
COURS ET DM AR4 : GROUPE SYMÉTRIQUE

FRANÇOIS MAUCOURANT

1. Groupe symétrique d’un ensemble. Sn.

Soit E 6= ∅ un ensemble. Rappelons que l’on note SE l’ensemble des bijections
de E dans E, et que, muni de la loi ◦ de composition des applications, c’est un
groupe de neutre e = IdE, appelé groupe symétrique sur l’ensemble E, et ses
éléments sont appelés permutations de l’ensemble E. Si E est fini et ses éléments
notés {a1, ..., ak}, on notera une permutation σ ∈ SE de la manière suivante :

σ =

(
a1 . . . ak

σ(a1) . . . σ(ak)

)
.

Dans le cas particulier où E est l’ensemble des n premiers entiers naturels,
E = {1, . . . , n}, on simplifie la notation en écrivant simplement Sn. Ces tableaux
ne sont pas quelconques : ils représentent effectivement une permutation si la
ligne du dessous contient une et une seule fois chaque élément de la ligne du
dessus. On prendra bien garde au sens dans lequel se calculent les produits, qui
est le sens de la compositions des applications, de la droite vers la gauche. Par
exemple, (

1 2 3 4
2 1 3 4

) (
1 2 3 4
1 3 2 4

)
=

(
1 2 3 4
2 3 1 4

)
,

calcul qui s’opère simplement en regardant l’image respective de {1, 2, 3, 4} par la
composée des deux applications : par exemple, l’image de 2 par la permutation de
droite du produit est 3, puis on prend l’image de 3 par la permutation à gauche,
qui est encore 3, pour en conclure que le produit envoie 2 sur 3.
Exercice 1 : Calculez le produit(

1 2 3 4
3 1 4 2

) (
1 2 3 4
4 3 1 2

)
.

On va rapidement voir que la structure du groupe symétrique ne dépend en
réalité que du cardinal de l’ensemble E, ce qui justifie de se limiter à l’étude des
groupes Sn.

Proposition 1.1. Soit E, F deux ensembles, on suppose qu’il existe une bijection
f : E → F . Alors il existe un isomorphisme g : SE → SF .

Proof. Soit σ ∈ SE. On pose

g(σ) = f ◦ σ ◦ f−1.
1
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C’est la composée de 3 bijections, donc g(σ) est bien une bijection, et elle va bien
de F dans F . Donc g(σ) est bien un élément de SF . Vérifions que g est bien un
morphisme : soient σ, σ′ deux permutations sur E.

g(σ) ◦ g(σ′) = f ◦ σ ◦ f−1 ◦ f ◦ σ′ ◦ f−1 = f ◦ σ ◦ σ′ ◦ f−1 = g(σσ′).

Reste à voir que g est bien une bijection, mais on vérifie facilement que si on
pose, pour µ ∈ SF ,

h(µ) = f−1 ◦ µ ◦ f,

h est bien l’application inverse de g, et donc que g est inversible. �

Exercice 2 : Enumérer les 6 éléments de S3, les 6 éléments de S{a,b,c}, et décrire
explicitement un isomorphisme entre ces deux groupes .

Proposition 1.2. Le cardinal du groupe Sn est n!.

Proof. Une permutation peut se construire en choisissant l’image de 1 parmi
les n images possibles, puis l’imgae de 2 parmi les n − 1 images possibles (les
entiers entre 1 et n qui ne sont pas l’image de 1 déjà choisie), etc. Donc on a
n × (n − 1) × . . . × 1 possibilités. En d’autre termes, choisir une permutation,
c’est exactement la même chose que de choisir un arrangement sur un ensemble
à n éléments. �

Proposition 1.3. Le groupe Sn n’est pas commutatif dès que n ≥ 3.

Exercice 3 : Démontrez la proposition ci-dessus, en calculant στ ainsi que τσ
avec

σ =

(
1 2 3 4 . . . n
2 1 3 4 . . . n

)
,

τ =

(
1 2 3 4 . . . n
1 3 2 4 . . . n

)
.

2. Support d’une permutation. Cycles

Définition 2.1. Soit σ ∈ Sn une permutation. L’ensemble

supp(σ) = {1 ≤ i ≤ n : σ(i) 6= i},

est appelé support de la permutation σ.

Par exemple, supp(σ) = ∅ si et seulement si σ = e.

Exercice 4 : Donnez supp(σ), où

σ =

(
1 2 3 4 5 6
1 3 6 4 2 5

)
.
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Définition 2.2. Une partie X ⊂ {1, ..., n} est dite invariante (ou stable) par
σ ∈ Sn si σ(X) = X. Un point i ∈ {1, ..., n} est dit fixe pour σ si i /∈ supp(σ),
càd σ(i) = i.

Remarquons que pour des raisons de cardinalité, comme σ est injective, c’est
équivalent à la sous-invariance : σ(X) ⊂ X.

Exercice 5 : Soit Pσ ⊂ P({1, .., n}) l’ensemble des parties de {1, .., n} qui sont
invariantes par σ. Montrez que c’est une algèbre unitaire au sens suivant : stable
par union, intersection, complémentaire. Donnez (sans justification) cette algèbre
pour chacune des permutations suivantes :

σ1 =

(
1 2 3 4 5 6
2 3 4 5 6 1

)
, σ2 =

(
1 2 3 4
2 1 4 3

)
.

Proposition 2.1. (1) Le support d’une permutation σ est invariant par σ.
(2) Deux permutations à supports disjoints commutent.

Proof. 1. Soit i /∈ supp(σ), σ(i) = i /∈ supp(σ), ce qui démontre la sous-invariance
du complémentaire de supp(σ) et donc son invariance.

2. Soit σ, τ ∈ Sn deux permutations à supports disjoints. Soit i ∈ {1, .., n},
nous voulons montrer que στ(i) = τσ(i). Distinguons trois cas, qui ne sont pas
exclusifs :
1er cas : i ∈ supp(σ), donc i /∈ supp(τ) et ainsi τ(i) = i. De plus σ(i) ∈ supp(σ)
également par invariance par σ, donc de même τ(σ(i)) = σ(i) = σ(τ(i)), qui était
l’égalité recherchée.
2ème cas : i ∈ supp(τ), on conclut de même que τ(σ(i)) = σ(τ(i)).
3ème cas : i /∈ supp(τ) ∪ supp(σ). Alors σ(i) = i = τ(i), et donc τ(σ(i)) =
σ(τ(i)) = i. �

Définition 2.3. Un cycle de longueur l (2 ≤ l ≤ n) est une permutation σ ∈ Sn

telle qu’il existe un sous-ensemble ordonné de {1, ..., n} de cardinal l, (j0, ..., jl−1),
tel que

(1) supp(σ) = {j0, ..., jl−1}, càd σ(k) = k si k 6= ji pour tout i.
(2) Pour i = 0, ..., l − 2, σ(ji) = ji+1, et σ(jl−1) = j0. Autrement dit, σ(ji) =

ji+1 mod l.

Un tel cycle sera noté (j0, ..., jl−1). On dit parfois l-cycle pour désigner un cycle
de longueur l. Un cycle de longueur deux est appelé transposition.

Exemples : le σ1 de l’exercice 5 est un 6-cycle, que l’on peut noter (1, 2, 3, 4, 5, 6).
L’écriture d’un cycle n’est unique qu’à permutation circulaire près : (1, 2, 3) =
(2, 3, 1) = (3, 1, 2), mais est différent de (1, 3, 2). Notez qu’une transposition est
d’ordre 2, et est son propre inverse.
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Théorème. Le groupe Sn est engendré par les transpositions. Plus précisémment,
tout élément de Sn peut s’écrire comme produit d’au plus n− 1 transpositions.

Ce théorème exprime le fait simple suivant : si on a n cartes numérotés de
1 à n, placées en ligne dans un certain ordre, et que l’on ne s’autorise à chaque
mouvement que d’échanger la position de deux cartes, on peut remettre les cartes
dans l’ordre en moins de n− 1 mouvements.

Proof. Comme d’habitude, on convient qu’un produit de zéro termes donne le
neutre. Nous allons procéder par récurrence sur n. Notre hypothèse de récurrence
sur n est la suivante :
(Hn) Tout élément de Sn peut s’écrire comme produit d’au plus n− 1 transposi-
tions.
Vérifions (H2) à la main : S2 n’est constitué que de deux éléments e et la trans-
position (1, 2). D’où (H2).
Supposons donc (Hn) et montrons (Hn+1). Il sera très commode ici de voir Sn

comme un sous-groupe de Sn+1, une permutation σ de {1, ..., n} se prolongeant
naturellement en une permutation de {1, ..., n+1} par la formule σ(n+1) = n+1.
On voit que cette équation caractérise en fait les éléments de Sn dans Sn+1.
Soit σ ∈ Sn+1. Il y a deux cas possibles : ou bien n+1 est fixe pour σ, auquel cas
σ est dans Sn et par hypothèse de récurrence produit de n− 1 transpositions, ce
qui conclut. Ou bien, σ(n + 1) 6= n + 1. Soit τ la transposition (n + 1, σ(n + 1)).
Alors τσ(n+1) = n+1, ce qui prouve que τσ est dans Sn et donc par (Hn) qu’il
existe k transpositions τ1, .., τk, k ≤ n− 1, telles que

τσ = τ1....τk,

et donc

σ = τ−1τ1....τk = ττ1....τk,

produit de moins de n transpositions, ce qui démontre (Hn+1). �

Attention, cette décomposition en produit de transposition n’est absolument
pas unique ! Par exemple e = (1, 2)(1, 2).

Exercice 6 : Écrire le 4-cycle (1, 3, 2, 4) comme produit d’au plus 3 transposi-
tions. Indication : la preuve du théorème ci-dessus est constructive.

3. σ-orbites; Décomposition canonique en produit de cycles

Définition 3.1. Soit x ∈ {1, ..., n} et σ ∈ Sn. On appelle σ-orbite de x, et on
note Oσ(x) le sous-ensemble de {1, .., n} :

Oσ(x) = {σk(x) : k ∈ Z}.
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On peut faire le lien avec l’algèbre des ensembles invariants par σ; il n’est
en effet pas bien difficile de vérifier que Oσ(x) est le plus petit élément de Pσ

contenant x. On n’utilisera pas cette caractérisation.

Proposition 3.1. Soit Rσ la relation d’équivalence sur {1, .., n} : xRσy ssi il
existe k ∈ Z tel que x = σk(y). Alors Oσ(x) est la classe de x modulo Rσ, et si
m = |Oσ(x)|, on a l’égalité

Oσ(x) = {x, σ(x), ..., σm−1(x)}
et de plus σm(x) = x.

Proof. On laisse au lecteur le soin de vérifier queRσ est bien une relation d’équivalence.
Soit d le plus petit entier ≥ 1 tel que x, σ(x), ..., σd(x) ne soient pas deux
à deux distincts. Par le principe des tiroirs, d ≤ m. On va montrer que
σd(x) = x. Comme par définition de d, x, σ(x), ..., σd−1(x) sont disctincts, il
existe k ∈ {0, ..., d− 1} tel que σd(x) = σk(x). Alors σd−k(x) = x, ce qui montre
que x, σ(x), ..., σk−d(x) ne sont pas 2 à 2 distincts, et par définition de d, que
d− k ≥ k, et donc k = 0.

Montrons maintenant que Oσ(x) = {x, σ(x), ..., σd−1(x)}. En effet, soit k ∈ Z,

on voudrait montrer que σk(x) est dans la liste précédente. Écrivons la division
euclidienne de k par d, k = qd + r où 0 ≤ r ≤ d − 1 et q ∈ Z. Or comme
σd(x) = x, on peut montrer par récurrence sur q que σqd(x) = x en écrivant
σqd(x) = σ(q−1)dσd(x) = σ(q+1)dσ−d(x).
Ainsi, σk(x) = σr(x) ∈ {x, σ(x), ..., σd−1(x)}, ce qui montre une inclusion. L’autre
inclusion étant triviale, on a égalité entre Oσ(x) et {x, σ(x), ..., σd−1(x)}. Enfin,
comme les éléments de cette liste sont 2 à 2 disctincts, m = d. �

Exemple : Les σ-orbites de

σ =

(
1 2 3 4 5 6 7 8 9
2 1 4 6 7 8 3 5 9

)
sont {1, 2}, {3, 4, 6, 8, 5, 7} et {9}. Elles sont simplements déterminés en regar-
dant l’image d’un élément (par exemple 3), et en itérant la permutation (on
obtient ainsi 4, puis 6, puis 8, etc) jusqu’à retomber sur lélément de départ (ici,
3). La proposition précédente assure que l’on a ainsi toute l’orbite.

Exercice 7 : Déterminez la partition en orbite pour la permutation

σ =

(
1 2 3 4 5 6 7 8
3 2 8 6 7 5 4 1

)
.

Théorème (Décomposition canonique en produit de cycles à supports disjoints).
Soit σ ∈ Sn, σ 6= e. Il existe k ≥ 1 et c1, ..., ck des cycles de longueur li ≥ 2, à
support 2à 2 disjoints, tels que

σ = c1...ck.
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Cette décomposition est unique à l’ordre près des facteurs. Le nombre k est le
nombre d’orbites non ponctuelles.

L’ordre des facteurs n’est pas important dans le produit ci-dessus, car les per-
mutations à support disjoint commutent.

Proof. Existence : Soit k le nombre d’orbites non ponctuelles, et A1, ..., Ak ces
orbites, et x1, ..., xk un point par orbite, mi ≥ 2 le cardinal de l’orbite Ai. On
considère les cycles

ci = (xi, σ(xi), ..., σ
mi−1(xi)),

le cycle ci étant de support Ai. Vérifions l’égalité σ = c1...ck. Soit j ∈ {1, ..., n}.
Si j est fixe pour σ, il est également fixe pour tous les ci, et on a bien l’égalité
j = σ(j) = c1...ck(j). Sinon il existe un i tel que j ∈ Ai, et d’après la proposition
précédente il existe 0 ≤ l ≤ mi − 1 tel que j = σl(xi). Comme les ci sont à sup-
port disjoints, ils commutent et on a c1...ck(j) = ci(c1...ĉi...ck(j)), où le chapeau
désigne un terme manquant; on a cs(j) = j pour tout s 6= i car le support de cs

est As, et donc finalement c1...ck(j) = ci(j). Or, par construction du cycle ci et
la proposition précédente, il est clair que σ(j) = ci(j). D’où égalité.
Unicité : Soit c1...cl un produit de cycles à supports disjoints. On vérifie facile-
ment que le nombre d’orbites non ponctuelles de ce produit de cycles est égal
à l, que chaque orbite non ponctuelle correspond à un des cycles, et que sur
chaque orbites non ponctuelle, l’ordre donné par l’itération du produit de cycle
est celui donné par le cycle correspondant. En d’autre termes, chaque cycle ci

est nécessairement un des cycles construit plus haut dans la partie existence, ce
qui conclut. �

Exemple : Reprenons l’exemple précédent :

σ =

(
1 2 3 4 5 6 7 8 9
2 1 4 6 7 8 3 5 9

)
,

se décompose en le produit de deux cycles σ = (1, 2)(3, 4, 6, 8, 5, 7).

Exercice 8 : Déterminez la décomposition en produit de cycles à supports dis-
joints de la permutation de l’exercice 7.

4. Références

Si les notions exposées ici posent problème, on pourra consulter sur le sujet
[Calais], chapitre III, paragraphe 2 (page 104 et +), ou bien [Gras], chapitre 2,
paragraphe 5 (page 36 et +), ou bien encore [RDC], 2.4 (page 70 et +).
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