The monodromy of meromorphic projective structures

Titouan Sérandour

IRMAR, Université de Rennes 1

August 27, 2021 CAPES-COFECUB workshop

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

S an infinitely differentiable compact real oriented surface.

Definition A (complex) projective structure \mathfrak{P} on S is

a maximal atlas $(U_i, \varphi_i : U_i \to V_i)$ on S, with $V_i \subset \mathbb{CP}^1$

such that $\varphi_{ij} := \varphi_i \circ \varphi_j^{-1} = a$ restriction of a $g \in Aut(\mathbb{P}^1) \simeq PGL(2, \mathbb{C}).$

S an infinitely differentiable compact real oriented surface.

Definition A (complex) projective structure \mathfrak{P} on S is

a maximal atlas $(U_i, \varphi_i : U_i \to V_i)$ on S, with $V_i \subset \mathbb{CP}^1$

such that $\varphi_{ij} := \varphi_i \circ \varphi_j^{-1} = a$ restriction of a $g \in \operatorname{Aut}(\mathbb{P}^1) \simeq \operatorname{PGL}(2, \mathbb{C}).$

The atlas induces a complex structure on S, denoted C.

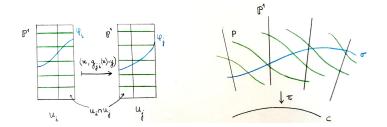
Let \mathfrak{P} be a projective structure. Then, $\varphi_{ik} \circ \varphi_{kj} = \varphi_{ij}$. We define cocycles

$$egin{array}{lll} g_{ij}: U_i \cap U_j \longrightarrow \mathsf{PGL}(2,\mathbb{C}) \ x\longmapsto g_{ij}(x) ext{ whose restriction equals } arphi_{ij} \end{array}$$

Let \mathfrak{P} be a projective structure. Then, $\varphi_{ik} \circ \varphi_{kj} = \varphi_{ij}$. We define cocycles

$$g_{ij}: U_i \cap U_j \longrightarrow \mathsf{PGL}(2, \mathbb{C})$$

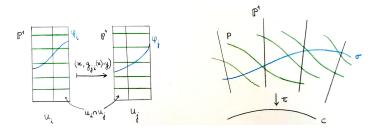
 $x \longmapsto g_{ij}(x)$ whose restriction equals φ_{ij}



Let \mathfrak{P} be a projective structure. Then, $\varphi_{ik} \circ \varphi_{kj} = \varphi_{ij}$. We define cocycles

$$g_{ij}: U_i \cap U_j \longrightarrow \mathsf{PGL}(2, \mathbb{C})$$

 $x \longmapsto g_{ij}(x)$ whose restriction equals φ_{ij}



This defines a triple $(\pi : P \to C, \mathcal{F}, \sigma)$, where

- $\pi: P \to C$ is a holomorphic \mathbb{P}^1 -bundle,
- \mathcal{F} is a Riccati foliation on P,

• $\sigma: C \to P$ is a holomorphic section of π , transverse to \mathcal{F} . And vice versa. Definition: The monodromy map

$$\begin{array}{c} \mathcal{P}_{\mathcal{S}} \xrightarrow{\operatorname{Mon}_{\mathcal{S}}} \mathcal{R}_{\mathcal{S}} := \operatorname{Hom}(\pi_{1}(\mathcal{S}), \operatorname{PGL}(2, \mathbb{C})) \\ \downarrow \\ \mathcal{T}_{\mathcal{S}} \end{array} \\ \end{array}$$

Definition: The monodromy map

$$\begin{array}{c} \mathcal{P}_{S} \xrightarrow{\operatorname{Mon}_{S}} \mathcal{R}_{S} := \operatorname{Hom}(\pi_{1}(S), \operatorname{PGL}(2, \mathbb{C})) / \operatorname{PGL}(2, \mathbb{C}) \\ \downarrow \\ \\ \mathcal{T}_{S} \end{array}$$

 \mathcal{P}_S : the set of isomorphism classes of **marked** projective structures on S.

$$\begin{split} \mathfrak{P}_1 \sim \mathfrak{P}_2 \Leftrightarrow \exists \Phi: S \to S \text{ a } \mathcal{C}^\infty\text{-diffeomorphism isotopic to id}_S \text{ such} \\ \text{that } \forall \varphi_1 \; \exists g \in \mathsf{PGL}(2,\mathbb{C}) \text{ such that } g \circ \varphi_2 = \varphi_1 \circ \Phi \end{split}$$

Definition: The monodromy map

$$\begin{array}{c} \mathcal{P}_{S} \xrightarrow{\operatorname{Mon}_{S}} \mathcal{R}_{S} := \operatorname{Hom}(\pi_{1}(S), \operatorname{PGL}(2, \mathbb{C})) / \operatorname{PGL}(2, \mathbb{C}) \\ \downarrow \\ \\ \mathcal{T}_{S} \end{array}$$

 \mathcal{P}_S : the set of isomorphism classes of **marked** projective structures on S.

$$\begin{split} \mathfrak{P}_1 \sim \mathfrak{P}_2 \Leftrightarrow \exists \Phi: S \to S \text{ a } \mathcal{C}^\infty\text{-diffeomorphism isotopic to id}_S \text{ such} \\ \text{that } \forall \varphi_1 \; \exists g \in \mathsf{PGL}(2,\mathbb{C}) \text{ such that } g \circ \varphi_2 = \varphi_1 \circ \Phi \end{split}$$

Complex structures on the domain and range of Mon₅?

Fact

Fibers of $\mathcal{P}_S \to \mathcal{T}_S$ are affine spaces for the vector space $H^0(C, T^*C^{\otimes 2})$ of quadratic differentials.

Fact

Fibers of $\mathcal{P}_S \to \mathcal{T}_S$ are affine spaces for the vector space $H^0(C, T^*C^{\otimes 2})$ of **quadratic differentials**.

 $\begin{array}{l} (\rightarrow) \ \mathfrak{P}_1, \mathfrak{P}_2 \ \text{projective structures on a fixed } C \\ z_1, \, z_2 \ \text{corresponding projective coordinates, } \psi := z_2 \circ z_1^{-1} \end{array}$

$$\mathfrak{P}_1-\mathfrak{P}_2=\phi_{z_1}:=rac{\mathcal{S}_{z_1}(\psi)}{2}dz_1^{\otimes 2}$$
 (Schwarzian derivative)

Fact

Fibers of $\mathcal{P}_S \to \mathcal{T}_S$ are affine spaces for the vector space $H^0(C, T^*C^{\otimes 2})$ of **quadratic differentials**.

 $(\rightarrow) \ \mathfrak{P}_1, \mathfrak{P}_2$ projective structures on a fixed C z_1, z_2 corresponding projective coordinates, $\psi := z_2 \circ z_1^{-1}$

$$\mathfrak{P}_1 - \mathfrak{P}_2 = \phi_{z_1} := rac{\mathcal{S}_{z_1}(\psi)}{2} dz_1^{\otimes 2}$$
 (Schwarzian derivative)

$$\begin{array}{l} (\leftarrow) \ \mathfrak{P}_1 \ \text{projective structure on a fixed } C \\ \phi_{z_1} := \frac{q(z_1)}{2} dz_1^{\otimes 2} \end{array}$$

$$\begin{split} \mathfrak{P}_2 &:= \mathfrak{P}_1 + \phi : \text{charts are the solutions of } \mathcal{S}_{z_1}(\varphi) = q(z_1) \\ \Leftrightarrow \text{charts are the quotients of independent solutions} \end{split}$$

of
$$y'' + \frac{q(z_1)}{2}y = 0.$$

•
$$\mathcal{P}_C \stackrel{\text{Fact}}{=} H^0(C, T^*C^{\otimes 2}) \simeq \mathbb{C}^{3g-3}$$
 (Gunning 1967);

• dim_{$$\mathbb{C}$$} $\mathcal{T}_S = 3g - 3$.

⇒ A complex structure of dimension 6g - 6 is brought on \mathcal{P}_S via its identification with \mathcal{Q}_S , the holomorphic cotangent bundle of the Teichmüller space of *S*, with fiber space $H^0(C, K_C^{\otimes 2})$ (Hubbard 1981).

•
$$\mathcal{P}_C \stackrel{\text{Fact}}{=} H^0(C, T^*C^{\otimes 2}) \simeq \mathbb{C}^{3g-3}$$
 (Gunning 1967);

• dim_{$$\mathbb{C}$$} $\mathcal{T}_S = 3g - 3$.

⇒ A complex structure of dimension 6g - 6 is brought on \mathcal{P}_S via its identification with \mathcal{Q}_S , the holomorphic cotangent bundle of the Teichmüller space of S, with fiber space $H^0(C, K_C^{\otimes 2})$ (Hubbard 1981).

 $g \ge 2 \Rightarrow$ the monodromy representation is irreducible.

 \Rightarrow Complex structure of dimension 6g - 6 on $\mathcal{R}_S^{\text{irr}}$.

•
$$\mathcal{P}_C \stackrel{\text{Fact}}{=} H^0(C, T^*C^{\otimes 2}) \simeq \mathbb{C}^{3g-3}$$
 (Gunning 1967);

• dim_{$$\mathbb{C}$$} $\mathcal{T}_S = 3g - 3$.

⇒ A complex structure of dimension 6g - 6 is brought on \mathcal{P}_S via its identification with \mathcal{Q}_S , the holomorphic cotangent bundle of the Teichmüller space of S, with fiber space $H^0(C, K_C^{\otimes 2})$ (Hubbard 1981).

 $g \ge 2 \Rightarrow$ the monodromy representation is irreducible.

 \Rightarrow Complex structure of dimension 6g - 6 on \mathcal{R}_{S}^{irr} .

Theorem (Hejhal 1975, Earle, Hubbard 1981) If $g \ge 2$, Mon_S : $\mathcal{P}_S \to \mathcal{R}_S^{irr}$ is a **local biholomorphism**.

•
$$\mathcal{P}_C \stackrel{\text{Fact}}{=} H^0(C, T^*C^{\otimes 2}) \simeq \mathbb{C}^{3g-3}$$
 (Gunning 1967);

• dim_{$$\mathbb{C}$$} $\mathcal{T}_S = 3g - 3$.

⇒ A complex structure of dimension 6g - 6 is brought on \mathcal{P}_S via its identification with \mathcal{Q}_S , the holomorphic cotangent bundle of the Teichmüller space of S, with fiber space $H^0(C, K_C^{\otimes 2})$ (Hubbard 1981).

 $g \ge 2 \Rightarrow$ the monodromy representation is irreducible.

 \Rightarrow Complex structure of dimension 6g - 6 on \mathcal{R}_{S}^{irr} .

Theorem (Hejhal 1975, Earle, Hubbard 1981) If $g \ge 2$, Mon_S : $\mathcal{P}_S \to \mathcal{R}_S^{irr}$ is a **local biholomorphism**.

Our aim is to generalise this result for projective structures with poles.

C a complex curve.

Definition

A meromorphic projective structure on *C* is a projective structure \mathfrak{P}^* on the complement $C^* = C \setminus \Sigma$ of a finite subset $\Sigma \subset C$, such that given a holomorphic projective structure \mathfrak{P}_0 on *C*, the quadratic differential $\phi = \mathfrak{P}^* - \mathfrak{P}_{0|C^*}$ on C^* extends to a meromorphic quadratic differential on *C*.

C a complex curve.

Definition

A meromorphic projective structure on *C* is a projective structure \mathfrak{P}^* on the complement $C^* = C \setminus \Sigma$ of a finite subset $\Sigma \subset C$, such that given a holomorphic projective structure \mathfrak{P}_0 on *C*, the quadratic differential $\phi = \mathfrak{P}^* - \mathfrak{P}_{0|C^*}$ on *C** extends to a meromorphic quadratic differential on *C*.

• Pole orders are well defined (does not depend on \mathfrak{P}_0).

Example Every hypergeometric equation

$$z(z-1)y'' + [(lpha + eta + 1)z - \gamma]y' + lphaeta y = 0$$
, with $lpha, eta, \gamma \in \mathbb{C}$

induce a projective structure on \mathbb{P}^1 with 3 poles of orders ≤ 2 .

Example Every hypergeometric equation

$$z(z-1)y'' + [(lpha + eta + 1)z - \gamma]y' + lphaeta y = 0$$
, with $lpha, eta, \gamma \in \mathbb{C}$

induce a projective structure on \mathbb{P}^1 with 3 poles of orders ≤ 2 .

By a change of variable not affecting the set of quotients of independant solutions, we can put this equation into a unique **reduced form** $y'' + \frac{q(z)}{2}y = 0$.

<ロト < 部ト < 言ト < 言ト 差 の < @ 8/17

Example Every hypergeometric equation

$$z(z-1)y'' + [(lpha + eta + 1)z - \gamma]y' + lphaeta y = 0, \text{ with } lpha, eta, \gamma \in \mathbb{C}$$

induce a projective structure on \mathbb{P}^1 with 3 poles of orders ≤ 2 .

By a change of variable not affecting the set of quotients of independant solutions, we can put this equation into a unique **reduced form** $y'' + \frac{q(z)}{2}y = 0$.

Projective charts take the form

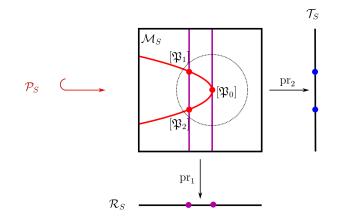
$$\varphi(x) = f(x)^{\theta} \text{ or } \varphi(x) = f(x)^{\theta} + \log(f(x))$$

with $\theta \in \mathbb{C}$ and f a local coordinate around a singularity x_0 , $f(x_0) = 0$.

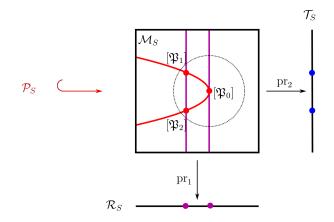
Theorem (Hejhal 1975, Earle, Hubbard 1981) If $g \ge 2$, Mon_S : $\mathcal{P}_S \to \mathcal{R}_S^{irr}$ is a local biholomorphism.

9/17

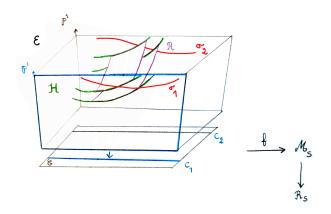
Idea of the proof (local injectivity, case without poles) $\mathcal{M}_{S} = \{(\pi : P \to C, \mathcal{F})\}$ moduli space of holomorphic connections. $\mathcal{P}_{S} = \{(\pi : P \to C, \mathcal{F}, \sigma)\}$ Idea of the proof (local injectivity, case without poles) $\mathcal{M}_{S} = \{(\pi : P \to C, \mathcal{F})\}$ moduli space of holomorphic connections. $\mathcal{P}_{S} = \{(\pi : P \to C, \mathcal{F}, \sigma)\}$



<ロト < 部ト < 差ト < 差ト 差 の Q (~ 10/17 Idea of the proof (local injectivity, case without poles) $\mathcal{M}_{S} = \{(\pi : P \to C, \mathcal{F})\}$ moduli space of holomorphic connections. $\mathcal{P}_{S} = \{(\pi : P \to C, \mathcal{F}, \sigma)\}$

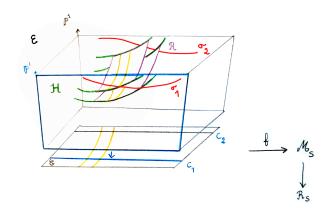


Local injectivity of $Mon_S \Leftrightarrow$ **transversality** of \mathcal{P}_S with respect to the fibers of the projection pr_1 on \mathcal{R}_S .



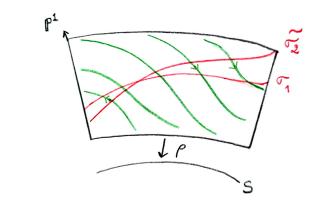
Along isomonodromic deformations, there exists a codimension one foliation \mathcal{R} on \mathcal{E} (Heu, 2010).

This allows to lift the \mathcal{C}^∞ trivialization of the family $\mathcal C$ of curves.



Along isomonodromic deformations, there exists a codimension one foliation \mathcal{R} on \mathcal{E} (Heu, 2010).

This allows to lift the \mathcal{C}^∞ trivialization of the family $\mathcal C$ of curves.



" $\Phi = \rho \circ h_{\mathsf{tub}} \circ \tilde{\sigma_2}$ " (modulo the trivialization above).

Proof in the meromorphic case

- Spaces corresponding to \mathcal{P}_S and \mathcal{R}_S where defined by (Allegretti/Bridgeland 2020);
- The space $\mathcal{M}_{S}^{\text{mero}}$ of meromorphic connexions exists and is a complex manifold (Inaba 2016, 2021);
- The foliation \mathcal{R} still exists (Heu 2010).

S an oriented smooth compact real surface of genus g. $\Sigma = \{p_i\}_{1 \le i \le n} \text{ a finite subset of } S. \ \{n_i\}_{1 \le i \le n} \text{ a collection of integers.}$

Statement (work with Frank) If $N = 3g - 3 + \sum_{i=1}^{n} \lceil \frac{n_i}{2} \rceil > 0$, then the **generalised monodromy map** of (Allegretti/Bridgeland 2020)

$$\mathsf{Mon}:\mathcal{P}(S,\{n_i\})\longrightarrow\mathcal{R}(S,\{n_i\})$$

is a local biholomorphism.

 $\mathcal{P}(S, \{n_i\})$: with no apparent singularity.

S an oriented smooth compact real surface of genus g. $\Sigma = \{p_i\}_{1 \le i \le n} \text{ a finite subset of } S. \ \{n_i\}_{1 \le i \le n} \text{ a collection of integers.}$

Statement (work with Frank) If $N = 3g - 3 + \sum_{i=1}^{n} \lceil \frac{n_i}{2} \rceil > 0$, then the **generalised monodromy map** of (Allegretti/Bridgeland 2020)

$$\mathsf{Mon}:\mathcal{P}(S,\{n_i\})\longrightarrow\mathcal{R}(S,\{n_i\})$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト □ 臣 □ 約

is a local biholomorphism.

 $\mathcal{P}(S, \{n_i\})$: with no apparent singularity.

• Holomorphy (Allegretti/Bridgeland 2020)

S an oriented smooth compact real surface of genus g. $\Sigma = \{p_i\}_{1 \le i \le n} \text{ a finite subset of } S. \ \{n_i\}_{1 \le i \le n} \text{ a collection of integers.}$

Statement (work with Frank) If $N = 3g - 3 + \sum_{i=1}^{n} \lceil \frac{n_i}{2} \rceil > 0$, then the **generalised monodromy map** of (Allegretti/Bridgeland 2020)

$$\mathsf{Mon}:\mathcal{P}(S,\{n_i\})\longrightarrow\mathcal{R}(S,\{n_i\})$$

is a local biholomorphism.

 $\mathcal{P}(S, \{n_i\})$: with no apparent singularity.

• Holomorphy (Allegretti/Bridgeland 2020)

The statement is already known when

- \bullet all poles have order ≤ 2 with loxodromic local monodromy (Luo 1993);
- all poles have order ≤ 2 with parabolic local monodromy and some specific residues (Hussenot Desenonges 2019);
- all poles have order \geq 3 (Gupta/Mj 2020).

Thank you for your attention!

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 17/17