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Abstract

In this review, we present the basic properties, physiological functions, regulation,
and pathological alterations of four major classes of K* channels that have been detected
in vascular smooth muscle cells. Voltage-dependent K* (Kv) channels open upon
depolarization of the plasma membrane in vascular smooth muscle cells. The
subsequent efflux of K* through the channels induces repolarization to the resting
membrane potential. Changes in the intracellular Ca%* concentration and membrane
depolarization stimulate large-conductance Ca?-activated K* (BKc.) channels, which are
thought to play an important role in maintaining the membrane potential. ATP-sensitive
K* (Karp) channels underscore the functional bond between cellular metabolism and
membrane excitability. The blockade of Karp channel function results in vasoconstriction
and depolarization in various types of vascular smooth muscle. Inward rectifier K* (Kir)
channels, which are expressed in smooth muscle of the small-diameter arteries,
contribute to the resting membrane potential and basal tone. Kir channel activation has
been shown to raise the extracellular K* concentration to 10-15 mM, resulting in
vasodilation. Each of K* channels listed above is responsive to a number of
vasoconstrictors and vasodilators, which act through protein kinase C (PKC) and protein
kinase A (PKA), respectively. Impaired Kv, Karp, and Kir channel functions has been
linked to a number of pathological conditions, which may lead to vasoconstriction.
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Introduction

K* channels contribute to the regulation of the membrane potential in electrically excitable
cells, including those found in smooth muscle. Membrane hyperpolarization due to an efflux of
K* results from the opening of K* channels in vascular smooth muscle. This effect is followed by
the closure of voltage-dependent Ca® channels, leading to a reduction in Ca? entry, and
vasodilation (Nelson and Quayle, 1995). In contrast, inhibition of K* channels function leads to
membrane depolarization and vasoconstriction. To date, four distinct types of K* channel have
been identified in vascular smooth muscle: voltage-dependent K* (Kv) channels, Ca®-activated
K* (BKc.) channels, ATP-sensitive K* (Karp) channels, and inward rectifier K* (Kir) channels
(Nelson and Quayle, 1995; Standen and Quayle, 1998). The fundamental properties of these
channels, as well as their responses to various stimuli including vasoconstrictors and
vasodilators, and their associated signal pathways have been described in several reports.

In this review, we present a comprehensive summary of the current state of knowledge
concerning each of the four major types of K* channel in the vasculature.

Basic properties of K* channels

Voltage-dependent K+ channels (Kv channels)

Broad voltage-dependent K* (Kv) channels expression has been detected in vascular smooth
muscle cells (e.g., Beech and Bolton, 1989a; Cox and Petrou, 1999). Kv channels open to allow
an efflux of K* in response to depolarization of the membrane potential (Fig. 1A), resulting in
repolarization and a return to the resting membrane potential. Small-scale depolarization in
vascular smooth muscle cells leads to an influx of Ca?* through L-type Ca? channels and
activation of the contractile machinery. Taken together, this indicates that Kv channels function
to limit membrane depolarization and maintain resting vascular tone (Nelson and Quayle, 1995;
Sobey, 2001; Korovkina and England, 2002).

The Kv channel inactivation results from sustained depolarization. Compared to the process
of activation, Kv channel inactivation is relatively slow and involves an initial peak in the Kv
current due to voltage-dependent activation followed by a drop in the current due to voltage-
dependent inactivation (Nelson and Quayle, 1995). Steady-state Kv channel activation can be
described using the Boltzmann equation: y =1 / {1 + exp (- (V= Vis3) / k)}, where k is the slope
factor, V'is the test potential, and V3, is the voltage require for half-maximal conductance (Park
et al., 2005a, 2005b). Using this equation, Kv channels in arterial smooth muscle cells have
been shown to have k-values between 9 and 11 and to display half-maximal activation at voltages
between —6 to —15 mV (Volk et al., 1991; Robertson and Nelson, 1994; Nelson and Quayle, 1995;
Park et al., 2005a, 2005b). Similarly, Kv channel inactivation can be described using another
Boltzmann equation: y =1 / {1 + exp ((V - Vi) / x¥)} where V is the preconditioning potential,
V1,2 is the half-inactivation potential, and « is the slope value (Park et al., 2005a, 2005b). Based
on these definitions, k-values between 5 and 11 and half-maximal inactivation values between —
25 to —45 mV have been recorded for Kv channels (Volk et al., 1991; Robertson and Nelson,
1994; Nelson and Quayle, 1995; Park et al., 2005a, 2005b).
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Fig. 1. K* channels in coronary arterial smooth muscle cells. (A) Voltage-dependent K* (Kv)
currents in rabbit coronary arterial smooth muscle cell. Superimposed current traces
are shown for 600-ms depolarizing pulses from —-80 mV to voltages between —120 mV
and +60 mV in steps of 20 mV. Data from Park et al. (2005b). (B) Ca*-activated K*
(BKc,) channels in rabbit coronary arterial smooth muscle cells. The traces of the
whole-cell currents and single-channel currents are shown in left and right panel,
respectively. Data from Park et al. (2007a). (C) ATP-sensitive K* (Karp) channels in
rabbit coronary arterial smooth muscle cells. Recording of whole-cell current from a
cell that was held at -60 mV, showing pinacidil activation of glibenclamide-sensitivie
K* currents. Data from Park et al., (2005d). (D) Inward rectifier K* (Kir) channels in
rabbit small-diameter coronary arterial smooth muscle cells. Current-voltage
relationships of 50 M Ba?-sensitive currents in symmetrical K* (140 mM). Data from
Park et al. (2005¢).

Divergent results have been obtained concerning the single-channel conductance of the Kv
channels in vascular smooth muscle cells. For example, single-channel conductances of 5 and 8
pS were recorded in rabbit portal vein using physiological concentration of K* (i.e., between 4
and 6 mM) (Beech and Bolton, 1989b), whereas a conductance of 6.5 pS was obtained using pig
portal vein (Karle et al., 1998). Moreover, conductances of 4.4, 7.3, and 5.5 pS have been
reported for rabbit cerebral, coronary, and basilar arteries, respectively (Volk and Shibata, 1993,
Robertson and Nelson, 1994; Nelson and Quayle, 2005). Contradicting these reports, larger
slope conductance in rabbit coronary artery was found to be 70 pS at 140 mM [K*],, while that
in canine renal artery was 57 pS at 5.4 mM [K*], (Gelband and Hume, 1992; Ishikawa et al.,
1993; Nelson and Quayle, 1995).

The various constituents of the Kv current have been identified, and the Kv channels
present in vascular smooth muscle have been divided into groups based on their voltage-
dependence and pharmacological data. To date, more than 30 genes encoding several
subfamilies of Kv a-subunits are currently recognized (Korovkina and England, 2002).
Structurally, a-subunits in Kv channels have cytoplasmic N- and C- termini and contain pore-
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forming six transmembrane domains (S1-S6) with an S4 voltage-sensing transmembrane
domain (Korovkina and England, 2002). Each a-subunit is associated with ancillary fsubunits,
which influences the characteristics of the channel (Bahring et al., 2001). Many Kv channel
have similar kinetics and pharmacological properties; thus, it can be difficult to determine which
Kv channel genes are being expressed in a particular cell. However, it has been shown that the
Kv1.5, Kv2.2, and Kvp4 subunits are expressed in canine vascular smooth muscle cells
(Horowitz, 1997), whereas the Kv1.1, Kv1.2, Kvl.4, Kv1.5 Kv1.6, Kv2.1, and Kv9.3 subunits, as
well as the Kvpl, Kvpg2, and Kvp subunits are expressed in smooth muscle cells of the
pulmonary artery (Yuan et al., 1998; Standen and Quayle, 1998).

The compound 4-Aminopyridine (4-AP) has been used in many studies of vascular smooth
muscle as a Kv channel blocker in order to separate the Kv current from BKc, current, which is
also activated by membrane depolarization (Okabe et al., 1987; Smirnov and Aaronson, 1992;
Nelson and Quayle, 1995). The concentration of 4-AP needed for half-maximal inhibition of Kv
channels function in various types of vascular smooth muscle has been shown to be between 0.3
and 1.1 mM (Okabe et al., 1987; Smirnov and Aaronson, 1992; Gelband and Hume, 1992).
Though 4-AP has no effect on BKc, or Kir channels at these concentrations, inhibition of Karp
currents has been reported (Beech and Bolton, 1989c; Quayle et al., 1993; Nelson and Quayle,
1995). Of the various compounds known to inhibit K* channel function, including Ba? (50 xM
for Kir channel), glibenclamide (10 M for Karp channel), and iberiotoxin (100 nM for BKc,
channel), none has been shown to alter the Kv current at its working concentration (Nelson and
Quayle, 1995).

Ca*-activated K* channels (BKc, channels)

Large-conductance (200 ~ 250 pS) Ca*-activated K* (BKc.) channels are a persistent feature
of vascular smooth muscle cells (Fig. 1B). BKc, channels, which are activated by changes in the
intracellular Ca?* concentration and membrane depolarization, are believed to contribute to the
maintenance of the membrane potential in small myogenic vessels (Nelson and Quayle, 1995;
Waldron and Cole, 1999; Park et al., 2007a). The efflux of K* that results from BKc, channel
activation can be used to counteract pressure- or chemical-induced depolarization and
vasoconstriction (Brayden and Nelson, 1992; Tanaka et al., 2004).

Similar to Kv channels, BKc, channels are comprised of a pore-forming a-subunit and a
regulatory Bsubunit (Knaus ef al., 1994; Toro et al., 1998; Tanaka et al., 2004). a-Subunits
contain six transmembrane-spanning domains (51-S6), including a voltage sensor (S4), which
form the pore (Nelson and Quayle, 1995). However, the a-subunits, which are produced from a
single gene (slo) by alternative splicing (McCobb et al., 1995; Standen and Quayle, 1998;
Waldron and Cole, 1999), contain an additional seventh transmembrane region (S0) at
exoplasmic NH; terminus (Wallner et al., 1996; Tanaka et al., 2004). In addition, there are four
Ssubunit isoforms (S1-4), each with two transmembrane domains, which may be associated
with the a-subunits in a 1:1 ratio (Wallner ef al., 1995). Of the four isoforms, 1 subunit is the
predominant isoform in vascular smooth muscle (Jiang et al., 1999; Tanaka et al., 2004). The
major function of the Asubunits is to enhance the Ca* sensitivity of the channel (Meera et al.,
1996; Tanaka et al., 1997; Waldron and Cole, 1999).
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BKc, channel may be blocked by external TEA, iberiotoxin, and charybdotoxin at half-
inhibition value of 200 xM, < 10 nM, and ~ 10 nM, respectively (Miller ef al., 1985; Langton et
al., 1991; Giangiacomo et al., 1992; Nelson and Quayle, 1995). Of these blockers, iberiotoxin is
the most selective blocker; it has a very low half-inhibition value and its value is ineffective
against the other types of K* channels (Wallner et al., 1995). Charybdotoxin has been used as
a selective BKc. channel blocker; however, it also affects Kv channels as well as intermediate-
conductance Ca*-activated K* channels (Carl et al., 1991; Grebremedhin et al., 1996; Waldron
and Cole, 1999). BKc. channels are not affected by glibenclamide, Ba** or apamin, which blocks
low-conductance Ca?-activated K* channels, at their working concentrations (Nelson and
Quayle, 1995). Both NS-004 and NS-1619 have been used to stimulate BKc, channels in smooth
muscle (Hu and Kim, 1996; Edwards et al., 1994), but they are of limited value given their
nonspecific inhibitory effects on L-type Ca* channels (Sargent et al., 1993; Sheldon et al., 1997
Park et al., 2007b). Given this information, one should exercise caution when using these types
of agents to study BKc, channels.

ATP-sensitive K* channels (Karp channels)

ATP-sensitive K* (Karp) channels have been first identified by in cardiac muscle and then,
they have been found in various cells including vascular smooth muscle (Fig. 1C) (Noma, 1983;
Nelson and Quayle, 1995). It has been shown both in vitro and in vivo that a block in Karp
channels leads to vasoconstriction and membrane depolarization in various types of vascular
smooth muscle (Nelson et al., 1990; Nakashima and Vanhoutte, 1995, Quayle et al., 1997;
Teramoto, 2006). Karp channel activation is closely associated with several pathophysiological
responses, including systemic arterial dilation during hypoxia (Daut et al., 1990; Brayden, 2002),
reactive hyperemia in coronary and cerebral circulation (Kanatsuka ef al., 1992; Bari ef al., 1998,
Brayden, 2002), and acidosis- and endotoxic shock-induced vasodilation (Landry and Oliver,
1992; Ishizaka and Kuo, 1996; Kinoshita and Katusic, 1997). Moreover, the inhibition of Karp
channels leads to impaired coronary and cerebral autoregulation (Narishige ef al., 1993; Hong et
al., 1994; Nelson and Quayle, 1995).

The single-channel conductances reported for Kare channels in vascular smooth muscle vary
considerably; however, they clearly fall into two distinct categories: small/medium
conductances and large conductances (Quayle ef al., 1997). Values between 7 and 15 pS have
been reported for small/medium-conductance Karp channels at 6 mM [K*],, whereas values
between 20 and 25 pS have been reported at 60 mM [K*],; conductances in the range of 20 ~ 50
pS have been identified at symmetric high K* in arterial smooth muscle cells (Kajioka et al.,
1991; Beech et al., 1993; Kamouchi and Kitamura, 1994; Dart and Standen, 1995; Nelson and
Quayle, 1995; Zhang and Bolton, 1995; Teramoto and Brading, 1996; Quayle et al., 1997). The
Karp channels with larger unitary conductances between 130 and 260 pS in high K* have been
recorded in smooth muscle cells from aorta, renal arteriole, mesenteric artery, and rat tail artery
(Standen et al., 1989; Lorenz et al., 1992; Furspan and Webb, 1993; Matzno et al., 1995; Quayle
et al., 1997). The reason for the broad range of single-channel conductances among Karp is
unknown; However, it indicates that channel conductance can be altered depending on the
experimental conditions (e.g., the recording solution, digestive enzyme, and excised patch
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configuration) and/or that multiple isoforms of the channel exist (Nelson and Quayle, 1995).

Karp channels are hetero-octameric complexes containing four pore-forming, inwardly
rectifying channel subunits (Kir6.1 or Kir6.2), together with four sulphonylurea receptors
(SURs), which are ATP-binding cassette (ABC) family proteins (Babenko ef al., 1998; Standen
and Quayle, 1998; Teramoto, 2006). The molecular diversity that exists between species and
tissues in terms of their Karp channel is magnified by the presence of multiple isoforms of SUR
(SUR1, SUR2A, and SUR2B) (Brayden, 2002). Karp channels in vascular smooth muscle most
likely contain Kir6.X/SUR2B, as co-expression of SUR2B with Kir6.1 or Kir6.2 has been shown
to produce channels with the properties of native Karp channels in smooth muscle (Yamada et
al., 1997; Koh et al., 1998; Standen and Quayle, 1998; Cui et al., 2002).

Karp channels in smooth muscle are known to be inhibited by anti-diabetic sulphonylurea
drugs, such as glibenclamide and tolbutamide (Fig. 1C). Glibenclamide is the most frequently
used inhibitor of Karp channels in studies of arterial smooth muscle, with a half-inhibition value
between 20 and 200 nM (Beech et al., 1993; Xu and Lee, 1994; Nelson and Quayle, 1995; Quayle
et al., 1995). Tolbutamide, with a half-inhibition value of 350 M in smooth muscle, is
considerably less effective than glibenclamide as a hypoglycemic agent (Quayle et al., 1995). U-
37883A and 5-hydroxydecanoate are selective inhibitors of non-vascular Karp channels with half-
inhibition values of 0.26 M and 0.16 uM, respectively (Notsu et al., 1992; Guillemare et al.,
1994; Quayle et al., 1997). External Ba® also could be act as an inhibitor of Kare channels in
smooth muscle, with a half-inhibition value of 100 M at —-80 mV (Nelson and Quayle, 1995;
Quayle et al., 1988; Bonev and Nelson, 1993). The Karp channels are not affected by iberiotoxin
and are less sensitive to TEA, with a half-inhibition value of 7 mM in both smooth and skeletal
muscle (Davies et al., 1989; Nelson and Quayle, 1995; Quayle et al., 1995). Numerous synthetic
K* channel activators belonging to several distinct classes have been produced, including
cromakalim, levcromakalim, nicorandil, pinacidil, minoxidil, diazoxide, and BRL-55834 (Quayle
et al., 1997). The vasodilation induced by these agents can be successfully blocked by
glibenclamide; thus, they are believed to hyperpolarize the cells in vascular smooth muscle by
targeting Karp channels. However, other K* channel blockers, such as iberiotoxin, apamin, or
low concentrations of TEA are ineffective to Karp channels (Brayden, 2002).

Inward rectifier K channels (Kir channels)

Inward rectifier K* (Kir) channels are abundant in the smooth muscle of small-diameter
resistance vessels (Fig. 1D) (Knot et al., 1996; Quayle et al., 1996; Park et al., 2006a). Though
the exact function of Kir channels in vascular smooth muscle is still incomplete, there are two
basic possibilities. First, Kir channels contribute to the resting membrane potential and resting
tone in small-diameter vascular smooth muscle. This hypothesis is supported by studies
showing the constriction of small-diameter coronary and cerebral arteries at resting tone in
response to Ba?*, a specific inhibitor of Kir channels (Park et al., 2007c, Park et al., 2007d).
Second, Kir channel activation in response to moderate increases in the extracellular K*
concentration (to 10-15 mM) may cause vasodilation. Evidence for this hypothesis comes from
the fact that vasodilation can be prevented by Ba® but not by removal of the endothelium or by
inhibitors of the other K* channels (Nelson and Quayle, 1995; Knot et al., 1996; Chrissobolis et
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al., 2000; Zaritsky et al., 2000; Eckman and Nelson, 2001; Rivers ef al., 2001; Park et al., 2007d).

The Kir channels in vascular smooth muscle cells mediate inward currents at membrane
potentials that are negative relative to the Ex and small outward currents at membrane
potentials that are positive relative to the Ex (Edwards and Hirst, 1988; Edwards et al., 1988,
Quayle et al., 1993). Given that the membrane potential of vascular smooth muscle is normally
positive relative to the Ex, a physiological role for the inward rectifier channel requires outward
current through the channel (Robertson et al., 1996). The measured outward current is on the
order of a few picoamperes, possibly as a result of internal Mg? or internal polyamine blocking
(Matsuda et al., 1987, Nichols et al., 1996; Xu et al., 1999). Only a few papers have addressed
the single-channel properties of Kir channel in vascular smooth muscle. The first report of
single channel currents corresponding to Kir (Kir2.1) channel, a 21 pS single-channel
conductance in small-diameter coronary arteries, was made by our group (Park et al., 2005c).
Similarly, a conductance of 20 pS has been reported for Kir2.1 channels in human pulmonary
artery smooth muscle cells (Tennant ef al., 2006). However, additional studies are required to
produce a more detailed picture of the single channel conductance of Kir channels in vascular
smooth muscle cells.

Kir channels are tetramers whose subunits, each of which contains only two transmembrane
domains, are encoded by members of the Kir gene family (Standen and Quayle, 1998; Kubo et
al., 2005). Channels formed from subunits encoded by the Kir2.0 gene subfamily exhibit
properties that are typical of native strong inward rectifiers. Moreover, their biophysical
properties in coronary, cerebral, basilar arterial smooth muscle correspond closely to those
reported for Kir2.1 channels expressed in a heterologous system, suggesting that Kir2.1, but not
Kir2.2 or Kir2.3, is expressed in vascular smooth muscle (Standen and Quayle, 1998; Bradley et
al., 1999; Chrissobolis et al., 2000; Park et al., 2005c). Furthermore, targeted gene disruption of
Kir2.1 (Kir2.17-) completely abrogated the Kir currents, and arteries from Kir2.17/- animals did
not dilate in response to elevated K* to 15 mM (Zaritsky et al., 2000). However, Wu et al. (2007)
suggested that the Kir channels in cerebral arteries contain both Kir2.1 and Kir2.2. In addition,
Kir2.1 and Kir2.4 expression has been detected in cultured human pulmonary arterial smooth
muscle cells (Tennant et al., 2006). Additional studies are required to characterize the
expression and function of each Kir subtypes.

Ba? blocks the Kir currents in vascular smooth muscle cells in a voltage-dependent fashion.
In fact, the half-inhibition values for the inhibition mediated by Ba?, which has been shown to
be 2.1 uM and 2.2 uM at —60 mV in coronary and cerebral arteries, respectively, increases
exponentially with hyperpolarization (Quayle et al., 1993; Robertson et al., 1996). However, Ba*
is much less effective against Karp channels (K4, 200 M at =60 mV), BK¢, channels (Kq¢>10
mM), and Kv channels (K4s>1 mM) (Nelson and Quayle, 1995; Robertson et al., 1996).
Therefore, at concentrations below 50 M, Ba® is a selective blocker of Kir channels in vascular
smooth muscle. Cs*, which acts from outside the cell, also inhibits Kir currents in vascular
smooth muscle with a Ky of 2.9 mM at -60 mV (Robertson et al., 1996; Quayle ef al., 1997).
External Ca? and Mg? partially block Kir channels. For example, at =60 mV, 5 mM Ca?" or Mg*
reduced the Kir current by 47% and 41%, respectively, (Robertson et al., 1996).
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Regulation of K* channels
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Fig. 2. Possible modulatory pathways of K* channels in vascular smooth muscle cells. PLC,
phospholipase C; DAG, diacylglycerol; PKC, protein kinase C; PKA, protein kinase A; PKG,
protein kinase G.

Modulation of K* channels by vasoactive substances

Effect of vasoconstrictors on K* channels: role of PKC

A number of vasoconstrictors inhibit K* channel activity, which contributes to membrane
depolarization. Generally, vasoconstriction is initiated at membrane receptors that are coupled
through a GTP-binding protein (Gq) to phospholipases, which generate the second messengers
diacylglycerol and inositol 1,4,5-triphosphate (IP;), which activate protein kinase C (PKC) (Fig.
2) (Standen and Quayle, 1998). Several PKC isoforms, including o, 8, ¢ and { have been
identified in vascular smooth muscle according to their Ca?-dependence (Dixon et al., 1994; Lee
and Severson, 1994). Classic PKCs (a and p) activation requires Ca%, diacylglycerol, and
phosphatidylserine; in comparison, the novel PKC (¢) requires diacylglycerol and
phosphatidylserine, but not Ca?*, and the atypical PKC ({) is activated by phosphatidylserine
alone (Park et al., 2006b).

Endothelin and angiotensin have shown to inhibit Kv currents via Ca?-independent PKCe
activation (Clement-Chomienne et al., 1996; Shimoda et al., 1998; Hayabuchi et al., 2001a).
More recently, Kv channel inhibition by thromboxane A; reportedly involves PKC({ (Cogolludo
et al., 2003; Crozatier, 2006). Despite the PKC-independent inhibition of BKc, channels by
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angiotensin in coronary arteries (Toro ef al., 1990; Minami et al., 1995), most recent data
indicate that PKC phosphorylation inhibits BKc, channels in vascular smooth muscle (Crozatier,
2006; Ledoux et al., 2006). However, the precise role of each PKC isoform remains to be
determined. In vascular smooth muscle, several vasoconstrictors such as angiotensin,
endothelin, vasopressin, noradrenaline, histamine, serotonin, and neuropeptide Y inhibit Karp
channels function via PKC activation (primarily Ca*-independent PKCe) (Wakatsuki et al., 1992;
Bonev and Nelson, 1996; Tanaka et al., 1997; Hayabuchi et al., 2001b; Park et al., 2005d). The
inhibitory effect of these compounds on Kir channels has not been examined as extensive as
their effects on other K* channels. Recent papers have shown that endothelin and angiotensin
have been shown to inhibit Kir channel function; however, this inhibition is closely associated
with Ca*-dependent PKCa activation (Park et al., 2005¢, 2006b). Consistent with these findings,
it has been suggested that microvessels, have Kir channels, express relatively high levels of
PKCo and low levels of PKCe (Collins et al., 1992; Dessy et al., 2000).

Effect of vasodilators on K* channels: role of PKA and PKG

A number of vasodilators including calcitonin gene-related peptide, fadrenergic agonists,
vasoactive intestinal peptide, and adenosine, activate adenylyl cyclase, thereby increasing the
intracellular concentration of cAMP, which activates cAMP-dependent protein kinase (PKA)
(Standen and Quayle, 1998). Several types of vascular K* channels are activated in this
mechanism (Fig. 2). The Karp channels in vascular smooth muscle are responsive to many of
the vasodilators that function through PKA, including calcitonin gene-related peptide, adenosine,
and isoprenaline (Kleppisch and Nelson, 1995; Quayle et al., 1997, Wellman et al., 1998). BKc.
channels are also activated by vasodilators coupled to PKA. However, most studies have
addressed activation by the fadrenoceptor (Sadoshima et al., 1988; Song and Simard, 1995;
Standen and Quayle, 1998). Though the regulation of Kv channels by vasodilators has been
largely ignored, fadrenoceptor stimulation has been shown to activate Kv currents through
PKA in rabbit vascular smooth muscle cells (Aiello et al., 1995; Standen and Quayle, 1998).
More recently, it was suggested that the potent vasodilator, adenosine also activates Kir currents
through PKA (Park et al., 2005¢e; Son et al., 2005). Kir channels, like other K* channels, may also
be modulated by other important vasodilators; additional studies are required to solve this issue.

Some vasodilators act through guanylyl cyclase, leading first to an increase in intracellular
cGMP, then consequently activates cGMP-dependent protein kinase (PKG) (Standen and
Quayle, 1998). The activation of PKG by nitric oxide or nitrovasodilators results in the
activation of BKc, channels in isolated smooth muscle cells from coronary and cerebral arteries
(Williams et al., 1988; Robertson et al., 1993). There is also some evidence that PKG can
activate the Karp channels in certain types of vascular smooth muscle. Atrial natriuretic factor
and isosorbide dinitrate increase the intracellular cGMP level in cultured vascular smooth
muscle cells, leading to the activation of individual Karp channels (Miyoshi et al., 1994; Kubo et
al., 1994; Nelson and Quayle, 1995). Furthermore, nitric oxide induces glibenclamide-sensitive
K* current in vascular smooth muscle, suggesting that either a rise in the level of cGMP or
stimulation of PKG leads to Karp channel activation (Fig. 2) (Murphy and Brayden, 1995; Nelson
and Quayle, 1995).
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Fig. 3. Pathological alteration of K* channels in vascular smooth muscle cells.

Alteration of K* channels in pathological conditions

Impaired K* channel function in vascular smooth muscle cells has been detected in various
pathological conditions including hypertension, diabetes, ischemia/reperfusion, and brain injury
(Fig. 3). For Kv channels, several studies have reported reduced Kv channel function in
hypertension and hypertrophy (Martens and Gelband, 1996; Kim et al., 2001; Wellman et al.,
2001). Pathological alterations of Karp channels are relatively well characterized in diabetes,
ischemia, and hypertension; these studies clearly demonstrated impaired Karp channel function
and altered gene expression in various arteries (e.g., Mayhan, 1994; Bari et al., 1996; Ghosh et al.,
2004). In spite of the fact that BKc, channel function is believed to be enhanced by such
pathological conditions as hypertension (Liu et al., 1998), some reports suggest that BKc, channel
function is reportedly diminished in hypertrophy, (Kim et al., 2003) or is unaffected by ischemia
(Bari et al., 1997). Recent evidence suggests that Kir channels are also affected by hypertension,
ischemia, hypertrophy, and diabetes (McCarron and Halpern, 1990; Marrelli et al., 1998; Mayhan
et al., 2004; Park et al., 2007¢c), but additional studies are necessary to establish a mechanism.
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