non transverse intersection

Guy Casale

M smooth algebraic variety over \mathbb{C} , \mathcal{F} a foliation on M.

Problem

Understand algebraic subvarieties $V \subset M$ such that

 $\operatorname{codim}(\mathcal{F} \cap V) < \operatorname{codim}\mathcal{F} + \operatorname{codim}V$

or

Understand formal curve in a leaf $\gamma \subset \mathcal{L}$ with dim $\overline{\gamma}^z < \mathrm{codim}\mathcal{F} + 1$

Ax-Schanuel for exp :

If trans.deg. $\mathbb{C}(\hat{t}_1, \dots, \hat{t}_n, \exp(\hat{t}_1), \dots, \exp(\hat{t}_n)) < n+1$ then $\sum n_i \hat{t}_i \in \mathbb{C}$

 $\mathfrak{g} \subset \mathfrak{gl}_N(\mathbb{C})$ a Lie algebra.

 ${\mathcal F}$ is a ${\mathfrak g}\text{-Lie}$ foliation is there exists $\omega: {\mathcal T} {\mathcal M} \to {\mathfrak g}$ with

$$d\omega = -\omega \wedge \omega$$

$$odim \mathcal{F} = \dim \mathfrak{g}$$

$$\ \, {\bf 0} \ \, {\rm ker}\, \omega = {\cal F}$$

•

If $G \subset \operatorname{GL}_N(\mathbb{C})$ is a Lie group with $\operatorname{Lie}(G) = \mathfrak{g}$, the transversal structure of \mathcal{F} is given by the set of local first integrals $Y : U \to G$ solving

$$dYY^{-1} = \omega$$

 $M, \mathfrak{g}, \mathcal{F}, \mathcal{L}$

Proposition

If $\gamma \subset \mathcal{L}$ and dim $\overline{\gamma}^z < 1 + \operatorname{codim} \mathcal{F}$ then $\exists \ \mathfrak{h} \subset \mathfrak{g}$ and $\mathcal{F}|_{\overline{\gamma}^z}$ is \mathfrak{h} -Lie.

Corollary

Consider an alg. subvariety $V \subset M$ with dim $V < 1 + \operatorname{codim} \mathcal{F}$. If there is no \mathfrak{h} with dim $\mathfrak{h} = \operatorname{codim}(\mathcal{F}|_V)$ the $\mathcal{F}|_V$ has a rational first integral.

Corollary

Assume dim $\mathcal{F} = 1$, \mathfrak{g} simple and leaves are Zariski dense. Consider \mathcal{F}^n on M^n and a leaf \mathcal{L}^n . If $\gamma \subset \mathcal{L}^n$ with non constant projections and dim $\overline{\gamma}^z < 1 + n \dim \mathfrak{g}$ then $\exists \ \ell < k$ and $X \subset M \times M$ a correspondence such that $pr_{\ell,k}(\gamma) \subset X$.

Example

Principal integrable connection on a bundle $P \rightarrow B$ with group G.

- \mathcal{F} is locally defined by $dZ \Omega Z = 0$
- is globally defined by $\omega = Z^{-1}dZ Z^{-1}\Omega Z = 0$

Theorem

Let \mathcal{F} be a *G*-principal connection on $P \to B$ with Zariski dense leaves. Let *V* be an algebraic subvariety of *P*, \mathcal{L} is an horizontal leaf and \mathcal{V} an irreducible component of $V \cap \mathcal{L}$. If dim $V < \dim(\mathcal{V}) + \dim G$ then

- the projection of \mathcal{V} in B is contained in a proper algebraic subvariety $X \subset B$
- 2 Leaves of $\mathcal{F} \cap P|_X$ are not Zariski dense.

Ax-Schanuel for *j*

If trans.deg. $\mathbb{C}\mathbb{C}(\hat{t}_1, \dots, \hat{t}_n, j(\hat{t}_1), \dots, j''(\hat{t}_n)) < 1 + 3n$ then $\exists \ \ell < k, \ g \in PGL_2^+(\mathbb{Q})$ such that $\hat{t}_\ell = g(\hat{t}_k)$.