COURS ET DM AR4 : GROUPE SYMETRIQUE

FRANCOIS MAUCOURANT

1. GROUPE SYMETRIQUE D’UN ENSEMBLE. S,,.

Soit E # () un ensemble. Rappelons que 'on note Sg I'ensemble des bijections
de F dans F, et que, muni de la loi o de composition des applications, c¢’est un
groupe de neutre e = Idg, appelé groupe symétrique sur l’ensemble E, et ses
éléments sont appelés permutations de 'ensemble E. Si E est fini et ses éléments
notés {ay, ..., ax}, on notera une permutation o € Sg de la maniere suivante :

o= < ay . ag )
\ola) ... olag) )

Dans le cas particulier ou E est 'ensemble des n premiers entiers naturels,
E ={1,...,n}, on simplifie la notation en écrivant simplement S,,. Ces tableaux
ne sont pas quelconques : ils représentent effectivement une permutation si la
ligne du dessous contient une et une seule fois chaque élément de la ligne du

dessus. On prendra bien garde au sens dans lequel se calculent les produits, qui
est le sens de la compositions des applications, de la droite vers la gauche. Par

exemple,
1 2 3 4 1234\ (1234
21 3 4 1 324) \(2314)°

calcul qui s’opere simplement en regardant I'image respective de {1, 2, 3,4} par la
composée des deux applications : par exemple, I'image de 2 par la permutation de
droite du produit est 3, puis on prend I'image de 3 par la permutation a gauche,
qui est encore 3, pour en conclure que le produit envoie 2 sur 3.

Exercice 1 : Calculez le produit

1 2 3 4 1 2 3 4
31 4 2 4 31 2 )°

On va rapidement voir que la structure du groupe symétrique ne dépend en
réalité que du cardinal de 'ensemble E, ce qui justifie de se limiter a I’étude des
groupes S,,.

Proposition 1.1. Soit E, F' deux ensembles, on suppose qu’il existe une bijection
f i+ E— F. Alors il existe un isomorphisme g : Sp — Sp.

Proof. Soit 0 € Sg. On pose
glo) = fooo s,
1
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C’est la composée de 3 bijections, donc g(o) est bien une bijection, et elle va bien
de F dans F'. Donc g(o) est bien un élément de Sg. Vérifions que g est bien un
morphisme : soient o, 0’ deux permutations sur E.

g(0)og(o) = fooofofod of ' =fogod of ! =glo0).

Reste a voir que ¢ est bien une bijection, mais on vérifie facilement que si on
pose, pour i € Sp,

h(p) = f""opo f,

h est bien 'application inverse de g, et donc que g est inversible. 0

Exercice 2 : Enumérer les 6 éléments de Ss, les 6 éléments de Sqq .y, et décrire
explicitement un isomorphisme entre ces deux groupes .

Proposition 1.2. Le cardinal du groupe S,, est n!.

Proof. Une permutation peut se construire en choisissant 'image de 1 parmi
les n images possibles, puis I'imgae de 2 parmi les n — 1 images possibles (les
entiers entre 1 et n qui ne sont pas l'image de 1 déja choisie), etc. Donc on a

n X (n—1) x ... x 1 possibilités. En d’autre termes, choisir une permutation,
c’est exactement la méme chose que de choisir un arrangement sur un ensemble
a n éléments. O

Proposition 1.3. Le groupe S,, n’est pas commutatif des que n > 3.

Exercice 3 : Démontrez la proposition ci-dessus, en calculant oT ainsi que To

avec
(1 2 n
o= 4 ,

n

n |

2. SUPPORT D’UNE PERMUTATION. CYCLES
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Définition 2.1. Soit 0 € S,, une permutation. L’ensemble
supp(c) = {1 <i<n : o(i) # i},
est appelé support de la permutation o.

Par exemple, supp(c) = ) si et seulement si o = e.

Exercice 4 : Donnez supp(o), ot
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Définition 2.2. Une partie X C {1,...,n} est dite invariante (ou stable) par
ocge€S8, sio(X)=X. Unpointiec {1,..,n} est dit fixe pour o sii ¢ supp(o),
cad o(i) = 1.

Remarquons que pour des raisons de cardinalité, comme o est injective, c’est
équivalent a la sous-invariance : o(X) C X.

Exercice 5 : Soit P, C P({1,..,n}) U'ensemble des parties de {1,..,n} qui sont
invariantes par 0. Montrez que c’est une algebre unitaire au sens suivant : stable
par union, intersection, complémentaire. Donnez (sans justification) cette algebre
pour chacune des permutations suivantes :

(123456 (12 3 4
91=\234561)%2 \2143)

Proposition 2.1. (1) Le support d’une permutation o est invariant par o.
(2) Deux permutations a supports disjoints commutent.

Proof. 1. Soit i ¢ supp(c),o(i) =i ¢ supp(o), ce qui démontre la sous-invariance
du complémentaire de supp(o) et donc son invariance.

2. Soit 0,7 € S, deux permutations a supports disjoints. Soit i € {1,..,n},
nous voulons montrer que o7(i) = 7o (z). Distinguons trois cas, qui ne sont pas
exclusifs :

ler cas : i € supp(o), donc i ¢ supp(T) et ainsi 7(i) = i. De plus o(i) € supp(o)
également par invariance par o, donc de méme 7(o (7)) = o(i) = o(7(7)), qui était
I’égalité recherchée.

2eme cas : i € supp(T), on conclut de méme que 7(o (7)) = o(7(7)).
3eme cas : i ¢ supp(T) U supp(c). Alors o(i) = i = 7(i), et donc 7(o(i)) =
o(r(i)) = 1. O

Définition 2.3. Un cycle de longueur [ (2 <[ < n) est une permutation o € S,
telle qu’il existe un sous-ensemble ordonné de {1, ...,n} de cardinal l, (jo, ..., j1—1),
tel que

(1) supp(o) = {jo, -, Ji—1}, cad o(k) =k si k # j; pour tout i.

(2) Pouri=0,..,0—2, 0(j;) = Jit1, €t 0(ji—1) = jo. Autrement dit, o(j;) =

ji-i—lmodl-

Un tel cycle sera noté (jo, ..., J1—1). On dit parfois l-cycle pour désigner un cycle
de longueur l. Un cycle de longueur deuz est appelé transposition.

Exemples : le o1 de I'exercice 5 est un 6-cycle, que I'on peut noter (1,2, 3, 4 ,5,6).
L’écriture d’un cycle n’est unique qu’a permutation circulaire pres : ( ,3) =
(2,3,1) = (3,1,2), mais est différent de (1,3,2). Notez qu'une transp081t10n est
d’ordre 2, et est son propre inverse.
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Théoreme. Le groupe S,, est engendré par les transpositions. Plus précisémment,
tout élément de S, peut s’écrire comme produit d’au plus n — 1 transpositions.

Ce théoreme exprime le fait simple suivant : si on a n cartes numérotés de
1 a n, placées en ligne dans un certain ordre, et que I'on ne s’autorise a chaque
mouvement que d’échanger la position de deux cartes, on peut remettre les cartes
dans 'ordre en moins de n — 1 mouvements.

Proof. Comme d’habitude, on convient qu'un produit de zéro termes donne le
neutre. Nous allons procéder par récurrence sur n. Notre hypothese de récurrence
sur n est la suivante :

(H,) Tout élément de S,, peut s’écrire comme produit d’au plus n — 1 transposi-
tions.

Vérifions (H2) & la main : Sy n’est constitué que de deux éléments e et la trans-
position (1,2). D’ou (Hs).

Supposons donc (H,,) et montrons (H,11). Il sera trés commode ici de voir S,
comme un sous-groupe de S,;1, une permutation o de {1,...,n} se prolongeant
naturellement en une permutation de {1, ...,n+1} par la formule o(n+1) = n+1.
On voit que cette équation caractérise en fait les éléments de S,, dans S,,11.

Soit 0 € S,,11. Il y a deux cas possibles : ou bien n+ 1 est fixe pour o, auquel cas
o est dans S, et par hypothese de récurrence produit de n — 1 transpositions, ce
qui conclut. Ou bien, o(n+ 1) # n+ 1. Soit 7 la transposition (n+ 1,0(n +1)).
Alors To(n+1) = n+ 1, ce qui prouve que 7o est dans S, et donc par (H,) qu’il
existe k transpositions 7, .., 7, kK < n — 1, telles que

TO = Ty....Tk,

et donc
o= 7'*17'1....771€ = TT1.... Tk,

produit de moins de n transpositions, ce qui démontre (H,,41). O

Attention, cette décomposition en produit de transposition n’est absolument
pas unique ! Par exemple e = (1,2)(1,2).

Exercice 6 : Ecrire le 4-cycle (1,3,2,4) comme produit d’au plus 3 transposi-
tions. Indication : la preuve du théoreme ci-dessus est constructive.

3. 0-ORBITES; DECOMPOSITION CANONIQUE EN PRODUIT DE CYCLES

Définition 3.1. Soit x € {1,....,n} et 0 € S,. On appelle o-orbite de x, et on
note O,(x) le sous-ensemble de {1,..,n} :

Oy(x) = {o*(z) : k€ Z}.
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On peut faire le lien avec l'algebre des ensembles invariants par o; il n’est
en effet pas bien difficile de vérifier que O,(z) est le plus petit élément de P,
contenant x. On n’utilisera pas cette caractérisation.

Proposition 3.1. Soit R, la relation d’équivalence sur {1,..,n} : tRy ssi il
existe k € Z tel que x = o*(y). Alors O, (z) est la classe de x modulo R, et si
m = |0,(x)|, on a l’égalité

Oy(7) = {z,0(),...,0™ (z)}
et de plus o™ (z) = x.

Proof. On laisse au lecteur le soin de vérifier que R, est bien une relation d’équivalence.
Soit d le plus petit entier > 1 tel que z,0(x),...,0%(x) ne soient pas deux

a deux distincts. Par le principe des tiroirs, d < m. On va montrer que
od(x) = x. Comme par définition de d, x,0(x),...,0% (z) sont disctincts, il
existe k € {0, ...,d — 1} tel que o%(x) = o*(x). Alors o9 *(z) = x, ce qui montre

que x,0(x),...,0"%(x) ne sont pas 2 & 2 distincts, et par définition de d, que
d—Fk >k, et donc k =0.

Montrons maintenant que O, (z) = {z,0(z),...,0% (x)}. En effet, soit k € Z,
on voudrait montrer que o (z) est dans la liste précédente. Ecrivons la division
euclidienne de k par d, k = qgd+rou 0 <r < d—1et q € Z. Or comme
od(z) = x, on peut montrer par récurrence sur ¢ que c%(xr) = x en écrivant
01 (x) = gt Ndgd(z) = glatldg=d(g),

Ainsi, o¥(z) = 0" (x) € {x,0(x),...,097 ()}, ce qui montre une inclusion. L’autre
inclusion étant triviale, on a égalité entre O,(x) et {z,0(z),...,0% 1 (z)}. Enfin,
comme les éléments de cette liste sont 2 a 2 disctincts, m = d. [l

Exemple : Les o-orbites de

(1234567389
97 \2 146783509

sont {1,2}, {3,4,6,8,5,7} et {9}. Elles sont simplements déterminés en regar-
dant I'image d’un élément (par exemple 3), et en itérant la permutation (on
obtient ainsi 4, puis 6, puis 8, etc) jusqu'a retomber sur 1élément de départ (ici,
3). La proposition précédente assure que 'on a ainsi toute I'orbite.

Exercice 7 : Déterminez la partition en orbite pour la permutation
o 123456 78
~\3 286 75 41)
Théoréme (Décomposition canonique en produit de cycles a supports disjoints).

Soit 0 € S, 0 # e. Il existe k > 1 et cq,...,c des cycles de longueur l; > 2, a
support 2a 2 disjoints, tels que

o =C1...Ck.
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Cette décomposition est unique a l'ordre prés des facteurs. Le nombre k est le
nombre d’orbites non ponctuelles.

L’ordre des facteurs n’est pas important dans le produit ci-dessus, car les per-
mutations a support disjoint commutent.

Proof. Existence : Soit k£ le nombre d’orbites non ponctuelles, et Aj, ..., Ay ces
orbites, et x1,...,x; un point par orbite, m; > 2 le cardinal de l'orbite A;. On
considere les cycles
ci = (zi, 0(5), ..., ™ Hay)),

le cycle ¢; étant de support A;. Vérifions I'égalité o = ¢;...cx. Soit j € {1,....,n}.
Si 7 est fixe pour o, il est également fixe pour tous les ¢;, et on a bien 1'égalité
j=0(j) = cy...ck(7). Sinon il existe un i tel que j € A;, et d’apres la proposition
précédente il existe 0 < I < m; — 1 tel que j = o'(z;). Comme les ¢; sont & sup-
port disjoints, ils commutent et on a ¢;...cx(7) = ¢;(¢1...¢...cx(7)), ou le chapeau
désigne un terme manquant; on a ¢s(j) = j pour tout s # i car le support de ¢
est As, et donc finalement ¢;...cx(7) = ¢;(j). Or, par construction du cycle ¢; et
la proposition précédente, il est clair que o(j) = ¢;(j). D’ou égalité.

Unicité : Soit c;...¢; un produit de cycles a supports disjoints. On vérifie facile-
ment que le nombre d’orbites non ponctuelles de ce produit de cycles est égal
a [, que chaque orbite non ponctuelle correspond a un des cycles, et que sur
chaque orbites non ponctuelle, I'ordre donné par l'itération du produit de cycle
est celui donné par le cycle correspondant. En d’autre termes, chaque cycle ¢;
est nécessairement un des cycles construit plus haut dans la partie existence, ce
qui conclut. O

Exemple : Reprenons I'exemple précédent :

(123456789
“\214678359)
se décompose en le produit de deux cycles o = (1,2)(3,4,6,8,5,7).

Exercice 8 : Déterminez la décomposition en produit de cycles a supports dis-
joints de la permutation de I’exercice 7.

4. REFERENCES

Si les notions exposées ici posent probleme, on pourra consulter sur le sujet
[Calais], chapitre III, paragraphe 2 (page 104 et +), ou bien [Gras], chapitre 2,
paragraphe 5 (page 36 et +), ou bien encore [RDC], 2.4 (page 70 et +).
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