NUMERICAL CHARACTERIZATION OF SOME TORIC FIBER BUNDLE

Stéphane Druel

CNRS - Université Claude Bernard Lyon 1

June 25, 2021

STÉPHANE DRUEL (CNRS - ICJ)

ON SOME TORIC FIBER BUNDLES

ъ JUNE 25, 2021 1/14

æ

・ロト ・回ト ・ヨト

Joint with F. Lo Bianco

June 25, 2021 2 / 14

æ

・ロト ・四ト ・モト ・モン

(X, D) log smooth complex analytic space $(n := \dim X)$

 $T_X(-\log D) \subseteq T_X = \operatorname{Der}_{\mathbb{C}}(\mathscr{O}_X)$ (logarithmic tangent sheaf) subsheaf consisting of those derivations that preserve the ideal sheaf $\mathscr{O}_X(-D) \rightsquigarrow T_X(-\log D)$ is a locally free sheaf of Lie subalgebras of T_X

If D is defined at x by the equation $x_1 \cdots x_k = 0$, then a local basis of $T_X(-\log D)$

$$x_1 \frac{\partial}{\partial x_1}, \dots, x_k \frac{\partial}{\partial x_k}, \frac{\partial}{\partial x_{k+1}}, \dots, \frac{\partial}{\partial x_n}$$

 $T_X(-\log D)$ can be identified with the subsheaf of T_X containing those vector fields that are tangent to D at smooth points of D

(X, D) log smooth complex analytic space $(n := \dim X)$

 $T_X(-\log D) \subseteq T_X = \operatorname{Der}_{\mathbb{C}}(\mathscr{O}_X)$ (logarithmic tangent sheaf) subsheaf consisting of those derivations that preserve the ideal sheaf $\mathscr{O}_X(-D) \rightsquigarrow T_X(-\log D)$ is a locally free sheaf of Lie subalgebras of T_X

If D is defined at x by the equation $x_1 \cdots x_k = 0$, then a local basis of $T_X(-\log D)$

$$x_1 \frac{\partial}{\partial x_1}, \dots, x_k \frac{\partial}{\partial x_k}, \frac{\partial}{\partial x_{k+1}}, \dots, \frac{\partial}{\partial x_n}$$

 $T_X(-\log D)$ can be identified with the subsheaf of T_X containing those vector fields that are tangent to D at smooth points of D

(X, D) log smooth complex analytic space $(n := \dim X)$

 $T_X(-\log D) \subseteq T_X = \operatorname{Der}_{\mathbb{C}}(\mathscr{O}_X)$ (logarithmic tangent sheaf) subsheaf consisting of those derivations that preserve the ideal sheaf $\mathscr{O}_X(-D) \rightsquigarrow T_X(-\log D)$ is a locally free sheaf of Lie subalgebras of T_X

If D is defined at x by the equation $x_1 \cdots x_k = 0$, then a local basis of $T_X(-\log D)$

$$x_1 \frac{\partial}{\partial x_1}, \dots, x_k \frac{\partial}{\partial x_k}, \frac{\partial}{\partial x_{k+1}}, \dots, \frac{\partial}{\partial x_n}$$

 $T_X(-\log D)$ can be identified with the subsheaf of T_X containing those vector fields that are tangent to D at smooth points of D

Example 1: (T, 0) where T is a complex torus

Example 2: pairs (X, D) where X is a smooth toric variety with boundary divisor $D X \setminus D \cong (\mathbb{C}^*)^n$ and $(\mathbb{C}^*)^n$ acts on X

 \rightsquigarrow Lie $((\mathbb{C}^*)^n) \subseteq H^0(X, T_X(-\log D))$ and Lie $((\mathbb{C}^*)^n) \otimes \mathscr{O}_X \cong T_X(-\log D)$

In general (Wang 1954 if D = 0, Winkelmann 2004), $G := \operatorname{Aut}(X, D)^0$ is a connected complex Lie group of dimension n which is an extension

$$1 \to (\mathbb{C}^*)^d \to G \to T \to 1$$

where T is a complex torus

The Albanese map $X \to \text{Alb}(X)$ is a smooth locally trivial fibration with typical fiber F being a toric variety with boundary divisor $D_{|F}$.

 \rightsquigarrow toric fiber bundles over abelian varieties

Example 1: (T, 0) where T is a complex torus

Example 2: pairs (X, D) where X is a smooth toric variety with boundary divisor D $X \setminus D \cong (\mathbb{C}^*)^n$ and $(\mathbb{C}^*)^n$ acts on X

 $\rightsquigarrow \operatorname{Lie}((\mathbb{C}^*)^n) \subseteq H^0(X, T_X(-\log D)) \text{ and } \operatorname{Lie}((\mathbb{C}^*)^n) \otimes \mathscr{O}_X \cong T_X(-\log D)$

In general (Wang 1954 if D = 0, Winkelmann 2004), $G := \operatorname{Aut}(X, D)^0$ is a connected complex Lie group of dimension n which is an extension

$$1 \to (\mathbb{C}^*)^d \to G \to T \to 1$$

where T is a complex torus

The Albanese map $X \to \text{Alb}(X)$ is a smooth locally trivial fibration with typical fiber F being a toric variety with boundary divisor $D_{|F}$.

 \rightsquigarrow toric fiber bundles over abelian varieties

Example 1: (T, 0) where T is a complex torus

Example 2: pairs (X, D) where X is a smooth toric variety with boundary divisor $D X \setminus D \cong (\mathbb{C}^*)^n$ and $(\mathbb{C}^*)^n$ acts on X

 $\rightsquigarrow \operatorname{Lie}((\mathbb{C}^*)^n) \subseteq H^0(X, T_X(-\log D)) \text{ and } \operatorname{Lie}((\mathbb{C}^*)^n) \otimes \mathscr{O}_X \cong T_X(-\log D)$

In general (Wang 1954 if D = 0, Winkelmann 2004), $G := \operatorname{Aut}(X, D)^0$ is a connected complex Lie group of dimension n which is an extension

$$1 \to (\mathbb{C}^*)^d \to G \to T \to 1$$

where T is a complex torus

The Albanese map $X \to \text{Alb}(X)$ is a smooth locally trivial fibration with typical fiber F being a toric variety with boundary divisor $D_{|F}$.

 \rightsquigarrow toric fiber bundles over abelian varieties

Example 1: (T, 0) where T is a complex torus

Example 2: pairs (X, D) where X is a smooth toric variety with boundary divisor $D X \setminus D \cong (\mathbb{C}^*)^n$ and $(\mathbb{C}^*)^n$ acts on X

 $\rightsquigarrow \operatorname{Lie}((\mathbb{C}^*)^n) \subseteq H^0(X, T_X(-\log D)) \text{ and } \operatorname{Lie}((\mathbb{C}^*)^n) \otimes \mathscr{O}_X \cong T_X(-\log D)$

In general (Wang 1954 if D = 0, Winkelmann 2004), $G := \operatorname{Aut}(X, D)^0$ is a connected complex Lie group of dimension n which is an extension

$$1 \to (\mathbb{C}^*)^d \to G \to T \to 1$$

where T is a complex torus

The Albanese map $X \to \text{Alb}(X)$ is a smooth locally trivial fibration with typical fiber F being a toric variety with boundary divisor $D_{|F}$.

 \rightsquigarrow toric fiber bundles over abelian varieties

Example 1: (T, 0) where T is a complex torus

Example 2: pairs (X, D) where X is a smooth toric variety with boundary divisor $D X \setminus D \cong (\mathbb{C}^*)^n$ and $(\mathbb{C}^*)^n$ acts on X

 $\rightsquigarrow \operatorname{Lie}((\mathbb{C}^*)^n) \subseteq H^0(X, T_X(-\log D)) \text{ and } \operatorname{Lie}((\mathbb{C}^*)^n) \otimes \mathscr{O}_X \cong T_X(-\log D)$

In general (Wang 1954 if D = 0, Winkelmann 2004), $G := Aut(X, D)^0$ is a connected complex Lie group of dimension n which is an extension

$$1 \to (\mathbb{C}^*)^d \to G \to T \to 1$$

where T is a complex torus

The Albanese map $X \to \text{Alb}(X)$ is a smooth locally trivial fibration with typical fiber F being a toric variety with boundary divisor $D_{|F}$.

 \leadsto toric fiber bundles over abelian varieties

DEFINITION

A vector bundle $\mathscr E$ of positive rank is called numerically flat if $\mathscr E$ and $\mathscr E^*$ are nef.

If D = 0, then X is covered by a complex torus, as a classical consequence of Yau's theorem on the existence of a Kähler-Einstein metric.

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathbb{P}^1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

A numerically flat vector bundle is R-flat. The converse holds true if X is rationally chain connected.

DEFINITION

A vector bundle $\mathscr E$ of positive rank is called numerically flat if $\mathscr E$ and $\mathscr E^*$ are nef.

If D = 0, then X is covered by a complex torus, as a classical consequence of Yau's theorem on the existence of a Kähler-Einstein metric.

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathfrak{p}_1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

A numerically flat vector bundle is R-flat. The converse holds true if X is rationally chain connected.

DEFINITION

A vector bundle $\mathscr E$ of positive rank is called numerically flat if $\mathscr E$ and $\mathscr E^*$ are nef.

If D = 0, then X is covered by a complex torus, as a classical consequence of Yau's theorem on the existence of a Kähler-Einstein metric.

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathbb{P}^1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

A numerically flat vector bundle is R-flat. The converse holds true if X is rationally chain connected.

DEFINITION

A vector bundle $\mathscr E$ of positive rank is called numerically flat if $\mathscr E$ and $\mathscr E^*$ are nef.

If D = 0, then X is covered by a complex torus, as a classical consequence of Yau's theorem on the existence of a Kähler-Einstein metric.

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathbb{P}^1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

A numerically flat vector bundle is R-flat. The converse holds true if X is rationally chain connected.

STATEMENT OF MAIN RESULTS

Theorem

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $K_X + D \equiv 0$ and that $T_X(-\log D)$ is R-flat.

There exist a smooth morphism with connected fibers $a: X \to T$ onto a smooth projective variety T such that:

- $\bullet K_T \equiv 0;$
- P The fibration (X, D) → T is locally trivial for the analytic topology and any fiber F of the map a is a smooth toric variety with boundary divisor D_{|F};
- **3** T contains no rational curve.

Conversely, let $(X, D) \to T$ is a toric fiber bundle over a projective manifold T with $K_T \equiv 0$. Suppose in addition that T contains no rational curve. Then $T_X(-\log D)$ is obviously R-flat. Moreover, $K_X + D \equiv 0$ (\exists finite étale quasi-sections).

Theorem

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $K_X + D \equiv 0$ and that $T_X(-\log D)$ is R-flat.

There exist a smooth morphism with connected fibers $a: X \to T$ onto a smooth projective variety T such that:

- $\bullet K_T \equiv 0;$
- P The fibration (X, D) → T is locally trivial for the analytic topology and any fiber F of the map a is a smooth toric variety with boundary divisor D_{|F};
- 3 T contains no rational curve.

Conversely, let $(X, D) \to T$ is a toric fiber bundle over a projective manifold T with $K_T \equiv 0$. Suppose in addition that T contains no rational curve. Then $T_X(-\log D)$ is obviously R-flat. Moreover, $K_X + D \equiv 0$ (\exists finite étale quasi-sections).

Remark

In the setup of the theorem, we expect T to be a torus quotient \rightsquigarrow numerical characterization of toric fiber bundles over torus quotients

Indeed, by the Beauville-Bogomolov decomposition theorem, T admits a finite étale cover that decomposes into the product of an abelian variety and a simply-connected Calabi-Yau manifold. On the other hand, a folklore conjecture asserts that any projective Calabi-Yau manifold contains a rational curve.

COROLLARY

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $T_X(-\log D)$ is numerically flat.

Then there is a smooth morphism $a: X \to T$ with connected fibers onto a **torus** quotient T. The fibration $(X, D) \to T$ is locally trivial for the analytic topology and any fiber F of the map a is a smooth toric variety with boundary divisor D_{1F} .

 $T_X(-\log D)$ numerically flat $\Rightarrow T_X(-\log D)$ R-flat and $K_X + D \equiv 0$

Remark

In the setup of the theorem, we expect T to be a torus quotient \rightsquigarrow numerical characterization of toric fiber bundles over torus quotients

Indeed, by the Beauville-Bogomolov decomposition theorem, T admits a finite étale cover that decomposes into the product of an abelian variety and a simply-connected Calabi-Yau manifold. On the other hand, a folklore conjecture asserts that any projective Calabi-Yau manifold contains a rational curve.

COROLLARY

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $T_X(-\log D)$ is numerically flat.

Then there is a smooth morphism $a: X \to T$ with connected fibers onto a torus quotient T. The fibration $(X, D) \to T$ is locally trivial for the analytic topology and any fiber F of the map a is a smooth toric variety with boundary divisor $D_{|F}$.

 $T_X(-\log D)$ numerically flat $\Rightarrow T_X(-\log D)$ R-flat and $K_X + D \equiv 0$

Remark

In the setup of the theorem, we expect T to be a torus quotient \rightsquigarrow numerical characterization of toric fiber bundles over torus quotients

Indeed, by the Beauville-Bogomolov decomposition theorem, T admits a finite étale cover that decomposes into the product of an abelian variety and a simply-connected Calabi-Yau manifold. On the other hand, a folklore conjecture asserts that any projective Calabi-Yau manifold contains a rational curve.

COROLLARY

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $T_X(-\log D)$ is numerically flat.

Then there is a smooth morphism $a: X \to T$ with connected fibers onto a torus quotient T. The fibration $(X, D) \to T$ is locally trivial for the analytic topology and any fiber F of the map a is a smooth toric variety with boundary divisor $D_{|F}$.

 $T_X(-\log D)$ numerically flat $\Rightarrow T_X(-\log D)$ R-flat and $K_X + D \equiv 0$

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathbb{P}^1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

Lemma

Let $f: X \to Y$ be a morphism of smooth projective varieties with rationally chain connected general fibers, and let \mathscr{E} be a locally free sheaf on Y. Then $f^*\mathscr{E}$ is R-flat if and only if so is \mathscr{E} .

Remark

If $f: X \to \mathbb{P}^1$ contains no rational curve, then $f^*\mathscr{E}$ is *R*-flat for any \mathscr{E} . E.g.: *C* hyperelliptic curve with hyperelliptic involution *i*, *A* abelian variety and $X := C \times A / \langle i \rangle \to C / \langle i \rangle \cong \mathbb{P}^1$ where *i* acts on *A* by translation by a 2-torsion point.

Lemma (Biswas - dos Santos 2009 – D. - Lo Bianco 2021)

Let X be a projective reduced space, not necessarily irreducible. Suppose X is rationally chain connected. Then any locally free, R-flat sheaf on X is numerically flat.

STÉPHANE DRUEL (CNRS - ICJ)

ON SOME TORIC FIBER BUNDLES

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathbb{P}^1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

Lemma

Let $f: X \to Y$ be a morphism of smooth projective varieties with rationally chain connected general fibers, and let \mathscr{E} be a locally free sheaf on Y. Then $f^*\mathscr{E}$ is R-flat if and only if so is \mathscr{E} .

Remark

If $f: X \to \mathbb{P}^1$ contains no rational curve, then $f^*\mathscr{E}$ is *R*-flat for any \mathscr{E} . E.g.: *C* hyperelliptic curve with hyperelliptic involution *i*, *A* abelian variety and $X := C \times A / \langle i \rangle \to C / \langle i \rangle \cong \mathbb{P}^1$ where *i* acts on *A* by translation by a 2-torsion point.

Lemma (Biswas - dos Santos 2009 – D. - Lo Bianco 2021)

Let X be a projective reduced space, not necessarily irreducible. Suppose X is rationally chain connected. Then any locally free, R-flat sheaf on X is numerically flat.

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathbb{P}^1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

Lemma

Let $f: X \to Y$ be a morphism of smooth projective varieties with rationally chain connected general fibers, and let \mathscr{E} be a locally free sheaf on Y. Then $f^*\mathscr{E}$ is R-flat if and only if so is \mathscr{E} .

Remark

If $f: X \to \mathbb{P}^1$ contains no rational curve, then $f^*\mathscr{E}$ is *R*-flat for any \mathscr{E} . E.g.: *C* hyperelliptic curve with hyperelliptic involution *i*, *A* abelian variety and $X := C \times A / \langle i \rangle \to C / \langle i \rangle \cong \mathbb{P}^1$ where *i* acts on *A* by translation by a 2-torsion point.

Lemma (Biswas - dos Santos 2009 – D. - Lo Bianco 2021)

Let X be a projective reduced space, not necessarily irreducible. Suppose X is rationally chain connected. Then any locally free, R-flat sheaf on X is numerically flat.

DEFINITION

A vector bundle \mathscr{E} of positive rank r is called R-flat if $\nu^* \mathscr{E} \cong \mathscr{O}_{\mathbb{P}^1}^{\oplus r}$ for all $\nu \colon \mathbb{P}^1 \to X$.

Lemma

Let $f: X \to Y$ be a morphism of smooth projective varieties with rationally chain connected general fibers, and let \mathscr{E} be a locally free sheaf on Y. Then $f^*\mathscr{E}$ is R-flat if and only if so is \mathscr{E} .

Remark

If $f: X \to \mathbb{P}^1$ contains no rational curve, then $f^*\mathscr{E}$ is *R*-flat for any \mathscr{E} . E.g.: *C* hyperelliptic curve with hyperelliptic involution *i*, *A* abelian variety and $X := C \times A / \langle i \rangle \to C / \langle i \rangle \cong \mathbb{P}^1$ where *i* acts on *A* by translation by a 2-torsion point.

Lemma (Biswas - dos Santos 2009 - D. - Lo Bianco 2021)

Let X be a projective reduced space, not necessarily irreducible. Suppose X is rationally chain connected. Then any locally free, R-flat sheaf on X is numerically flat. STÉPHANE DRUEL (CNRS - ICJ) ON SOME TORIC FIBER BUNDLES JUNE 25, 2021 8/14

R-flat vector bundles and MMP

Let $f: X \to Y$ be a Mori extremal contraction with X projective klt. By the cone theorem, a line bundle on X of degree zero on every contracted rational curve comes from Y.

Theorem (Greb-Kebekus-Peternell-Taji 2019 – D. - Lo Bianco 2021)

Let $f: X \to Y$ be a projective morphism with connected fibers of normal, quasi-projective varieties. Suppose that there is an effective \mathbb{Q} -divisor D on X such that the pair (X, D) is klt and $-(K_X + D)$ is f-ample.

Let \mathcal{E} be a locally free, f-relatively R-flat sheaf on X.

Then there exists a locally free sheaf \mathscr{G} on Y such that $\mathscr{E} \cong f^*\mathscr{G}$.

Let $f: X \to Y$ be a Mori extremal contraction with X projective klt. By the cone theorem, a line bundle on X of degree zero on every contracted rational curve comes from Y.

Theorem (Greb-Kebekus-Peternell-Taji 2019 – D. - Lo Bianco 2021)

Let $f: X \to Y$ be a projective morphism with connected fibers of normal, quasi-projective varieties. Suppose that there is an effective \mathbb{Q} -divisor D on X such that the pair (X, D) is klt and $-(K_X + D)$ is f-ample.

Let \mathscr{E} be a locally free, f-relatively R-flat sheaf on X.

Then there exists a locally free sheaf \mathscr{G} on Y such that $\mathscr{E} \cong f^*\mathscr{G}$.

STÉPHANE DRUEL (CNRS - ICJ)

Theorem (Greb-Kebekus-Peternell-Taji 2019 – D. - Lo Bianco 2021)

Let $f: X \to Y$ be a projective morphism with connected fibers of normal quasi-projective varieties. Suppose that X is smooth and that Y is klt. Suppose in addition that f has rationally chain connected fibers.

Let \mathscr{E} be a locally free, f-relatively R-flat sheaf on X.

Then there exists a locally free sheaf \mathscr{G} on Y such that $\mathscr{E} \cong f^*\mathscr{G}$.

Proof: factorize f as a composition of steps of relative MMP over Y and use the previous theorem

Theorem (Greb-Kebekus-Peternell-Taji 2019 – D. - Lo Bianco 2021)

Let $f: X \to Y$ be a projective morphism with connected fibers of normal quasi-projective varieties. Suppose that X is smooth and that Y is klt. Suppose in addition that f has rationally chain connected fibers.

Let \mathscr{E} be a locally free, f-relatively R-flat sheaf on X.

Then there exists a locally free sheaf \mathscr{G} on Y such that $\mathscr{E} \cong f^*\mathscr{G}$.

Proof: factorize f as a composition of steps of relative MMP over Y and use the previous theorem

A CANONICAL BUNDLE FORMULA

Let $f: X \to Y$ be a surjective morphism with connected fibers of normal, projective varieties. Let D be a \mathbb{Q} -divisor on X such that (X, D) is log canonical over the generic point of Y.

DEFINITION

The discriminant divisor of (f, D) is the Q-divisor $B = \sum_{P} b_{P} P$ on Y, where P runs through all prime divisor on Y, and

 $1 - b_P := \sup \{t \in \mathbb{R} \mid (X, D + tf^*P) \text{ is log canonical over the generic point of } P\}.$

The discriminant divisor measures the singularities of special fibers.

THEOREM

Suppose that D is integral and that it is effective in a neighbourhood of a general fiber of f. Suppose in addition that there exists a Cartier divisor C on Y such that

 $K_X + D \sim_{\mathbb{Q}} f^*C.$

If (f, D) is generically isotrivial, then $C \sim_{\mathbb{Q}} K_Y + B$, where B denotes the discriminant divisor of (f, D).

A CANONICAL BUNDLE FORMULA

Let $f: X \to Y$ be a surjective morphism with connected fibers of normal, projective varieties. Let D be a \mathbb{Q} -divisor on X such that (X, D) is log canonical over the generic point of Y.

DEFINITION

The discriminant divisor of (f, D) is the Q-divisor $B = \sum_P b_P P$ on Y, where P runs through all prime divisor on Y, and

 $1 - b_P := \sup \left\{ t \in \mathbb{R} \, | \, (X, D + tf^*P) \text{ is log canonical over the generic point of } P \right\}.$

The discriminant divisor measures the singularities of special fibers.

Theorem

Suppose that D is integral and that it is effective in a neighbourhood of a general fiber of f. Suppose in addition that there exists a Cartier divisor C on Y such that

 $K_X + D \sim_{\mathbb{Q}} f^*C.$

If (f, D) is generically isotrivial, then $C \sim_{\mathbb{Q}} K_Y + B$, where B denotes the discriminant divisor of (f, D).

A CANONICAL BUNDLE FORMULA

Let $f: X \to Y$ be a surjective morphism with connected fibers of normal, projective varieties. Let D be a \mathbb{Q} -divisor on X such that (X, D) is log canonical over the generic point of Y.

DEFINITION

The discriminant divisor of (f, D) is the Q-divisor $B = \sum_P b_P P$ on Y, where P runs through all prime divisor on Y, and

 $1 - b_P := \sup \{t \in \mathbb{R} \mid (X, D + tf^*P) \text{ is log canonical over the generic point of } P\}.$

The discriminant divisor measures the singularities of special fibers.

Theorem

Suppose that D is integral and that it is effective in a neighbourhood of a general fiber of f. Suppose in addition that there exists a Cartier divisor C on Y such that

$$K_X + D \sim_{\mathbb{Q}} f^*C.$$

If (f, D) is generically isotrivial, then $C \sim_{\mathbb{Q}} K_Y + B$, where B denotes the discriminant divisor of (f, D).

Theorem

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $K_X + D \equiv 0$ and that $T_X(-\log D)$ is R-flat.

There exist a smooth morphism with connected fibers $a: X \to T$ onto a smooth projective variety T such that:

- $\bullet K_T \equiv 0;$
- P The fibration (X, D) → T is locally trivial for the analytic topology and any fiber F of the map a is a smooth toric variety with boundary divisor D_{|F};
- **③** T contains no rational curve.

Recall that Winkelmann's theorem holds for compact Kähler manifold.

QUESTION

Is the theorem true in the compact Kähler setting?

Recall that T is expected to be an abelian variety. In particular, if dim T > 0, then $\pi_1(X)$ should be infinite.

QUESTION

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $K_X + D \equiv 0$ and that $T_X(-\log D)$ is R-flat. Suppose in addition that X is simply-connected.

Is X a smooth toric variety with boundary divisor D?

 $T_X(-\log D)$ R-flat $\Rightarrow K_X + D$ nef (Cone theorem for lc pairs)

QUESTION

Can we say something if $T_X(-\log D)$ R-flat and $\nu(K_X + D) \ge 1$?

・ロト ・日ト ・ヨト ・ヨト

Recall that Winkelmann's theorem holds for compact Kähler manifold.

QUESTION

Is the theorem true in the compact Kähler setting?

Recall that T is expected to be an abelian variety. In particular, if dim T > 0, then $\pi_1(X)$ should be infinite.

QUESTION

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $K_X + D \equiv 0$ and that $T_X(-\log D)$ is R-flat. Suppose in addition that X is simply-connected.

Is X a smooth toric variety with boundary divisor D?

```
T_X(-\log D) R-flat \Rightarrow K_X + D nef (Cone theorem for lc pairs)
```

QUESTION

Can we say something if $T_X(-\log D)$ R-flat and $\nu(K_X + D) \ge 1$?

Recall that Winkelmann's theorem holds for compact Kähler manifold.

QUESTION

Is the theorem true in the compact Kähler setting?

Recall that T is expected to be an abelian variety. In particular, if dim T > 0, then $\pi_1(X)$ should be infinite.

QUESTION

Let (X, D) be a log smooth reduced pair with X projective. Suppose that $K_X + D \equiv 0$ and that $T_X(-\log D)$ is R-flat. Suppose in addition that X is simply-connected.

Is X a smooth toric variety with boundary divisor D?

 $T_X(-\log D)$ R-flat $\Rightarrow K_X + D$ nef (Cone theorem for lc pairs)

QUESTION

Can we say something if $T_X(-\log D)$ R-flat and $\nu(K_X + D) \ge 1$?

Thanks!

STÉPHANE DRUEL (CNRS - ICJ)

ON SOME TORIC FIBER BUNDLES

June 25, 2021 14 / 14

æ