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S an infinitely differentiable compact real oriented surface.

Definition
A (complex) projective structure P on S is

a maximal atlas (Ui , ϕi : Ui → Vi ) on S , with Vi ⊂ CP1

such that
ϕij := ϕi ◦ ϕ−1j = a restriction of a g ∈ Aut(P1) ' PGL(2,C).

y The atlas induces a complex structure on S , denoted C .

2/17



S an infinitely differentiable compact real oriented surface.

Definition
A (complex) projective structure P on S is

a maximal atlas (Ui , ϕi : Ui → Vi ) on S , with Vi ⊂ CP1

such that
ϕij := ϕi ◦ ϕ−1j = a restriction of a g ∈ Aut(P1) ' PGL(2,C).

y The atlas induces a complex structure on S , denoted C .

2/17



Let P be a projective structure. Then, ϕik ◦ ϕkj = ϕij .

We define cocycles

gij : Ui ∩ Uj −→ PGL(2,C)

x 7−→ gij(x) whose restriction equals ϕij

This defines a triple (π : P → C ,F , σ), where

π : P → C is a holomorphic P1-bundle,

F is a Riccati foliation on P,

σ : C → P is a holomorphic section of π, transverse to F .

And vice versa.
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Definition: The monodromy map

PS RS := Hom(π1(S),PGL(2,C))�PGL(2,C)

TS

MonS

PS : the set of isomorphism classes of marked projective structures
on S .

P1 ∼ P2 ⇔∃Φ : S → S a C∞-diffeomorphism isotopic to idS such

that ∀ϕ1 ∃g ∈ PGL(2,C) such that g ◦ ϕ2 = ϕ1 ◦ Φ

Complex structures on the domain and range of MonS?
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Fact
Fibers of PS → TS are affine spaces for the vector space
H0(C ,T ∗C⊗2) of quadratic differentials.

(→) P1,P2 projective structures on a fixed C
z1, z2 corresponding projective coordinates, ψ := z2 ◦ z−11

P1 −P2 = φz1 :=
Sz1(ψ)

2
dz⊗21 (Schwarzian derivative)

(←) P1 projective structure on a fixed C

φz1 := q(z1)
2 dz⊗21

P2 := P1 + φ : charts are the solutions of Sz1(ϕ) = q(z1)

⇔ charts are the quotients of independent solutions

of y ′′ +
q(z1)

2
y = 0.
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Case where S of genus g ≥ 2

PC
Fact
= H0(C ,T ∗C⊗2) ' C3g−3 (Gunning 1967);

dimC TS = 3g − 3.

⇒ A complex structure of dimension 6g − 6 is brought on PS via
its identification with QS , the holomorphic cotangent bundle of the
Teichmüller space of S , with fiber space H0(C ,K⊗2C ) (Hubbard
1981).

g ≥ 2⇒ the monodromy representation is irreducible.

⇒ Complex structure of dimension 6g − 6 on Rirr
S .

Theorem (Hejhal 1975, Earle, Hubbard 1981)
If g ≥ 2, MonS : PS → Rirr

S is a local biholomorphism.

Our aim is to generalise this result for projective structures
with poles.
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C a complex curve.

Definition
A meromorphic projective structure on C is a projective
structure P∗ on the complement C ∗ = C r Σ of a finite subset
Σ ⊂ C , such that given a holomorphic projective structure P0 on
C , the quadratic differential φ = P∗ −P0|C∗ on C ∗ extends to a
meromorphic quadratic differential on C .

y Pole orders are well defined (does not depend on P0).
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Example
Every hypergeometric equation

z(z − 1)y ′′ + [(α + β + 1)z − γ]y ′ + αβy = 0, with α, β, γ ∈ C

induce a projective structure on P1 with 3 poles of orders ≤ 2.

By a change of variable not affecting the set of quotients of
independant solutions, we can put this equation into a unique
reduced form y ′′ + q(z)

2 y = 0.

Projective charts take the form

ϕ(x) = f (x)θ or ϕ(x) = f (x)θ + log(f (x))

with θ ∈ C and f a local coordinate around a singularity x0,
f (x0) = 0.
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Theorem (Hejhal 1975, Earle, Hubbard 1981)
If g ≥ 2, MonS : PS → Rirr

S is a local biholomorphism.
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Idea of the proof (local injectivity, case without poles)
MS = {(π : P → C ,F)} moduli space of holomorphic connections.

PS = {(π : P → C ,F , σ)}

Local injectivity of MonS ⇔ transversality of PS with respect to
the fibers of the projection pr1 on RS .
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Along isomonodromic deformations, there exists a codimension
one foliation R on E (Heu, 2010).

This allows to lift the C∞ trivialization of the family C of curves.
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”Φ = ρ ◦ htub ◦ σ̃2” (modulo the trivialization above).
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Proof in the meromorphic case

Spaces corresponding to PS and RS where defined by
(Allegretti/Bridgeland 2020);

The space Mmero
S of meromorphic connexions exists and is a

complex manifold (Inaba 2016, 2021);

The foliation R still exists (Heu 2010).
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S an oriented smooth compact real surface of genus g .
Σ = {pi}1≤i≤n a finite subset of S . {ni}1≤i≤n a collection of integers.

Statement (work with Frank)
If N = 3g − 3 +

∑n
i=1d

ni
2 e > 0, then the generalised monodromy

map of (Allegretti/Bridgeland 2020)

Mon : P(S , {ni}) −→ R(S , {ni})

is a local biholomorphism.

P(S , {ni}): with no apparent singularity.

Holomorphy (Allegretti/Bridgeland 2020)

The statement is already known when

all poles have order ≤ 2 with loxodromic local monodromy
(Luo 1993);

all poles have order ≤ 2 with parabolic local monodromy and
some specific residues (Hussenot Desenonges 2019);

all poles have order ≥ 3 (Gupta/Mj 2020).
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Thank you for your attention!
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