Local foliations with closed leaves

Introduction

We study holomorphic foliations whose leaves are (essentially) analytic sets.

Introduction

We study holomorphic foliations whose leaves are (essentially) analytic sets.

Fundamental tool: Holonomy group of a leaf.

Let \mathcal{L}_P be a leaf of a holomorphic foliation Let $\gamma : [0,1] \to \mathcal{L}_P$ a path with $\gamma(0) = \gamma(1) = P$. Hol $_\gamma$ is defined in (T, P) where $T = \pi^{-1}(P)$. We have a morphism $\pi(\mathcal{L}_P, P) \xrightarrow{\text{Hol}} \text{Diff}(T, P)$ of groups defined by $[\gamma] \mapsto \text{Hol}_\gamma$.

Theorem (Reeb local stability theorem)

Let \mathcal{L} be a compact leaf of a C^1 foliation with finite holonomy group. Then there exists a fundamental system of saturated neighborhoods of \mathcal{L} .

Theorem (Reeb local stability theorem)

Let \mathcal{L} be a compact leaf of a C^1 foliation with finite holonomy group. Then there exists a fundamental system of saturated neighborhoods of \mathcal{L} .

All leaves in a neighborhood of \mathcal{L} are compact.

Theorem (Reeb local stability theorem)

Let \mathcal{L} be a compact leaf of a C^1 foliation with finite holonomy group. Then there exists a fundamental system of saturated neighborhoods of \mathcal{L} .

All leaves in a neighborhood of \mathcal{L} are compact.

It is easy to construct a first integral defined in a neighborhood of \mathcal{L} .

Consider a (singular) holomorphic foliation \mathcal{F} of dimension p.

Definition

We say that \mathcal{F} has *closed leaves* if $\overline{\mathcal{L}}$ is an analytic variety of dimension p for any leaf \mathcal{L} .

Consider a (singular) holomorphic foliation \mathcal{F} of dimension p.

Definition

We say that \mathcal{F} has *closed leaves* if $\overline{\mathcal{L}}$ is an analytic variety of dimension p for any leaf \mathcal{L} .

Example: Radial foliation in \mathbb{C}^2 or $\mathbf{CP}(2)$.

Closed leaves \implies stability?

Closed leaves \implies stability?

Stability = existence of a fundamental system of saturated neighborhood for any leaf.

Closed leaves \implies stability?

Stability = existence of a fundamental system of saturated neighborhood for any leaf.

Stability \implies existence of first integrals?

Closed leaves \implies stability?

Stability = existence of a fundamental system of saturated neighborhood for any leaf.

Stability \implies existence of first integrals?

Answer: No and no.

Groups of local biholomorphisms

Let \mathcal{L} be a compact leaf of a codimension q holomorphic foliation \mathcal{F} .

Let \mathcal{L} be a compact leaf of a codimension q holomorphic foliation \mathcal{F} .

Closed leaves in a neighborhood of \mathcal{L} \updownarrow The holonomy group of \mathcal{L} has finite orbits Let \mathcal{L} be a compact leaf of a codimension q holomorphic foliation \mathcal{F} .

Closed leaves in a neighborhood of \mathcal{L} \updownarrow The holonomy group of \mathcal{L} has finite orbits

The holonomy group can be identified with a finitely generated subgroup of $\text{Diff}(\mathbb{C}^q, 0)$.

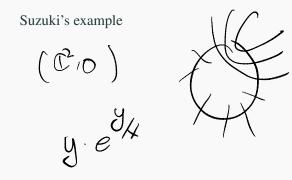
Closed leaves \implies stability? No

Closed leaves \implies stability? No $\pi^2 = \mathbb{C}/\langle z+1, z+i \rangle$ $S = \mathbb{C}^3/\sim$ where $(z, x, y) \sim (z+1, x, x+y)$ and $(z, x, y) \sim (z+i, x, y)$. \mathcal{F} is a suspension. The leaves of \mathcal{F} are the images of $\mathbb{C} \times \{(x_0, y_0)\}$ by $\pi : \mathbb{C}^3 \to \mathbb{C}^3/\sim$.

 \mathcal{F} has closed leaves in the neighborhood of the zero section because $(x, y) \mapsto (x, x + y)$ has finite orbits in a neighborhood of the origin.

Stability \implies existence of first integrals? No

Stability \implies existence of first integrals? No



Stability \implies existence of first integrals? No

Suzuki's example

There are no meromorphic first integrals

Local case

Theorem (Mattei-Moussu '80)

Let \mathcal{F} be a local holomorphic foliation in $(\mathbb{C}^n, 0)$ of <u>codimension 1</u> with closed leaves. Suppose that there are finitely many leaves whose closure contains the origin. Then \mathcal{F} has a holomorphic first integral.

Local case

Theorem (Mattei-Moussu '80)

Let \mathcal{F} be a local holomorphic foliation in $(\mathbb{C}^n, 0)$ of codimension 1 with closed leaves. Suppose that there are finitely many leaves whose closure contains the origin. Then \mathcal{F} has a holomorphic first integral.

It is a topological criterium for the existence of holomorphic first integrals

Global case

Theorem (Edwards-Millet-Sullivan '77)

Let \mathcal{F} be a regular holomorphic foliation with closed leaves defined in a compact Kähler manifold. Then the foliation is stable.

Global case

Theorem (Edwards-Millet-Sullivan '77)

Let \mathcal{F} be a regular holomorphic foliation with closed leaves defined in a compact Kähler manifold. Then the foliation is stable.

Theorem (Gómez Mont '89)

Let \mathcal{F} be a holomorphic foliation (of dimension p) with closed leaves in a projective manifold. Suppose dim $(\text{Sing}(\mathcal{F})) < p$. Then the foliation is stable and there is a meromorphic first integral.

Finite holonomy groups

Theorem (Pinheiro-Reis)

Let \mathcal{F} be a singular holomorphic foliation of dimension 1 defined in $(\mathbb{C}^3, 0)$. Suppose that it has two independent holomorphic first integrals. Suppose that $\tilde{\mathcal{F}}$, the transform of \mathcal{F} by the punctual blow-up centered at the origin, has only isolated singularities which, in addition, are simple. Then either $\dim(\operatorname{Sing}(\mathcal{F})) \geq 1$ or it has infinitely many separatrices.

Generalization (Cano, Ravara - Vago, X)

>> Finite holorany

 $\exists X \in \mathcal{H}(a^{3}, o)$ with

• finitely many separatrices Sing (X) C } (0,0,0) } • Every leaf has a finite holonomy group

Xisa => regular rectar field

The fixed point curve theorem

Theorem (Lisboa-Ribón)

Let $\phi \in \text{Diff}(\mathbb{C}^n, 0)$ with finite orbits. Then there exists $k \in \mathbb{N}$ such that $\dim(\text{Fix}(\phi^k), 0) \ge 1$.

$$F(x,y) = (X, X+y)$$

 $F(x(F) = \{ x=0 \}$

The fixed point curve theorem

Theorem (Lisboa-Ribón)

Let $\phi \in \text{Diff}(\mathbb{C}^n, 0)$ with finite orbits. Then there exists $k \in \mathbb{N}$ such that $\dim(\text{Fix}(\phi^k), 0) \ge 1$.

It is a sort of Camacho-Sad theorem for the finite orbits case

The fixed point curve theorem

Theorem (Lisboa-Ribón)

Let $\phi \in \text{Diff}(\mathbb{C}^n, 0)$ with finite orbits. Then there exists $k \in \mathbb{N}$ such that $\dim(\text{Fix}(\phi^k), 0) \ge 1$.

It is a sort of Camacho-Sad theorem for the finite orbits case

Corollary (Lisboa-Ribón)

Let $\phi \in \text{Diff}(\mathbb{C}^n, 0)$ with finite orbits. Then at least one of the eigenvalues of spec $(D_0\phi)$ is a root of unity.

Finite orbits and linear part

 $\phi \in \operatorname{Diff}(\mathbb{C}^n, 0)$ has finite orbits \Downarrow $\operatorname{spec}(D_0\phi)$ contains a root of unity

Finite orbits and linear part

 $\phi \in \operatorname{Diff}(\mathbb{C}^n, 0)$ has finite orbits \Downarrow spec $(D_0\phi)$ contains a root of unity

There are examples of $F \in \text{Diff}(\mathbb{C}^n, 0)$ that has finite orbits and $\text{spec}(D_0 F)$ contains exactly a root of unity eigenvalue.

Bad set

Consider a regular foliation with compact leaves on a compact manifold.

The **bad** set is the set of leaves in which the volume function is not locally bounded.

Bad set

Consider a regular foliation with compact leaves on a compact manifold.

The **bad** set is the set of leaves in which the volume function is not locally bounded.

Let $\phi \in \text{Diff}(\mathbb{C}^n, 0)$. The bad set is the set of periodic orbits.

Theorem

The connected components of the bad set are analytic.

General result

Theorem (Lisboa-Ribón)

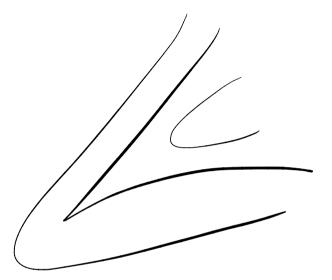
Let G be a finitely generated subgroup of $\text{Diff}(\mathbb{C}^n, 0)$ with finite orbits. Then there exists a finite index normal subgroup J of G such that $\dim(\text{Fix}(J), 0) \ge 1$.

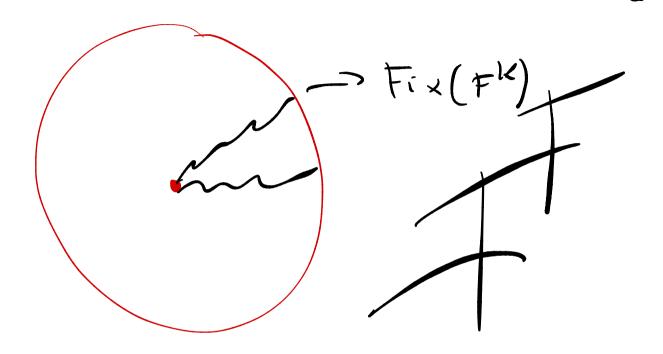
Theorem (L.-R., Stability in intermediate dimension)

Let \mathcal{F} be a codimension p regular holomorphic foliation defined in a neighborhood of a compact leaf \mathcal{L} . Assume that \mathcal{F} has closed leaves in a neighborhood of \mathcal{L} . Then there exists an analytic set S of dimension greater than n - p such that

- S is \mathcal{F} -invariant and contains \mathcal{L} .
- There exists a fundamental system of saturated neighborhoods of \mathcal{L} in S consisting of compact leaves.

 $N \simeq 2$





Thank you