameterte! But we could have that I is not sumple!

Then the polytope or I is in the boundang of a cevtion numbes of maxual dimensunal polynopes, corraponding to certan smple sheares $I_{2, \ldots} I_{m}$.

$$
\begin{aligned}
& \vartheta_{x} \xrightarrow[s_{j}]{s_{I}} I_{j} \rightarrow I_{j} \\
& I_{1}^{*} \oplus \cdots \oplus I_{m}^{*} \xrightarrow{\varphi} I^{*} \hookrightarrow \theta_{x}
\end{aligned}
$$

Clum: Y is sanjective!
(at least if $\# V=2$ (Suntana) or $\# V=3(-)$)
Cor: $z\left(s_{I}\right)=\bigcap_{j=2}^{m} z\left(s_{j}\right)$

There is a quires Q assouaced to the maxumal dinensisnal polyipes

A syslem or sectuons $V_{n} \subseteq H^{\circ}\left(x(n), L_{n}\right)$ degurvaites to a quires reprexatatuen g.

And a sectuen to a subrepreantation $h \subset g$ ye dimension 1.

The quives Q and repreantation g are specul.
Teo: (-, Santos, Vital): Assume x smooth, $\# V=3$
Given g and $h \leqslant g$:
a) h is generatad by a triangle
b) $\operatorname{LP}(g)$ is Cohen-Macarlay

Maps
Teo: $(-$, Rodrigrez $)$. Assume x smooth, $\# V=2$. Givan g :
a) $\operatorname{LP}\left(g^{*}\right)$ is Cohen-Macuollay
b) $X \cdots \operatorname{LiP}\left(g^{*}\right)$

Exumple:

In the example you dint see the limits of flexes just by loowng at the triangle embedded in \mathbb{P}^{2} ?

But you see them with the map to $U P\left(g^{x}\right)$!
(Madeiras, -): The limits of the flexes are the three inflection porib on each component of the triangle of the map to the correspineng f_{1}.

