
Changes in extracellular fluid (ECF) osmolality cause 
water to flow across cell membranes to equilibrate the 
osmolality of the cytoplasm with that of the ECF1. By 
altering cell volume and intracellular ionic strength, 
large changes in ECF osmolality can affect the physical 
integrity of cells and tissues2 and the biological activity 
of life-sustaining macromolecules3. This is a threat that 
most animals face as they interact with their habitat. 
Some aquatic animals, termed osmoconformers, seem-
ingly make little effort to resist osmotic forces and adopt 
ECF osmolality values that are comparable to those of 
their external environment4,5. Osmoconformers tolerate 
such conditions because they have evolved molecular 
and biochemical mechanisms that optimize cell volume 
regulation1,6,7 and minimize increases in ionic strength by 
synthesizing osmolytes under hypertonic conditions8–11. By 
contrast, animals termed osmoregulators have evolved 
mechanisms that maintain ECF osmolality near a stable 
value. These animals engage physiological responses 
that actively oppose osmotic perturbations and serve 
to restore ECF osmolality towards a seemingly fixed 
osmotic ‘set-point’. Although it is not known whether 
this value represents a true singular physical entity or 
whether it is a balance point between different feedback 
systems that participate in the control of body fluid 
balance, the term set-point is retained to designate the 
value that is observed at rest. As a class, the mammals 
stand out because they maintain a common ECF osmotic 
set-point (near 300 mosmol kg–1) (FIG. 1; Supplementary 
information S1 (table)). This is important because, as 
it is encased in a rigid cranium, the mammalian brain 
can be damaged by shrinking or swelling. Indeed, large 

changes in ECF osmolality can cause severe neurological 
symptoms in these species owing to the effects of altered 
electrolyte concentrations on neuronal excitability12,13 and 
the physical trauma that can be caused by such condi-
tions14,15 (BOX 1). In this Review I address the mechanisms 
by which mammals defend against large changes in ECF 
osmolality. Following a brief overview of the processes 
that are involved in systemic osmoregulation as a whole, 
I focus on the location and function of the osmoreceptors 
that mediate osmosensation and on the neural pathways 
through which relevant homeostatic responses can be 
modulated by these unique sensory elements. 

Systemic osmoregulation in mammals
Although mammals strive to maintain a constant ECF 
osmolality, values measured in an individual can fluctu-
ate around the set-point owing to intermittent changes in 
the rates of water intake and water loss (through evapo-
ration or diuresis) and to variations in the rates of Na+ 
intake and excretion (natriuresis). In humans, for exam-
ple, 40 minutes of strenuous exercise in the heat16,17 or  
24 hours of water deprivation18,19 causes plasma osmolal-
ity to rise by more than 10 mosmol kg–1. In a dehydrated 
individual, drinking the equivalent of two large glasses 
of water (~850 ml) lowers osmolality by approximately  
6 mosmol kg–1 within 30 minutes20. Analogously, inges-
tion of 13 g of salt increases plasma osmolality by approx-
imately 5 mosmol kg–1 within 30 minutes21. Although 
osmotic perturbations larger than these can be deleteri-
ous to health, changes in the 1–3% range play an integral 
part in the control of body-fluid homeostasis. In fact, 
differences between the ECF osmolality and the desired 
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Osmolality
A quantitative measure of the 
total solute concentration in  
a solution expressed in moles 
per kilogram of solution. 
Osmolality is not the same  
as osmolarity, which is the 
number of moles of total 
solutes per litre of solution.

Osmolyte
Any dissolved substance that 
contributes to the osmolality  
of a solution.

Hypertonic conditions 
Conditions in which the ECF 
contains a higher concentration 
of membrane-impermeant 
solutes than is observed at rest 
in that particular species.

Central mechanisms of osmosensation 
and systemic osmoregulation
Charles W. Bourque

Abstract | Systemic osmoregulation is a vital process whereby changes in plasma osmolality, 
detected by osmoreceptors, modulate ingestive behaviour, sympathetic outflow and renal 
function to stabilize the tonicity and volume of the extracellular fluid. Furthermore, changes 
in the central processing of osmosensory signals are likely to affect the hydro-mineral 
balance and other related aspects of homeostasis, including thermoregulation and 
cardiovascular balance. Surprisingly little is known about how the brain orchestrates these 
responses. Here, recent advances in our understanding of the molecular, cellular and 
network mechanisms that mediate the central control of osmotic homeostasis in mammals 
are reviewed.
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Diuresis
An increase in the flow of urine 
produced by the kidney.

Natriuresis
The excretion of Na+ in urine.

set-point induce proportional homeostatic responses 
according to the principle of negative feedback (FIG. 2). 
Functionally speaking, therefore, it would seem that 
sensory osmoreceptors actively generate a basal signal 
at the desired set-point and have the ability to modulate 
this signal in a manner that encodes both the polarity 
and the magnitude of a change in osmolality.

Homeostatic responses to hyperosmolality. Studies in 
mammals22–24, including in humans25–27, have estab-
lished that ECF hyperosmolality stimulates the sensa-
tion of thirst, to promote water intake, and the release 
of vasopressin (VP, also known as antidiuretic hor-
mone), to enhance water reabsorption in the kidney. 
Hyperosmolality resulting from infusions of either 
NaCl or non-NaCl hypertonic solutions into the carotid 
artery also increases the rate of natriuresis from the 
kidney in various mammals28–32, including man33. In 
rats31,34 (but not in man35), this effect is mediated in 
part by the release of oxytocin into the bloodstream36. 
Hyperosmolality also inhibits salt appetite in sheep37 and 
in rats, in which the effect is mediated in part by central 
release of oxytocin38,39. Finally, it is worth noting that 
increases in ECF osmolality have been shown to inhibit 
panting in animals40,41 and exercise-induced sweating in 
humans42–44. Although these effects might support water 
conservation by reducing evaporative water loss under 
these conditions, the quantitative extent of their impact 
on osmoregulation remains to be defined. Therefore 
the osmotic control of sweating and panting will not be 
considered further in the present Review.

Homeostatic responses to hypo-osmolality. ECF hypo-
osmolality suppresses basal VP secretion in rats22 and 
humans45,46. Because renal water reabsorption is partly 
stimulated by VP levels at rest45, this inhibition of VP 
release effectively stimulates diuresis (FIG. 2). Intravenous 
infusion of hypo-osmotic solutions reduces thirst in dehy-
drated humans47. Moreover, the threshold for osmotically 
modulated thirst in water-replete individuals seems to lie 
a few milliosmoles below the osmotic set-point48. Thus, 
ECF hypo-osmolality can also promote homeostasis by 
inhibiting any desire to drink that might prevail under 
basal conditions (FIG. 2). As mentioned above, natriuresis 
is stimulated by systemic release of oxytocin in rats31,34. 
Interestingly, the basal electrical activity of hypothalamic 
oxytocin-releasing neurosecretory neurons is inhibited 
by hypo-osmolality36. It is therefore possible that a reduc-
tion in basal circulating oxytocin levels might reduce 
natriuresis under these conditions (FIG. 2). Analogously, 
a decrease in central oxytocin release might enhance 
salt appetite during ECF hypotonicity (FIG. 2). Whether 
ECF hypo-osmolality specifically inhibits natriuresis or 
stimulates salt appetite has yet to be determined.

Osmoreceptors in the brain and the periphery
The fact that there is feedback control of osmoregulatory 
responses implies the existence of a sensory mechanism 
that can detect osmotic perturbations. Early studies49–52 
provided clear evidence that “cellular dehydration” (that 
is, cell shrinking) was required for thirst and VP release 
to be stimulated during ECF hyperosmolality: these 
responses could be induced by infusions of concentrated 
solutions containing membrane-impermeable solutes, 
which extract water from cells, but not by infusions of 
solutes that readily equilibrate across the cell membrane 
(such as urea). Verney coined the term osmoreceptor to 
designate the specialized sensory elements. He further 
showed that these were present in the brain50,53 and pos-
tulated that they might comprise “tiny osmometers” and 
“stretch receptors” that would allow osmotic stimuli to 
be “transmuted into electrical” signals50. Osmoreceptors 
are therefore defined functionally as neurons that are 
endowed with an intrinsic ability to detect changes in 
ECF osmolality. As such, it is reasonable to posit that 
the osmotic set-point is encoded by the resting electri-
cal activity of these cells, and that the magnitude and 
polarity of ambient osmotic perturbations is signalled 
to downstream neurons by proportional changes in the 
action-potential firing rate (or firing pattern). Although 
cerebral osmoreceptors have a determinant role in the 
control of osmoregulatory responses (FIG. 2), it is now 
known that both cerebral and peripheral osmoreceptors 
contribute to the body fluid balance.
 
Peripheral osmoreceptors. Experiments in animals 
and humans have indicated that there are peripheral 
osmoreceptors along the upper regions of the alimen-
tary tract and in the blood vessels that collect solutes 
absorbed from the intestines (FIG. 3). Specifically, such 
receptors are located in the oropharyngeal cavity54, the 
gastrointestinal tract21,55,56, the splanchnic mesentery57, 
the hepatic portal vein58 and the liver59,60. In rats, delivery 

Figure 1 | Extracellular fluid osmolality in animals. The plot shows values of 
extracellular fluid (ECF) osmolality observed in various animals. The values, organized in 
ascending order along the y‑axis, were taken from published studies (Supplementary 
information S1). Although different types of organisms (empty circles) can display values 
that span the full range of environmental osmolalities, mammals (filled circles) display 
osmotic set-points that cluster around 300 mosmol kg–1. Aestivating frogs spend the 
summer in a state of dormancy.
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Hypernatraemia
A condition in which a solution 
has a higher concentration of 
free Na+ than is normal for the 
species in question.

of a gastric salt load increases the osmolality of blood 
in the hepatic portal vein within 7 minutes, whereas 
systemic osmolality remains unchanged for up to 
15 minutes56. Osmoreceptors in these areas can therefore 
detect the osmotic strength of ingested materials and, 
through afferent connections to the CNS (FIG. 3), induce 
anticipatory responses that might buffer the potential 
impact of ingestion-related osmotic perturbations61. 
Indeed, water intake causes satiety in thirsty humans 
and animals before ECF hyperosmolality is fully cor-
rected27,62 (FIG. 4b). Similarly, gastric water loading has 
been shown to lower osmotically stimulated VP release 
long before any detectable reduction in ECF osmolal-
ity is observed18,63–65. Furthermore, gastric salt loading 
inhibits salt appetite in Na+-depleted rats66 and stimulates 
both VP release56,57,67 and thirst62 before ECF osmolality 
is enhanced by absorption of the salt. Although osmo
receptors located on the luminal side of the alimentary 
tract seem to mediate many of these effects, peripheral 
receptors located at post-absorption sites might also be 
important because infusions of hypertonic saline directly 
into the hepatic portal vein can provoke anticipatory 
osmoregulatory responses in the absence of significant 
changes in ECF osmolality68,69.

The molecular and cellular structure of peripheral 
osmoreceptors is unknown. However, the informa-
tion that they collect has been shown to reach the CNS 
through fibres that ascend in the vagus nerve59,60,64,68,70,71. 
A spinal pathway that relays afferent signals from the 
splanchnic nerves also mediates responses to hyper-
osmotic stimulation of the mesenteric-portal area72. 
Thus, as illustrated in FIG. 3, osmosensory afferents 
reach the CNS through the same anatomical routes as 
other visceral sensory signals73–77. Indeed, osmosensi-
tive neurons have been found in the nodose ganglia78, 
from which axons that ascend in the vagus nerve can 
make synapses in the nucleus tractus solitarius (NTS). 
Osmosensory fibres that course through the splanchnic 
nerves are presumably peripheral projections of dorsal 
root ganglion neurons that provide input to the thoracic 
spinal cord, where first order synapses are made onto 
ascending relay neurons in the superficial layers of the 
dorsal horn (FIG. 3).

Central osmoreceptors. Classic studies23,50,52,53 provided 
clear evidence that the brain possesses an intrinsic 
osmosensor that responds poorly to infusions of hyper
tonic urea into the internal carotid artery. However, 
because urea only weakly permeates across the 
blood–brain barrier, its infusion into the bloodstream 
can effectively withdraw water and thus cause cellular 
dehydration within the brain compartment79. The pri-
mary cerebral osmoreceptors that modulate thirst and 
VP release, therefore, seem to be located in regions of 
the brain that are devoid of a blood–brain barrier23,24, 
such as the circumventricular organs80 (FIG. 3). Previous 
studies have shown that hypertonic solutions injected 
into the anterior ventral region of the third ventricle 
can provoke thirst and VP release81,82, and lesions of this 
area prevent these responses during ECF hyperosmo-
lality 83,84. This area encloses the organum vasculosum 
laminae terminalis (OVLT; FIG. 3), one of the brains’ 
circumventricular organs80. The OVLT has therefore 
been proposed to serve as one of the key osmosensing 
sites in the mammalian brain85. In agreement with this 
hypothesis, functional MRI studies have shown that the 
anterior region of the third ventricle becomes activated 
during the onset of ECF hypertonicity in animals86 and 
humans27,87 (FIG. 4a,b). Moreover, electrophysiological 
studies indicate that the rate of action-potential dis-
charge in a subset of OVLT neurons varies as a positive 
function of fluid osmolality 88,89 (FIG. 4c,d), a behaviour 
that is retained when synaptic transmission is blocked90 
or when individual neurons are physically isolated from 
the surrounding cells89. Thus, there are neurons in the 
OVLT that seem to serve as primary osmoreceptors.

Mechanisms of osmosensory transduction
Osmoreceptors are specialized neurons. Osmoreceptor 
neurons lie at the heart of the central systems that medi-
ate osmosensation and osmoregulation. These neurons 
must detect differences between ECF osmolality and a 
pre-established set-point, and they must encode this 
information into electrical signals that can persist even 
during prolonged perturbations50. Studies involving 
electrophysiological recording (FIG. 4c,d), functional 
imaging (FIG. 4a,b) or the expression of activity-dependent  
immediate-early genes such as Fos91 have shown that 
many subsets of neurons in the CNS are osmorespon-
sive92. Although osmoresponsive neurons might display 
changes in firing frequency during osmotic stimulation, 
this alone does not identify such cells as osmoreceptors. 
By definition, osmoreceptor neurons must display an 
intrinsic ability to transduce osmotic perturbations 
into changes in the rate or pattern of action-potential 
discharge. Previous studies using in vitro prepara-
tions in which synaptic transmission was blocked by 
chemical means have suggested that osmoreceptor 
neurons might be present in the OVLT90, the supraoptic 
nucleus93,94, the subfornical organ95, the medial pre
optic area96 and the caudal part of the NTS97. However, 
because glial cells can confer osmosensitivity through 
the release of taurine (see below), chemical blockade 
of synaptic transmission is not sufficient to prove that 
responsive neurons are intrinsically osmosensitive. 

 Box 1 | Pathophysiology of osmotic perturbations in mammals

Increases in plasma osmolality of ~10 mosmol kg–1 (which evoke a concurrent 
hypernatraemia) are associated with feelings of headache, reduced levels of alertness 
and difficulty in concentrating19. Larger perturbations can also lead to lethargy, 
weakness, irritability, hyperflexia, spasticity, confusion, coma and seizures179,180. Acute 
increases in plasma osmolality exceeding 80 mosmol kg–1 (for example, resulting from 
excessive salt ingestion during failed attempts to induce emesis) usually cause seizures 
and death181–183. Analogously, extracellular fluid (ECF) hypo-osmolality (also termed 
dilutional hyponatraemia) is commonly induced by excessive water intake. Marathon 
runners, for example, can develop hypo-osmolar hyponatraemia if their water intake 
exceeds the body’s need for fluid replacement184. Hypo-osmolality can also occur as a 
result of excessive voluntary drinking185,186 or compulsive drinking (for example, in 
some schizophrenic patients)187 or from accidental over-hydration in the hospital 
setting184. The clinical symptoms associated with ECF hypo-osmolality are mainly 
neurological, progressing from headache, nausea and vomiting to mental confusion, 
seizures, coma and death179,184,188. 
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Patch-clamp pipette
A glass pipette with a tip 
diameter of approximately  
1 µm. To make patch-clamp 
recordings, it is filled with a 
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flexible tube connected to the 
same holder is used to alter 
the hydrostatic pressure  
inside the pipette and the cell 
to which it is connected.

Studies performed on cells that had been acutely iso-
lated from specific brain regions have indicated that 
neurons in the OVLT89 and in the subfornical organ98, 
as well as magnocellular neurosecretory cells (MNCs) 
in the supraoptic nucleus (SON)99,100, can operate as 
intrinsic osmoreceptors. Although experiments on 
osmoresponsive neurons have indicated that different 
subtypes of neurons can be either excited or inhibited 
by hyperosmotic stimuli, studies on osmoreceptor neu-
rons suggest that most of these cells are proportionally 
excited by hypertonic stimuli (FIG. 4c,d) and inhibited 
by hypo-osmotic stimuli101 (FIG. 5a). Thus, the basal 
electrical activity of these cells effectively encodes the 
osmotic set-point.

Osmotic stimuli modulate non-selective cation chan-
nels in MNCs. Most of what we know about the cel-
lular mechanism of osmosensory transduction has 
come from work that was performed on MNCs in 
the rodent SON, and a recent study has indicated that 
MNCs in the paraventricular nucleus (PVN) sense 
changes in ECF osmolality through similar mecha-
nisms102. Recordings in hypothalamic slices or explants 
have shown that hyperosmotic stimuli increase the 
firing rate in MNCs by depolarizing the membrane 
potential93, and that this effect is caused by the acti-
vation of a non-selective cation current94,102. These 
findings have been confirmed by studies performed 
on MNCs that were acutely isolated from the SON of 
adult rats99, which further revealed that hypo-osmotic 
stimuli inhibit firing by hyperpolarizing the membrane 
potential, an effect that is caused by the inhibition 
of a cation conductance that is active under resting 
conditions100,103. Indeed, individual neurons have been 
shown to respond to both increases and decreases in 

osmolality (FIG. 5a), and steady-state current-voltage  
analysis has shown that MNCs encode dynamic changes 
in ECF osmolality through proportional changes in  
the probability of opening of non-selective cation 
channels100,103.

Osmosensory transduction is a mechanical process. 
Studies on isolated MNCs have revealed that increases in 
cation conductance that are caused by hypertonicity are 
temporally linked to a decrease in cell volume100. Indeed, 
unlike many cells in the body, which resist changes in vol-
ume through various regulatory mechanisms1,7,10, MNCs 
behave as osmometers: they display reversible changes in 
volume that are inversely proportional to ECF osmolality 
(FIG. 5b) and that can be sustained for many minutes104. 
Thus, in principle, the modulation of the osmosensory 
transduction channels could be mediated by a mechani-
cal effect associated with an osmotically evoked change 
in cell volume, the concentration or dilution of a specific 
cytoplasmic solute, or a change in intracellular ionic 
strength (FIG. 5c). However, decreases in cell volume pro-
voked by applying suction to the inside of a patch-clamp 
pipette can depolarize and excite MNCs by enhancing a 
cation current, whereas inflating cells with positive pres-
sure attenuates a basal cation conductance and inhibits 
action-potential firing by causing hyperpolarization100,105. 
Moreover, as shown in FIG. 5d,e, responses evoked by 
osmotic stimuli can be reversed by restoring the cell 
volume through changes in pipette pressure105. Because 
responses that are evoked during changes in pipette pres-
sure occur without concurrent changes in ionic strength 
and without concentration–dilution effects, these results 
suggest that osmosensory transduction in MNCs is 
essentially a mechanical process. Indeed, when they are 
normalized to the degree of volume change, changes in 
cation conductance measured in MNCs are quantitatively 
equivalent whether they are evoked by changes in pipette 
pressure or by osmotic stimuli105.

The osmosensory transducer might be a TRPV channel. 
The first clue concerning the molecular identity of the 
osmosensory transduction channel came from the dis-
covery106 that osm‑9, a gene that is mutated in a mutant 
line of Caenorhabditis elegans that lacks an avoidance 
response to strongly hyperosmolar solutions, encoded a 
member of the superfamily of transient receptor poten-
tial (TRP) channels107. Indeed, many subtypes of TRP 
channels can be blocked by the nonspecific inhibitors 
gadolinium and ruthenium red108, compounds that are 
also potent inhibitors of osmosensory transduction in 
MNCs109,110 and OVLT neurons89. Moreover, most sub-
types of TRP channels are permeable to Ca2+ (ref. 107), 
and the osmosensory transduction current of MNCs is 
known to be mediated by a non-selective cation con-
ductance that features a significant degree of permeabil-
ity to Ca2+ (PCa/PNa = ~5)111. Although members of the 
TRP vanilloid (TRPV) family of cation channels seem to 
have important roles in osmosensation and osmoregula-
tion, the molecular architecture and composition of the 
mammalian central osmoreceptor transduction channel 
remains unknown (BOX 2).

Figure 2 | Basic mechanisms of osmoregulation. Changes in extracellular fluid (ECF) 
osmolality modulate homeostatic responses that affect the Na+ balance (left) and the 
water balance (right) to promote homeostasis according to the principle of negative 
feedback. Hypertonic and hypotonic conditions lead to proportional changes in the 
intake or excretion of water and sodium to maintain ECF osmolality near a constant set-
point. Dashed lines illustrate potential homeostatic responses for which experimental 
data is presently unavailable.
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Molecular basis of osmosensory transduction. Studies 
on acutely isolated MNCs have shown that they have a 
plasma-membrane area that is almost 50% greater than 
would be required if they had a smooth surface, and 
capacitance measurements have shown that the total 
surface area of these cells does not change significantly 
during osmotically evoked changes in cell volume104. 
These observations imply that variations in volume are 
accompanied by changes in the shape of membrane-
surface features (such as folds) in osmotically stimulated 
cells. The nature of these changes and their physical 
relationship to the transduction channels have not 
been studied, but they might play an important part in 
the channels’ mechanical gating. In addition, actin fila-
ments have been found to be required for osmosensory 

transduction in MNCs, and the magnitude of the trans-
ducer current varies in proportion with subcortical actin 
density in these neurons105. How actin filaments medi-
ate these effects is not known. Actin filaments could 
serve as tethers that impart volume-dependent strain 
through physical links to the ion channel, or as scaffolds 
in specialized membrane domains in which untethered 
channels could experience shape-induced forces at the 
protein–lipid interface112,113. Another possibility is that  
the channels might be gated indirectly, through the action 
of an actin-dependent mechanosensitive enzyme. In such 
a scenario, increases and decreases in channel activity 
during hypertonicity and hypotonicity would require 
rapid and bidirectional changes in the basal activity of 
the enzyme113.

Figure 3 | Osmoregulatory circuits in the mammalian brain and the periphery. Sagittal illustration of the rat brain,  
in which the relative positions of relevant structures and nuclei have been compressed into a single plane. Only structures 
that have been directly implicated in the osmotic control of osmoregulatory responses are shown. Neurons and pathways 
are colour-coded to distinguish osmosensory, integrative and effector areas. Specific references documenting evidence 
for the pathways that are illustrated can be found in the Supplementary information S2 (Box). Although visceral sensory 
pathways that relay information from dorsal root ganglion neurons are known to ascend through the spinal cord, specific 
evidence that peripheral osmosensory information ascends through this route is only partial72; this tract is therefore 
illustrated as a dashed line. ACC, anterior cingulate cortex; AP, area postrema; DRG, dorsal root ganglion; IML, 
intermediolateral nucleus; INS, insula; MnPO, median preoptic nucleus; NTS, nucleus tractus solitarius; OVLT, organum 
vasculosum laminae terminalis; PAG, periaqueductal grey; PBN, parabrachial nucleus; PP, posterior pituitary; PVN, 
paraventricular nucleus; SFO, subfornical organ; SN, sympathetic nerve; SON, supraoptic nucleus; SpN, splanchnic nerve; 
THAL, thalamus; VLM, ventrolateral medulla.
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Role of taurine release from glial cells. Many cells 
release osmolytes as a mechanism to promote 
regulatory volume decreases in response to hypo-
osmotic swelling1,6,7. The amino acid taurine is one of  
the primary organic osmolytes that is released during the 
brain’s adaptive response to hyponatraemia in vivo10,11. 
Previous studies have shown that hypo-osmotic condi-
tions promote taurine release from the astrocytes that 
surround MNCs in the SON114,115. Taurine is a potent 
agonist at extra-synaptic glycine receptors expressed 
on these MNCs115,116, and its release has been shown to 
contribute to the inhibitory effect of hypotonicity on 
the firing rate of MNCs in vivo115. Although pharmaco-
logical studies suggest that taurine release by glial cells 
is mediated by a volume-regulated anion channel117, 
the molecular identity of this channel remains to be 
established.

Role of other ion channels in osmoreception. In prin-
ciple, the inward current that mediates depolarizing 
responses to hypertonicity could be assisted by the 
activation of other Na+ or Ca2+ channels, by the inhi-
bition of a resting K+ conductance or by the modula-
tion of an electrogenic transporter. Analogously, the 
outward current that mediates the hyperpolarizing 
effect of hypotonicity could be supported by actions 
opposite to those listed above. Patch-clamp record-
ings from acutely isolated MNCs118 have revealed 
that these cells express a number of stretch-activated 
K+ channels, the properties of which are consistent with 
those of Tandem P‑domain weak inward-rectifying K+ 
(TWIK)-related (TREK) channels and TWIK-related 
arachidonic-acid-stimulated K+ (TRAAK) channels119. 
In principle, the activation of such channels during 
membrane stretching caused by cell swelling could 
assist hyperpolarizing responses to hypotonicity. This 
hypothesis has yet to be investigated. A recent study has 
shown that acute hyperosmotic conditions can upregu-
late a slow time- and voltage-dependent K+ current in 
MNCs120. The activation threshold of this current (near 
–60 mV) is not affected by hyperosmolality, but the 
absolute magnitude of the outward current recorded at 
more positive voltages is significantly enhanced under 
these conditions. Although the enhancement of an 
outward current cannot cause a depolarizing response, 
the upregulation of a slow voltage-gated K+ current 
might play an important part in promoting the phasic 
bursting activity that emerges in VP‑releasing MNCs 
during ECF hyperosmolality36,121–124 and that facilitates 
VP release from the axon terminals of these cells in the 
neurohypophysis125,126. The identity, the functional role of 
and the basis for osmotic modulation of this channel 
remain to be defined.

CNS osmoregulatory mechanisms
Information derived from peripheral and cerebral 
osmoreceptors is transmitted either directly or  
indirectly to many parts of the brain, where integra-
tion with other visceral sensory modalities (such as 
blood volume, blood pressure, ECF Na+ concentration 
and body temperature) coordinates the activation or 

Figure 4 | Cerebral osmosensors are excited by hypertonicity. a | MRI images in the 
horizontal (upper image) and sagittal (lower image) planes, highlighting areas that show 
a significantly increased blood-oxygen-level-dependent (BOLD) signal under conditions 
in which thirst was stimulated in a healthy human by infusion of hypertonic saline. The 
arrows point to increased BOLD signals in the anterior cingulate cortex (ACC; left-hand 
arrow) and in the area of the lamina terminalis (right-hand arrow) that encompasses the 
organum vasculosum laminae terminalis (OVLT). b | Plots showing changes in thirst 
(upper plot) and changes in the BOLD signals in voxels of interest in the ACC (middle 
plot) and the lamina terminalis (lower plot) of the subject imaged in part a. The values of 
plasma osmolality shown in the upper plot represent average changes that were 
observed in a group of subjects that all underwent the same treatment. The traces show 
that osmoreceptors in the OVLT stay activated as long as plasma osmolality remains 
elevated, whereas the activation of cortical areas correlates with the sensation of thirst.  
c | Frequency plots showing examples of changes in firing rate that were detected during 
extracellular single-unit recordings obtained from three OVLT neurons in superfused 
explants of mouse hypothalamus. d | A scatter plot showing the changes in firing rate 
(relative to baseline) that were recorded from many mouse OVLT neurons during the 
administration of hyperosmotic stimuli of various amplitudes. The data indicate that 
osmoreceptor neurons in the OVLT encode increases in extracellular fluid osmolality 
through proportional increases in firing rate. This plot only shows data from 
osmoresponsive neurons (approximately 60% of the total neuronal population in the 
OVLT). Part a modified, with permission, from REF. 27  (2003) National Academy  
of Sciences. Part b modified, with permission, from ref. 27  (2003) National Academy of 
Sciences and REF.197  (1999) National Academy of Sciences. Parts c and d reproduced, 
with permission, from REF. 89  (2006) Society for Neuroscience.
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inhibition of individual osmoregulatory responses 
in a manner that optimizes overall homeostasis127. 
Different types of osmotic perturbations require 
different combinations of physiological responses. 

For example, dilutional hyponatraemia is corrected by  
a combination of salt intake and diuresis, whereas  
hypovolaemic hyponatraemia (such as that following 
intake of a diuretic compound128) requires intake 
of both salt and water. To implement the correct 
homeostatic programme, the osmotic control of the 
mechanisms shown in FIG. 2 is modulated by non-
osmotic perturbations. For example, the VP release 
that is normally induced by ECF hyperosmolality is 
inhibited during concurrent hypervolaemia22,45. This 
effect is appropriate because these conditions require 
a net loss of salt and fluid that can best be achieved by 
stimulating natriuresis and suppressing water retention. 
As might be expected, CNS osmoregulatory circuits 
interact intimately with other homeostatic networks 
(such as inputs from baroreceptors). For simplicity, the 
present Review focuses specifically on the transmis-
sion of osmosensory information towards effector sites 
in the CNS. Readers should consult other reviews for 
complementary information regarding the non-osmotic 
control of osmoregulatory responses (for example, see  
REFS 127,129,130). Little is known about the mecha-
nisms by which osmotic and non-osmotic signals are 
integrated; however, previous work has shown that at 
least six areas of the CNS participate in this process 
(FIG. 3): the NTS, the median preoptic nucleus (MnPO), 
the lateral parabrachial nucleus (PBN), the thalamus, the 
hypothalamic PVN and parts of the ventrolateral 
medulla (VLM). Information that is gathered and 
processed in these areas is presumably transmitted to 
effector sites that generate individual osmoregulatory 
responses. The network connections involving these 
areas that are illustrated in FIG. 3 are based on extensive 
anatomical studies (see Supplementary information S2 
(box)). These parts of the brain are discussed below in 
the context of individual homeostatic responses.

Controlling VP release. VP is synthesized by a subset 
of MNCs located in the PVN and SON of the hypotha-
lamus. These MNCs project axons into the neuro
hypophysis (FIG. 3), where hormone release occurs 
when action potentials stimulate voltage-gated Ca2+ 
influx and exocytosis125,126. VP‑releasing MNCs in the 
SON and PVN are thus the ‘command’ neurons that 
regulate diuresis. Indeed, the rate of action-potential 
discharge by MNCs varies as a positive function of ECF 
osmolality36,101,121,124. The firing rate of MNCs that pre-
vails under resting conditions (~1–3 Hz) mediates basal 
VP secretion, whereas decreases and increases in firing 
frequency (respectively) inhibit and enhance hormone 
release during ECF hypotonicity and hypertonicity101,131. 
As discussed above, various local factors, including 
MNCs’ intrinsic osmosensitivity and taurine release 
from glia, contribute to the osmotic control of firing 
rate in MNCs. However, these neurons also receive syn-
aptic afferents from the OVLT132–134, the MnPO132,133, the 
PBN135,136 and the NTS135 (FIG. 3), and previous studies 
have established that the osmotic modulation of MNCs 
in situ depends in large part on afferent signals derived 
from peripheral osmoreceptors58 and from neurons  
in the OVLT and MnPO137,138. Notably, experiments 

Figure 5 | Osmosensory transduction is a mechanical process. a | Whole-cell voltage 
recording from an acutely isolated rat magnocellular neurosecretory cell (MNC). Note 
that hyperosmolality causes membrane depolarization and increased action-potential 
firing, whereas hypo-osmolality induces hyperpolarization and reduced firing frequency. 
b | Isolated MNCs show changes in cell volume (nV, normalized to control volume) that 
are inversely proportional to extracellular fluid (ECF) osmolality. c | Cells exposed to 
hypotonic conditions show an increase in volume and a decrease in intracellular ionic 
strength. The opposite changes are observed under hypertonic conditions. d | During 
whole-cell patch-clamp recording, the decrease in membrane cation conductance (G) 
that is caused by a hypo-osmotic stimulus can be reversed by restoring the cell volume 
through suction applied to the recording pipette. e | Analogously, the increase in G 
that is caused by a hyperosmotic stimulus can be reversed by restoring the cell 
volume through an increase in pipette pressure. Part a reproduced, with permission, 
from ref. 103  (1993) American Physiological Society. Part b reproduced, with 
permission, from ref. 104  (2003) Macmillan Publishers Ltd. Parts d and e modified, 
with permission, from REF. 105  (2007) Society for Neuroscience.
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in superfused explants of rat hypothalamus have shown 
that glutamatergic afferents from OVLT neurons play 
an important part in the osmotic control of MNCs in 
the SON101,139.

Regulating thirst. In hyperosmolar subjects, water inges-
tion satiates the sensation of thirst within seconds, many 
minutes before the absorption of water can correct ECF 
osmolality27 (FIG. 4b). As mentioned above, this effect is 
mediated in part by peripheral osmoreceptors, but it 
is also mediated by other subtypes of oropharyngeal 
receptors63,140 and gastrointestinal distension sensors62, 
which together monitor the pre-systemic impact of 
ingested fluids. Functional imaging studies in humans 
have shown that the area that encompasses the OVLT 
remains activated in satiated hyperosmolar individuals27 
(FIG. 4b). This indicates that osmoreceptors in this region 
continue to monitor ECF osmolality under these condi-
tions, and that the conscious perception and satiation 
of thirst must occur elsewhere in the CNS. Imaging 
studies in humans have offered a unique opportunity to 
define the brain regions that are activated in response 
to ECF hyperosmolality, the de-activation of which cor-
relates with the onset of satiety27,141. These approaches 
have revealed that parts of the anterior cingulate cortex 
(ACC) and the insular cortex (INS) show changes in 
activity that correlate with the progressive intensifica-
tion of thirst and its satiation upon drinking across 
different subjects (see REF. 87 for a review). It has been 
proposed that the activation of parts of the INS might 
be involved in the genesis of specific homeostatic sen-
sations (such as pain, hunger and thirst), whereas the 
activation of specific sites in the ACC might serve to 
motivate behavioural responses that are demanded by 
particular homeostatic disturbances73,74,142. In agreement 
with this hypothesis, electrical stimulation in parts of 
the ACC has been found to elicit drinking within sec-
onds of stimulus onset in awake monkeys143. Moreover, 
studies in rats have shown that the INS and the ACC 
receive information from osmoreceptors (FIG. 3), and 
immunohistochemical detection of Fos, a product of the 
activity-dependent immediate-early gene Fos, has sug-
gested that neurons in the INS become activated under 
conditions that stimulate thirst144,145. Interestingly, corti-
cal lesions that encompass the ACC and/or the INS do 
not completely prevent water intake146. Thus, although 
a conscious perception of the sensation of thirst might 
require cortical tissue, drinking behaviour might also 
be commanded from subcortical structures (such as the 
periaqueductal grey (PAG); for a review see REF. 147).

Regulating salt appetite. Although many parts of the 
CNS are known to participate in the control of salt appe-
tite during changes in ECF volume62,127,129, little is known 
about the central pathways that specifically inhibit salt 
appetite during ECF hyperosmolality. Recent studies 
have shown that the PBN exerts a powerful inhibitory 
influence on salt intake127, and that inhibition of PBN 
neurons stimulates salt intake in water-replete148 or 
hyperosmolar rats149. Moreover, lesions that encom-
pass parts of the NTS have been shown to remove an  

 Box 2 | TRPV channels as osmosensory transducers

There are four heat-sensitive mammalian transient receptor potential vanilloid (TRPV) 
channels — TRPV1, TRPV2, TRPV3 and TRPV4 — and two highly Ca2+-selective, heat-
insensitive TRPV channels (TRPV5 and TRPV6)107,108. The mammalian TRPV genes are 
orthologues of the Caenorhabditis elegans gene osm‑9, which encodes an ion channel 
that is involved in hyperosmolality-avoidance behaviour106. Osmosensory neurons in the 
organum vasculosum laminae terminalis (OVLT) express TRPV1 (Refs 89,144) and TRPV4 
(Refs 189,190), and magnocellular neurosecretory cells (MNCs) in the supraoptic 
nucleus (SON) express TRPV1 (Refs 109,144) (see figure, part a) and TRPV2 (Ref. 191). 
Whether OVLT neurons also express TRPV2 and TRPV3, and whether MNCs also express 
TRPV3 and TRPV4, is unknown. When they are transfected into heterologous cells, 
TRPV2 and TRPV4 form cation channels that can be activated by hypo-osmolality189,192. 
Experiments on TRPV1-knockout (TRPV1-KO) mice have also indicated that the Trpv1 
gene is required for hypotonicity-induced ATP release from urothelial cells193.

Importantly, this activation by hypotonicity is the reverse of the osmosensory responses 
of MNCs and OVLT neurons (FIG. 4). However, transgenic expression of mammalian TRPV4 
can rescue the hyperosmolality-avoidance phenotype of osm‑9-mutant C. elegans194.  
This suggests that TRPV4 is important for osmosensitivity, but that additional proteins 
expressed in native osmosensory neurons might be required to generate a channel that is 
activated by hyperosmolality. Two groups have generated mice that lack Trpv4. One 
reported an impairment in the stimulation of fos expression in OVLT neurons, as well as 
thirst and VP release in response to hyperosmolality190. However, the other study found no 
difference in water intake, and an exaggerated VP response to hypertonicity. Further work 
is required to clarify the role of TRPV4 in osmoreceptor neurons.

Although wild-type OVLT neurons144 and MNCs109,144 contain the carboxy terminus of 
TRPV1, they are insensitive to capsaicin89,109. The molecular structure of the TRPV1 
variant that is expressed in these neurons has yet to be determined, but it seems to lack 
part of the amino terminus109. Interestingly, deletion of the Trpv1 gene in mice abolished 
the responsiveness of MNCs and OVLT neurons to hypertonicity89,109. The neurons 
displayed normal shrinking (lower half of part b), but lacked the accompanying increase 
in cation conductance (upper half of part b), the membrane depolarization and the 

increased action-potential firing (part c) that are 
normally observed in wild-type cells under 
hypertonic conditions. Furthermore, the mice 
had a significantly higher resting extracellular 
fluid osmolality than wild-type animals109 and 
impaired thirst89 and vasopressin (VP) release109 in 
response to acute hyperosmolality. Interestingly, 
a recent study195 failed to observe differences in 
osmotically induced water intake and fos staining 
in OVLT neurons between wild-type and TRPV1-
KO mice. Additional studies are required to 
identify the cause of these discrepancies and to 
further define the roles of TRPV channels in 
osmosensation. Parts a and b modified, with 
permission, from REF. 109  (2006) Macmillan 
Publishers Ltd. Part c modified, with permission, 
from REF. 196  (1997) Society for Neuroscience.
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Organic osmolyte
An organic molecule that is 
synthesized by a cell to 
increase the effective 
osmolality of the intracellular 
compartment and thus resist 
the shrinking that would 
otherwise be caused by 
extracellular hypertonicity.

Hyponatraemia
A condition in which the 
plasma has a lower 
concentration of free Na+ ions 
than is normal for the species 
in question.

Neurohypophysis
The posterior pituitary gland, 
also known as the pars nervosa 
of the pituitary.

Dilutional hyponatraemia
A condition in which the 
plasma becomes 
hyponatraemic as a result of 
excessive water intake, as 
opposed to as a result of 
sodium loss.

Hypovolaemic 
hyponatraemia
A condition in which the 
plasma becomes 
hyponatraemic in combination 
with a significant reduction in 
total blood volume.

Superfused explant
A small explant of adult brain 
tissue that is kept functional by 
the superfusion of an 
oxygenated artificial 
cerebrospinal fluid.

inhibitory influence on salt appetite in resting ani-
mals150,151. It is therefore possible that peripheral osmo
receptors mediate an inhibitory influence on salt appetite 
through ascending inputs that are relayed directly to the 
PBN or through the NTS (FIG. 3). Similarly, inputs from 
cerebral osmoreceptors might also inhibit salt appetite 
through projections from the OVLT and the MnPO 
to the PBN. As mentioned earlier, centrally released 
oxytocin inhibits salt appetite under hyperosmotic 
conditions38,39. The neural source of the oxytocin and 
the CNS targets that mediate these effects have yet to be 
identified. However, oxytocin-containing parvocellular 
neurons in the PVN are known to project to parts of 
the dorsal medulla that include the NTS152, and subsets 
of parvocellular PVN neurons can be activated by ECF 
hyperosmolality153,154. Thus, osmotically activated PVN 
neurons might inhibit salt intake by releasing oxytocin 
into the NTS. Although circuits involving neurons in the 
OVLT, the MnPO, the PVN and the NTS might modulate 
salt appetite through the PBN, salt-intake behaviour is 
known to involve other transmitters and depend on addi-
tional forebrain areas, including the amygdala, the bed 
nucleus of the stria terminalis and the lateral hypotha-
lamus (for reviews see REFS 127,129). Specific cortical 
areas, other than taste-associated regions155, that might in 
part be activated by cognitive perception of salt appetite 
have yet to be identified.

Controlling natriuresis. Renal Na+ excretion is regulated 
by various hormones and by sympathetic innervation 
from the renal nerves (for reviews see REFS 130,156–158). 
Previous studies have shown that lesions of the lamina 
terminalis that encompass the OVLT impair the increase 
in natriuresis that is normally provoked by ECF hyper-
osmolality32. Although the primary hormones that 
regulate natriuresis (aldosterone, angiotensin II and 
atrial natriuretic peptide) are secreted by tissues located 
outside the brain156, oxytocin released by MNCs has 
been shown to act as a natriuretic hormone159 and to 
stimulate natriuresis under hypertonic conditions in 
rats34. As mentioned earlier, oxytocinergic rat MNCs 
are excited and secrete this hormone into the blood 
during ECF hyperosmolality36,131. Oxytocin-releasing 
MNCs therefore represent command neurons through 
which natriuresis can be modulated during osmotic 
perturbations in rats. Humoral factors that mediate 
hyperosmolality-induced natriuresis in humans remain 
to be identified. As illustrated in FIG. 3, sympathetic out-
flow is also modulated by osmoreceptor signals through 
descending pre-autonomic neurons in the PVN and the 
VLM. Indeed, ECF hyperosmolality has been shown to 
influence sympathetic outflow in both humans160 and 
rats161–165, and changes in renal sympathetic-nerve activity 
that would otherwise be evoked by ECF hyperosmolality 
can be blocked by lesions of the lamina terminalis that 
encompass the OVLT166,167. Moreover, water deprivation 
has been shown to activate PVN neurons that project 
to the spinal cord and the VLM168, and inactivation of 
PVN neurons reduces renal sympathetic-nerve activ-
ity in water-deprived rats169. Studies using retrograde 
propagation of the pseudorabies virus have confirmed 

that the kidney is innervated by polysynaptic projections 
involving the OVLT, the MnPO, the PVN, the VLM, 
the IML and sympathetic neurons170,171 (FIG. 3). Thus, 
pre-autonomic neurons in the hypothalamus and the 
brainstem are additional command neurons that might 
regulate natriuresis through neurogenic influences on 
renal function156–158.

Concluding comments and future directions
Several issues remain unresolved. First, the molecu-
lar structure of the osmoreceptor remains unknown. 
Although TRPV-channel subunits represent strong 
candidate components of the transduction channel 
(BOX 2), much work needs to be done before any formal 
structure can be proposed. Second, the nature of the 
cytoskeleton’s involvement in osmosensory transduc-
tion remains to be elucidated. Is an enzyme involved? 
Do actin filaments serve as channel tethers or scaffolds? 
Addressing these fundamental questions will require a 
combination of biochemical, molecular and genetic 
approaches and, ultimately, the heterologous recon-
stitution of a functional osmosensor. Third, the osmo
sensory mechanisms described herein have been shown 
to operate during acute osmotic perturbations (stimuli 
that last less than 1 hour). However, osmosensory 
signalling in vivo can last for days without significant 
adaptation121,172. It is therefore possible that additional 
mechanisms are recruited under such conditions. For 
instance, recent studies have indicated that specific Na+ 
sensors can modulate osmoregulatory responses inde-
pendently from osmoreceptors173,174. The involvement 
of these sensors and their interactions with osmorecep-
tors remain to be elucidated. Moreover, chronic hyper
osmolality causes dramatic changes in gene expression 
in MNCs175, resulting in changes in the density of sub-
types of N‑methyl‑d-aspartate receptors176, Na+ chan-
nels177 and Ca2+ channels178. The contribution of such 
changes to osmosensing deserves further attention. It 
is also important to emphasize that most of the work 
on osmosensory transduction has been performed on 
MNCs, and that equivalent work has to be performed 
on other osmoreceptor neurons, such as those in the 
OVLT and those that relay peripheral osmosensory 
signals. Fourth, another unresolved aspect regards the 
neural mechanisms whereby thirst and salt appetite 
become perceived at a conscious level. Recent studies 
have highlighted the cortical structures that might be 
activated during the emergence of thirst. We must now 
turn our attention to the network mechanisms by which 
inputs from the periphery promote satiety under condi-
tions in which cerebral osmoreceptors remain engaged. 
Analogous studies are also required to provide informa-
tion concerning the conscious emergence of salt appe-
tite. Fifth, studies are now required to define precisely 
how osmotic and non-osmotic signals are integrated 
to recruit individual effector responses. The cellular 
and network interactions that underlie the polymodal 
optimization of homeostasis remain largely unexplored, 
yet disruption of these mechanisms probably contrib-
utes to the aetiology of many homeostatic disorders of 
unknown origin.
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