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Paisson  Sbvehireg

Definition [edit]

There are two main points of view to define Poisson structures: it is customary and
convenient to switch between them, and we shall do so below.

As bracket |[edit]

Let M be a smooth manifold and let C°° (M) denote the real algebra of smooth real-

valued functions on M, where the multiplication is defined pointwise. A Poisson bracket

{or Poisson structure) on M is an R-bilinear map
{3 :CT(M) x C*(M) - C* (M)

defining a structure of Poisson algebra on C*° (M), i.e. satisfying the following three
conditions:

« Skew symmetry: {f, g} = —{g, f}-
» Jacobiidentity: {f, {g, h}} + {g, {h. f}} + {h. {f.9}} =0
» Leibniz's Rule: {fg, h} = f{g, h} + g{f, h}.
The first two conditions ensure that {-, - } defines a Lie-algebra structure on G (M),

while the third guarantees that, for each f € C*°( M), the linear map
Xg:={f,}:C”(M)— C*(M) is a derivation of the algebra G (M), ie. it

defines a vector field Xy € X(M) called the Hamiltonian vector field associated to f.

Choosing some local coordinates (U7, '), any Poisson bracket is given by

{f.ahw=) = or %

o
T det G

formy; = {a:‘i, a:j} the Poisson bracket of the coordinate functions.
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As bivector [ edit]

A Poisson bivector on 2 smooth manifold M is a bivector field
mE IE{M] = I‘( A2 TM'} satisfying the non-linear partial differential equation
[m, 7] = 0, where

' fg—1
[,]: XE(M) x X9(M) — X2 L (M)
denotes the SCI’IOUtEI’I—NijEHhUiS bracket on multivector fields. Ch’DOSiI’IQ some local
coordinates ;

bivector is given by
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Theorem 2.1 (Splitting theorem). Let x, be any point in a Poisson manifold

P. Then there are a neighborhood U of x, in P and an isomorphism ¢ = ¢g X ¢y
from U to a product S X N such that S is symplectic and the rank of N at ¢ (x,) L_/

is zero. The factors S and N are unique up to local isomorphism. SM@ QC \ C %ﬁ,\o
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A global Weinstein splitting theorem for
holomorphic Poisson manifolds
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Theorem 1.1. Let (X;:g be a compact Kahler Poisson manifold, and suppose
that L C X is a compact symplectic leaf whose fundamental group s finite. Then

therd} exist a compact Kahler Poisson manifold Y, and a finite étale Poisson
morphism L XY — X, where L is the universal cover of L.
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Defindtion 5: A C= funetion g on an open set @ © M is called a undt on 2 if g(z)
= Oforxrell,

Prorosition 2. Jf w e I(M) and g 15 a C= funclion on an open sel @, then gw e
1) and any integral manifold of w iz inlegral manifold of gw. If g {8 a unid on 1,
then w and gw have the same integral manifolds in 0.

Proof:  Trivial,

Definition 8: A form w ¢ T{M) is called structurally slable if for every ¢ > 0
there exists a neighborhood U, of w in I(M) with the C'-topology such that: for
any w' €U, there exists a homeomorphism h: M — M with the following properties:
(1) dist(z,h(z)) < eforall z e M; (2)if D is an integral manifold of w, then A(D)
is an integral manifold of w'.

We ean now announce our main result.

Main Tugorem. If we I{M) s structurally stable, the set of all singular points
of w is the union of the follmwing two sets: (1) A jfinite sef Z_(w) such thai if =, €
Z.(w), then rq s isolated in the sel of all singular points of w and there exisis a neighbor-
hood Ny of - tn M and twe C= functions f,g:Ny— R such thal: (i) g 18 a unil in N
and [ admils in Ny @ unique singular point xy which 13 generic (in Morse’s sense p. 172
of ref. &) in Ny (i) w = gdf. The index of z, for f (in Morse's sense p. 143 of ref. 5)
ts called dndex of w. Il delermines the siructure of the folialion defined by w in the
neighborhood of xy. (2) A jfindte union Zs(w) of C= compact mandfolds of codimension
2, Wy ..., W, such that if D is a C'= 2-dimensional cell transversal to W, at a point
Ta, the resiriction of w to D (i.e., the infersection of the foliation defined by w with I))
has atl x, a generic singular potnd.  More precisely, there exists for each xy ¢ W, a neigh-
borhood Ny of xg in M, a C® unit go: Ny — R, and a C* mapping ¢o:No — R* every-
where of rank 2 such that if (£y) denotes the canonical system of coordinates in B2, oy
is the form ndt — X Edn (A # 0,1 scalar), and e is the form EE + ndy + p (ndE —
gdn) (u = 0 scalar), then either wINu = Jupn*ap 0 wENa = guge*on; A or p depend only
on the manifold W, not on the point 2y e W. Ezcepl when ) 18 rational, ¢y can be taken
of class C'=, The proofs rely heavily on De Rham’'s lemma (p. 346 of ref. 6).

* This paper was written with the partial support of the Air Force Office of Scientific Research,
AF O33R 62-334.
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