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Université Pierre et Marie Curie et CNRS UA 189

Laboratoire d’Analyse Numérique
BC187, Tour 55-65, 5ème étage

4, place Jussieu
75 252 Paris Cedex 05 France

e-mail : castella@ann.jussieu.fr 1

Abstract. We build solutions to the three dimensional Vlasov-Poisson-Fokker-
Planck System having infinite kinetic energy. For that purpose, we first derive a
new conservation law, which states the propagation of the second space moment
for solutions to this system. The existence of such infinite kinetic energy solutions
relies essentialy on the dispersive effects of the kinetic transport. We also show
strong regularizing effects, such as an L∞x bound on the force field, combining
dispersive properties and smoothing effects of the diffusion.

Key-words. Vlasov-Poisson-Fokker-Planck, propagation of moments, infinite
kinetic energy, hypoellipticity.

AMS Classification: 35Q99 (35K65 76X05 82D10).

1 Introduction

This paper aims at building solutions to the three dimensional Vlasov-Poisson-
Fokker-Planck (VPFP) System having infinite kinetic energy. This System reads:

∂tf + v · ∇xf + divv(E − βv) · f − σ∆vf = 0 ,
f(t = 0, x, v) = f 0(x, v) ≥ 0 ,

E(t, x) = ± 1

4π

x

|x|3
∗ ρ(t, x) ,

ρ(t, x) =
∫
R3 f(t, x, v) dv .

(1.1)

1New adress: Equipe ”quations aux drives partielles”, Universit de Rennes 1, Campus de
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Here, β ≥ 0 and σ > 0 are given constants. In this system, the function
f(t, x, v) ≥ 0 is the unknown microscopic density and describes the density of
particles having the position x ∈ R3 and velocity v ∈ R3 at time t ≥ 0 in the
phase space. This function generates the macroscopic density ρ(t, x), which is
the rate of particles located at x in the physical space. In turn ρ(t, x) induces
the Coulombic or Gravitational force field E(t, x) as above, implicitely given by
the Poisson equation :

−∆xV = ±ρ = ωρ , E = −∇xV .

The sign ω = +1 corresponds to the repulsive (Coulombic) interaction whereas
the sign ω = −1 describes the attractive (gravitational) interaction between the
particles. Finally, the term −β divvvf corresponds to the friction effects in the
fluid, and the term −∆vf describes grazing collisions between the particles :
when colliding, the particles change velocities, and this effect gives a diffusion
term in the velocity direction.

This paper includes the case β = 0 (frictionless fluid), but relies heavily on
the assumption σ > 0, since it gives hypoellipticity for the linear VPFP operator
(see below). The less regular case β = 0, σ = 0 corresponds to the Vlasov-Poisson
equation, for which only weaker results can be obtained (the diffusion term in v
vanishes in this case).

The main difficulty in order to treat this system, as well as the Vlasov-Poisson
System, is to bound the self-consistent force field E(t, x) in Lp

x spaces, since the
linear theory of such systems is well known (i.e. the case where E is a given
potential). Using the Sobolev inequalities ‖E(t, x)‖Lp

x
≤ C‖ρ(t, x)‖Lq

x
(for some

p, q), one has therefore to bound the density ρ(t, x) in Lq
x spaces in terms of

the unknown f . The classical tool in this direction is the following interpolation
inequality, which states that, for m ≥ 0,

(1.2)

‖ρ(t, x)‖Lq
x

= ‖
∫

R3
f(t, x, v)dv‖Lq

x
≤ C‖f(t)‖θ

L∞x,v
‖|v|mf(t, x, v)‖1−θ

L1
x,v

for some value of θ ∈ [0, 1], and for q = 1 + m/3 (See below). In particular, the
control of the density improves as f has higher moments in the velocity variable.
In three dimensions of space, we mention the two special cases m = 2 (finite
kinetic energy) for which the corresponding force field E(t, x) belongs to Lp

x for
3/2 < p ≤ 15/4, and m > 6 for which E(t, x) ∈ Lp

x with 3/2 < p ≤ ∞.
Using this idea, P.L. Lions and B. Perthame proved ([LPe]) in the classical

Vlasov-Poisson case β = σ = 0 that the assumption f 0 ∈ L1 ⋂
L∞x,v , |v|mf 0 ∈

L1
x,v for some m > 3, implies the existence of a solution f(t, x, v) satisfying
|v|mf(t, x, v) ∈ L1

x,v for all t (propagation of velocity moments), and here the force
field is bounded in the corresponding Lp spaces thanks to (1.2). Uniqueness is not
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known under these conditions when σ = 0. Concerning also the Vlasov-Poisson
case, K. Pfaffelmoser [Pf] and J. Schaeffer [Sc] proved in a completely different
setting that, when f 0 is C1 and compactly supported in (x, v), the corresponding
solution f(t, x, v) to the system remains C1 and compactly supported in (x, v)
for all times. Their proofs rely on a detailed study of the characteristic curves
associated with the Vlasov-Poisson equation (See [Re2] for a review paper on
these methods).

In the VPFP case σ > 0, F. Bouchut proved ([Bo1]) that existence and
uniqueness holds for this system, globally in time, when the initial data satisfies
f 0 ∈ L1 ⋂

L∞x,v and |v|mf 0 ∈ L1
x,v for some m > 6. In this case, he proves even

the regularity f ∈ C0(R+
t ; L1

x,v) and E ∈ L∞loc(R+
t ; L∞x ). His proof relies on

a technique similar to the one introduced in [LPe], but also makes an essential
use of the regularizing effect of the diffusion term −∆vf . In fact, the important
point is the L∞x bound on the force field in this case, from which we deduce that
the ”regularity” of the initial datum is automatically preserved ; for example the
assumption |v|mf 0 ∈ L1

x,v implies |v|mf(t, x, v) ∈ L∞loc(R+
t ; L1

x,v) for all m > 6.
We would also like to quote the work of H. D. Victory, B. P. O’Dwyer [VO] and
G. Rein, J. Weckler [RW] concerning classical solutions to the VPFP system.

On the other hand, it has been shown in [Bo2] that the VPFP system presents
strong regularizing effects: for an initial datum f 0 ∈ L1 ⋂

L∞x,v having merely fi-
nite kinetic energy |v|2f 0 ∈ L1

x,v, the force field becomes immediately bounded,
i.e. ‖E(t, x)‖L∞x ≤ Ct−δ for t close to 0, and for some δ > 0, although its L∞x -
norm is infinite at t = 0. We emphasize the importance of such an L∞x bound on
the force field, since it allows to deduce many other bounds on f(t, x, v), ρ(t, x),
and also on the flow of E(t, x), and we refer to the famous paper of R.J. Di Perna
and P.L. Lions [DPL1] concerning the matters of regularity of E. Finally, we
also would like to quote the work of J.A. Carillo and J. Soler ([CS]) where the
VPFP System is studied for an initial data a measure having finite kinetic energy
(
∫
x,v |v|2f 0 < ∞).

All the above mentioned papers assume f 0 has moments in the velocity vari-
able (v2f 0 ∈ L1 or vmf 0 ∈ L1 for some m > 2), and in particular f 0 is as-
sumed to have finite kinetic energy. Recently, B. Perthame ([Pe]) replaced the
assumption of finite kinetic energy by |x|2f 0 ∈ L1

x,v in the Vlasov-Poisson case
σ = 0. In that case, where the interpolation inequality (1.2) does not apply,
and the force field E(t, x) is a priori undefined, he proved regularizing effects
analogous to the Schrödinger-Poisson equation, such as ‖E(t)‖L2

x
≤ Ct−1/2 near

t = 0. His proof relies on a specific conservation law associated with the quantity∫
x,v |x− vt|2f(t, x, v) and on the dispersive effects of the free transport operator

∂t + v · ∇x. More generally, the propagation of space moments in the Vlasov-
Poisson equation is systematically studied in [Ca], where it is proved that the
assumption |x|mf 0 ∈ L1

x,v for general values of m allows to build a solution such
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that |x− vt|mf(t, x, v) ∈ L1
x,v for all t, and the corresponding force field satisfies

‖E(t)‖Lp ≤ Ct−δ near t = 0, for various values of p (even p = ∞). In that
case also, essential use is made of the dispersive effects of the free transport. We
mention that a similar work has been done for the Boltzmann equation under the
assumption |x|2f 0 ∈ L1

x,v ([MP]).

It is therefore very natural to ask which effect, dispersive by transport or dif-
fusive by hypoellipticity, is more important for the VPFP equation. The answer
is as follows. The dispersive effect is stronger for ”short times”. And, in the spirit
of [Pe], [Ca], we replace the assumption of finite kinetic energy v2f 0 ∈ L1 by a
finite second space moment x2f 0 ∈ L1. Thanks to a specific conservation law
involving the quantity

∫
x,v x2f 0(x, v), we first prove the basic existence result and

the bound ‖E(t)‖Lp ≤ Ct−δ for 3/2 < p ≤ 15/4 and t close to 0. At this level, we
recover the kind of regularizing effects first proved in [Pe], which proves that the
transport term ∂t + v · ∇x dominates the diffusion −σ∆v. Then, just after the
initial regularization, the diffusive effect wins, and we may use the arguments of
[Bo1], [Bo2] to bound ‖E(t)‖p for the higher values 15/4 < p ≤ ∞. We observe
that the effect of the diffusion dominates for this latter purpose.

The main result of this paper is the following

Theorem 1
Let f 0 ∈ L1 ⋂

L∞x,v satisfy |x|2f 0 ∈ L1
x,v and |v|εf 0 ∈ L1

x,v for some ε > 0. Assume
σ > 0, and let T > 0 (β = 0 is allowed). Then, there exists a solution f(t, x, v) ∈
L∞loc([0;∞[; L1(R6

x,v)) to the VPFP System with initial data f 0. Moreover, the
following statement holds,

(i) Let p ∈ [1;∞], q ∈]3/2;∞]. Then, there exists a constant
C = C(T, ‖f 0‖L∞ , ‖(1 + |x|2)f 0‖L1 , p, q) and exponents γ, δ > 0 such that,

‖ρ(t, x)‖Lp
x
≤ C t−γ , ‖E(t, x)‖Lq

x
≤ C t−δ ,

for all t ∈ [0; T ]. Hölder estimates of the same kind hold for ρ, E, and ∇E.
(ii) We have the following conservation law, where φ(t) = (eβt − 1)/β ,

d

dt
[
∫

R6
|x− φ(t)v|2f(t, x, v)dxdv + ωφ(t)2

∫
R3
|E|2(t, x)dx] =

6σφ(t)2‖f 0‖L1
x,v

+ ω(2φ′(t)− 1)φ(t)
∫

R3
|E|2(t, x)dx .

More complete statements can be found in the text.
The end of the paper is organised as follows: in section 2, we recall the

basic calculations concerning the solutions of the VPFP System, as well as the
notations; in section 3, we derive the conservation law (ii) above; section 4 is
devoted to the basic existence statement; and section 5 proves the regularizing
effects (i).
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2 Notations and basic facts

In this section, we recall the main basic calculations concerning the VPFP Sys-
tem. We should first indicate that the ”splitting” appearing in the subsequent
formulae was first used in the Vlasov-Poisson case (β = 0, σ = 0) by P.L. Lions
and B. Perthame ([LPe]). It has found a systematic use in [Pe], [Bo1], [Bo2], [Ca]
(See also [An]).

Indeed, the Duhamel formula for the hypoelliptic operator Lf := v · ∇xf −
β divvvf − σ∆vf in R2N (in the sequel, we shall only consider the physical case
N = 3) gives the following splitting for a (say, regular) solution to the VPFP :

f(t, x, v) =
∫

R2N
G(t, x, v, ξ, γ)f 0(ξ, γ)dξdγ

+
∫ t

s=0

∫
R2N

∇γG(s, x, v, ξ, γ)E(t− s, ξ)f(t− s, ξ, γ) dξ dγ ds

:= f 1(t, x, v) + f 2(t, x, v) , (2.1)

where G(t, x, ξ, γ) is the Green function associated to ∂t +L. We will not specify
the explicit value of the kernel G, which can be found in [Bo1], [Bo2]. Never-
theless, integrating (2.1) with respect to v gives the following formulae for the
density ρ and the force field E. The important point here is that G acts essen-
tially like a convolution by a Gaussian in the space variable, and this is the key
tool for proving regularizing effects in the VPFP system. Indeed, let us define,

N (x) :=
1

(2π)N/2
exp(−x2

2
) ∈ S ,

Aj,k(x) :=
∂2

∂xj∂xk

(−∆)−1N (x) ∈ Lp , ∀ 1 < p < ∞ ,
(2.2)

and let A(x) be the N ×N matrix with coefficients Aj,k(x). Then we have,

(2.3)
ρ(t, x) = ρ1(t, x) + ρ2(t, x) =

∫
v f 1(t, x, v) dv +

∫
v f 2(t, x, v) dv ,

E(t, x) = E1(t, x) + E2(t, x)

= ± x

|SN−1||x|N
∗x ρ1(t, x)± x

|SN−1||x|N
∗x ρ2(t, x) .

We also deduce from (2.1) the expressions,

(2.4)
ρ1(t, x) =

1

[4πσd(t)]N/2
N (

x

[4σd(t)]1/2
) ∗x

∫
RN

f 0(x− µ(t)v, v)dv ,

ρ2(t, x) =
∫ t

0

−µ(s)

[2σd(s)]
N+1

2

∇N (
x

[2σd(s)]1/2
) ∗x Mµ(s)(t− s, x)ds ,
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and, 
E1(t, x) =

1

[4πσd(t)]N/2
N (

x

[4σd(t)]1/2
) ∗x E0(µ(t), x) ,

E2(t, x) =
∫ t

0

µ(s)

[2σd(s)]N/2
A(

x

[2σd(s)]1/2
) ∗x Mµ(s)(t− s, x)ds ,

(2.5)

with, 
E0(µ(t), x) = ± x

|SN−1||x|N
∗x

∫
RN

f 0(x− µ(t)v, v)dv ,

ρ0(µ(t), x) =
∫

RN
f 0(x− µ(t)v, v)dv .

(2.6)

Here, we have used the following notations,

µ(t) =
1− e−βt

β
, d(t) =

∫ t

0
µ(s)2ds , (2.7)

as well as,

Mλ(t, x) =
∫

RN
E(t, x− λv) f(t, x− λv, v)dv . (2.8)

More generally, we shall need the following,{
µλ(t) = µ(t) + λe−βt , dλ(t) =

∫ t
0 µλ(s)

2ds ,
ρλ(t, x) =

∫
RN f(t, x− λv, v)dv ,

(2.9)

and the corresponding decomposition,

(2.10)

ρλ = ρ1
λ + ρ2

λ ,

ρ1
λ(t, x) =

1

[4πσdλ(t)]N/2
N (

x

[4σdλ(t)]1/2
) ∗x

∫
RN

f 0(x− µλ(t)v, v)dv ,

ρ2
λ(t, x) =

∫ t

0

−µλ(s)

[2σdλ(s)]
N+1

2

∇N (
x

[2σdλ(s)]1/2
) ∗x Mµλ(s)(t− s, x)ds .

We would like to point out the corresponding formulae in the case β = 0, σ = 0,
which is the Vlasov-Poisson system. In that case, we obtain,

E ′ = E
′0 + E

′1 ,

E
′0 =

x

|SN−1||x|N
∗x

∫
RN

f 0(x− vt, v)dv ,

E
′1 =

∫ t

0
s(Ef)(t− s, x− vs, v)ds .

(2.11)

Formulae (2.11) differ from (2.4)-(2.5) through the convolution with a regularizing
function in the space variable, as we already observed, but we also see that (2.4)-
(2.5) involve in some sense a ”decoupling” in time in formulae (2.11) (compare
(t− s, x− vs) in (2.11) with (t− s, x− µ(s)v) in (2.4) ).
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The regularisation in the x direction contained in the convolutions above is
related to the hypoellipticity of the linear VPFP operator v · ∇xf − β divvvf −
σ∆vf := Lf (note that this operator is still singular), and we refer to [Ho2]
for a general theory for these operators. Also, the hypoellipticity of L has been
strongly used in [DPL3], [BD].

Notations. The following notations will be used throughout the paper: ‖ · ‖p

denotes the Lp norm of a function; when the function depends on (t, x), ‖ρ(t, x)‖p

or ‖ρ(t)‖p means the Lp norm in the x variable; for 1 ≤ p ≤ ∞, p′ denotes the
Hölder conjugate exponent of p (1/p + 1/p′ = 1). Also, we shall often estimate
certain norms ‖ρ(t)‖p on bounded intervals t ∈ [0, T ] where T > 0 is fixed; in
these cases, any positive constant C or C(T ) is intended to depend on T and on
the natural norms of the initial datum, unless the dependency of the constant is
explicited. These norms are ‖f 0‖L1∩L∞, ‖x2f 0‖1, (See Theorem 4.1 below), as it
will be clear. Finally, ‖u(x)‖C0,α is the usual Hölder norm of u, defined as,

‖u(x)‖C0,α = sup
x 6=y

|u(x)− u(y)|
|x− y|α

.

3 A conservation law for the VPFP System

In this section, we derive a new conservation law for the second space moment of
the density f in the three dimensional VPFP System. For that purpose, we shall
assume here that f is a smooth solution to the VPFP, as in [RW]. We refer to
[Pe], [Re1] for a similar identity on the three dimensional Vlasov-Poisson System
(β = 0, σ = 0), which gives rise in fact to a Lyapunov functional in this special
case.

Indeed, let us consider the linear equation

∂tf + v · ∇xf + divv(−βvf) = 0 . (3.1)

For a prescribed initial datum, the general solution to (3.1) is,

f(t, x, v) = e3βt f 0(x− φ(t)v, eβtv) with φ(t) =
eβt − 1

β
. (3.2)

Now it is clear in (3.2) that the linear equation (3.1) propagates the velocity
moments, in the sense that the assumption |v|mf 0 ∈ L1 implies |v|mf(t) ∈ L1

for all t ≥ 0. The difficult point is that this property also holds on the nonlinear
VPFP system ([Bo1]). Now we want to propagate the space moments. We are
thus led to consider the following quantity,

X2(t) =
∫

R6
|x− φ(t)v|2f(t, x, v) dx dv . (3.3)
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It is clear in (3.2)-(3.3) that an initial datum satisfying |x|2f 0 ∈ L1 gives rise to
a finite X2(t), for all t, when f is a solution to (3.1) (in fact, X2(t) is constant
in this case, up to a normalisation by e−3βt). Now we derive a conservation law
for this quantity when f(t, x, v) is a solution of the nonlinear VPFP System. We
have,

d

dt
X2(t) =

∫
R6

[−2φ′(t)v] · [x− φ(t)v]f(t, x, v)dx dv

−
∫

R6
[x− φ(t)v]2 [v · ∇xf + divv(E − βv)f − σ∆vf ] dx dv

= (−2φ′(t) + 2)
∫

R6
v · [x− φ(t)v]f dx dv − 2φ(t)

∫
R6

E · [x− φ(t)v]f dx dv

+2βφ(t)
∫

R6
v · [x− φ(t)v]f dx dv + σ

∫
R6

fdivv(−2φ(t)[x− φ(t)v]) dx dv ,

Hence, using ‖f(t)‖L1 = ‖f 0‖L1 , we get,

∂tX2(t) = 6σφ(t)2‖f 0‖L1 − 2φ(t)
∫

R6
E · [x− φ(t)v]f dx dv . (3.4)

Now, we transform the force term in (3.4), as in [Pe], [Re1], letting α := ±1/4π :=
ω/4π,∫

R6
E · xfdx dv =

∫
R3

E · xρdx = α
∫

R6

x− y

|x− y|3
ρ(y)xρ(x)dx dy

=
α

2

∫
R6

1

|x− y|
ρ(x)ρ(y)dx dy =

1

2

∫
R3

V ρdx =
ω

2

∫
R3
|E|2dx .

Here we have set E = −∇xV , −∆V = ωρ. On the other hand, using the current
density j(x) =

∫
v vf , and the classical relation ∂tρ + divxj = 0, we have,∫

R6
E · vfdx dv = −

∫
R3
∇V jdx = −

∫
R3

V ∂tρ dx

= −ω
∫

R3
∇V ∂t∇V dx = −ω

2
∂t

∫
R3
|E|2dx .

Collecting these relations in (3.4) gives the desired conservation law,

(3.5)

d

dt
[X2(t) + ωφ(t)2

∫
R3
|E|2(t)dx] = 6σφ(t)2‖f 0‖L1 + ω(2φ′(t)− 1)φ(t)

∫
R3
|E|2(t)dx .

As a final remark, we would like to point out that this equality has been de-
rived using in a first approach the explicit solution g(t, x, v) to the linear problem
(3.1) with initial datum g0(x, v) = |x|2. Our natural ”candidate” X2(t) was then
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the integral
∫
x,v g(t)f(t) where f is the solution to the nonlinear VPFP prob-

lem. Naturally, we could have looked for the explicit solution h(t) to the linear
equation

∂th + v · ∇xh− βdivvvh− σ∆vh = 0

with initial datum h0 = |x|2 (i.e. including the diffusion term). This gives exactly
the same conservation law on the nonlinear system, and (essentially) the same
value of X2(t).

4 The existence result

From the conservation (3.5) stated above for, say, regular solutions to the VPFP
System, we build up in this section solutions to the VPFP for an initial datum
having infinite kinetic energy. More precisely, the main result is the

Theorem 4.1 Let f 0 ∈ L1 ⋂
L∞, f 0 ≥ 0 satisfy |x|2f 0(x, v) ∈ L1

x,v and |v|εf 0(x, v) ∈
L1

x,v for some ε > 0. Then, there exists a function f(t, x, v), solution to the VPFP
System in D′, and having the following properties:

(i) f(t) ∈ L∞loc([0, +∞[; L1 ⋂
L∞x,v).

(ii) X2(t) ≤ C(T ) for all 0 ≤ t ≤ T .
(iii)

∫
R6 |v|αf(t, x, v) dxdv ≤ C(T, ‖|v|εf 0‖1) for all 0 ≤ t ≤ T and α > 0

small enough .
Consequently, we have the following estimates, valid for 0 ≤ t ≤ T :

(iv) ‖E(t, x)‖p ≤ C(T )t−2+3/p for all 3/2 < p ≤ 15/4.
(v) ‖ρ(t, x)‖p ≤ C(T )t−3/p′ for all 1 ≤ p ≤ 5/3.

We observe that the blow-up exponents in (iv)-(v) are the same as those
obtained in [Pe] in the case σ = 0. In that sense, the diffusion term −σ∆v plays
no specific role in this section, and the transport operator ∂t + v · ∇x dominates.

The technique of proof relies on interpolation inequalities, as in [LPe], [Pe],
[Ca]. Also, the use of an ε-moment in the velocity variable is borrowed from [Pe],
[Ca].

We recall here these Lemmas, whose proof can be found in the above men-
tioned papers,

Lemma 4.1 Let f(x, v) ≥ 0 belong to L1 ⋂
L∞. Then, there exists a constant

C, depending only on ‖f‖L1∩L∞, such that,
(i) (moments in x) for all λ, µ, and 1 ≤ p ≤ (3 + k)/3. we have,

‖
∫

R3
f(x− λv, v)dv‖Lp

x
≤ C |λ + µ|−

3
p′ ‖|x− µv|kf‖

3
kp′
1 .

(ii) (moments in v) for all λ, and 1 ≤ p ≤ (3 + k)/3. we have,

‖
∫

R3
f(x− λv, v)dv‖Lp

x
≤ C ‖|v|kf‖

3
kp′
1 .
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(iii) More generally, we have, for 0 ≤ j ≤ k and 1 ≤ p ≤ (3 + k)/(3 + j),

‖
∫

R3
|x− µv|jf(x− λv, v)dv‖Lp

x
≤ C |λ + µ|−

3
p′ ‖|x− µv|kf‖

3
kp′
1 ,

‖
∫

R3
|v|jf(x− λv, v)dv‖Lp

x
≤ C ‖|v|kf‖

3
kp′
1 .

As we can see, the control of a moment in x, as well as the control of a moment
in v, allows to bound the density

∫
v f(x−λv, v) in Lp, and this holds for the same

values of p in both cases. But the moments in x give a factor |λ + µ|−
3
p′ which

blows up as λ + µ = 0. This explanes the negative powers of t in Theorem 4.1.
Assuming that the initial datum in this Theorem has a velocity moment of given
order would in fact decrease the exponents appearing in Theorem 4.1 (iv)-(v).

Now we come to the proof of the Theorem. We first prove the following
intermediate result,

Lemma 4.2 Let f(t, x, v) be a regular solution to the VPFP System with ini-
tial datum f 0. Let T > 0. Then, there exists a constant C depending only on
‖f 0‖L1∩L∞, ‖x2f 0‖1, and T , such that,

∀ 0 ≤ t ≤ T , X2(t) ≤ C .

Proof of Lemma 4.2. We integrate (3.5) with respect to t and get,

X2(t) + ωφ(t)2
∫
R3 |E|(t)2dx =

= X2(0) +
∫ t
0 [6σφ(s)2‖f 0‖1 + ω(2φ′(s)− 1)φ(s)

∫
R3 |E|(s)2dx] ds .

Thus, for 0 ≤ t ≤ T ,

(4.1)

X2(t) ≤ C(T ) +
∫ t

0
(2φ′(s)− 1)φ(s)

∫
R3
|E|(s)2dx ds + φ(t)2

∫
R3
|E|(t)2dx .

Now, there is a C > 0 such that C−1t ≤ (2φ′(t)−1)φ(t) ≤ Ct and C−1t ≤ φ(t) ≤
Ct as 0 ≤ t ≤ T . Thus,

X2(t) ≤ C + C
∫ t

0
s

∫
R3
|E|(s, x)2dx ds + Ct2

∫
R3
|E|(t, x)2dx . (4.2)

Now we bound the right hand side of (4.2) in terms of X2. Indeed, the Riesz-
Sobolev inequality for the singular convolution kernel x/|x|3 ([St]), combined with
Lemma 4.1-(i), gives,

‖E(t)‖2 ≤ C‖ρ(t)‖6/5 ≤ Cµ(t)−1/2X2(t)
1/4

≤ Ct−1/2X2(t)
1/4 . (4.3)
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Now the constants C appearing in (4.2)-(4.3) satisfy,

C = C(T, sup
t∈[0;T ]

|f(t)‖L1∩L∞) = C(T, ‖f 0‖L1∩L∞) (4.4)

thanks to the maximum principle for the VPFP System (See [Bo1], [Bo2]). Com-
bining estimates (4.2) and (4.3) gives,

X2(t) ≤ C(T ) + C(T )
∫ t

0
X2(s)

1/2ds + C(T )X2(t)
1/2 , (4.5)

for some C(T ) as in (4.4). Now C(T ) is completely determined through the initial
data and the given time T , and we observe that X2(t)−C(T ) X2(t)

1/2 ≥ X2(t)/2
for large values of X2(t) in front of C(T ). Since we are only interested in the
large values of X2(t), we can write (4.5) in the form,

1

2
X2(t) ≤ C(T ) + C(T )

∫ t

0
X2(s)

1/2ds .

From this we deduce,

X2(t) ≤ C(T ) for all 0 ≤ t ≤ T (4.6)

for some constant C(T ), thanks to Gronwall’s Lemma.

Now we come to the

Proof of Theorem 4.1. Lemma 4.2 gives a constant C = C(T, ‖(1+x2)f 0‖1, ‖f 0‖∞)
such that X2(t) ≤ C on [0, T ]. From this we deduce, using another time Lemma
4.1 together with Riesz-Sobolev inequality, the following bound for t ∈ [0, T ],

‖ρ(t)‖p ≤ Ct−3/p′ ∀1 ≤ p ≤ 5/3 , (4.7)

‖E(t)‖ ≤ Ct−2+3/p ∀3/2 < p ≤ 15/4 . (4.8)

We shall need in fact a slightly stronger version of (4.7). Taking t ∈ [0, T ],
s ∈ [0, t], and p ∈ [1, 5/3], we write (See (2.10) for the definitions),

‖ρµ(s)(t− s)‖p = ‖
∫

R3
f(t− s, x− µ(s)v, v) dv‖p

≤ C [µ(s) + φ(t− s)]−3/p′X2(t− s)3/2p′ ,

thanks to Lemma 4.1-(i). Hence,

‖ρµ(s)(t− s)‖p ≤ Ct−3/p′ . (4.9)

Now estimates (4.7)-(4.9) have been proved for regular solutions to the VPFP
system. The next step is to pass to the limit in this system.
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According to the assumptions of Theorem 4.1, we take a sequence f 0
n of regular

intial datas converging to f 0 in L1((1 + x2 + |v|ε) dx dv), as well as in L∞x,v, and
we call fn(t, x, v) the corresponding sequence of regular solutions to the VPFP
(and the associated ρn(t, x), En(t, x), V n(t, x) ).

Since we control the L1((1 + x2)dxdv)
⋂

L∞-norm of the initial datas f 0
n uni-

formly, we have the uniform estimates (4.7)-(4.9) for the sequence fn(t, x, v),
thanks to Lemma 4.2. Classically, the averaging Lemma as stated in [GPS],
[GLPS], [DPL2] or [DPLM] allows then to pass to the limit in the VPFP equation,
including the nonlinear term Enfn (say in the distributional sense - see [DPL2]).
The only difficult term is the Poisson equation −∆V n = ρn, since it is not obvious
whether the density ρn =

∫
v fn(t, x, v) should converge to ρ =

∫
v f(t, x, v) (recall

that only quantities of the type
∫
|v|≤R fn, R being finite, converge to

∫
|v|≤R fn ; a

”loss of mass” could occur when we take R = ∞ - See [Ca]). In order to show
that ρn → ρ, we need therefore to show that the sequence fn(t, x, v) is tight is
the v direction. At this level, we see the need of an L1(|v|εdxdv)-assumption on
the initial data. For this reason, we introduce in Lemma 4.3 below a quantity
analogous to X2(t). This Lemma provides a uniform bound on some velocity mo-
ment of the sequence fn, and it implies the tightness we are now seeking. Indeed,
applying Lemma 4.3 to the sequence fn gives

sup
n

∫
x

∫
|v|≥R

fn(t, x, v) → 0 as R →∞ ,

and this implies in turn, together with the averaging Lemma, the convergence
ρn → ρ, say in D′. This completes the proof of Theorem 4.1.

It remains to state the

Lemma 4.3 Let f be a (regular) solution to the VPFP System, with initial data
f 0 ∈ L1((1 + x2 + |v|ε)dxdv)

⋂
L∞ for some ε > 0. For α > 0, define

Vα(t) :=
∫

R6
< v >α f(t, x, v) dx dv where < v >:= (1 + v2)1/2 .

Then, for α small enough with respect to ε, we have

Vα(t) ≤ C(T, ‖(1 + x2 + |v|ε)f 0‖1, ‖f 0‖∞) for all 0 ≤ t ≤ T .

Proof of Lemma 4.3. We proceed as in [Ca]. In a first approach, we write,

d

dt
Vα(t) = −

∫
R6

< v >α [v · ∇xf + divv(E − βv)f − σ∆vf ] dx dv

≤ C
∫

R6
[< v >α−1 |E|f + β < v >α f + σ < v >α−2 f ] dx dv

≤ C ‖E(t)‖3+α V
α+2
α+3

α + C Vα + CVα−2 (4.10)

≤ C t−(2− 3
3+α

) V
α+2
α+3

α + C Vα . (4.11)
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Here (4.10) is a consequence of the Hölder inequality in x together with Lemma
4.1-(iii) for the quantity

∫
v < v >α−1 f , and (4.11) is simply a consequence of

estimate (4.8).
We now observe on (4.11) that the exponent 2− 3

3+α
> 1 prevents the use of

Gronwall’s Lemma. At this stage, we are led to improve the estimate on the field
E in (4.8), and we want to prove indeed that ‖E(t)‖3+α ∈ L1

loc(t) for possibly
small α. We decompose the field according to the introduction (See (2.5)),

E(t) = E1(t) + E2(t) ,

and estimate separately each term. First, we have,

‖E1(t)‖3+α ≤ C ‖E0(µ(t), x)‖3+α

≤ C ‖ρ0(µ(t), x)‖ 3(3+α)
6+α

,

thus,

‖E1(t)‖3+α ≤ C ‖ρ0(µ(t), x)‖(1−θ)
(3+ε)/3 ‖ρ0(µ(t), x)‖θ

5/3 , (4.12)

with (1− θ)
3

3 + ε
+

3θ

5
=

6 + α

3(3 + α)
. (4.13)

Now we estimate each term in the right-hand-side of (4.12), using Lemma 4.1-(ii)
for the first factor and 4.3-(i) for the second. This decreases the negative powers
of t obtained in (4.11). Indeed, we obtain,

‖E1(t)‖3+α ≤ Ct−3 θ/[5/3]′ , (4.14)

because Nε(0) < ∞. But (4.14) gives,

3θ

(5/3)′
=

6θ

5

→α→0
3/(3 + ε)− 2/3

3/(3 + ε)− 3/5
< 1

Thus, ‖E1(t)‖3+α ∈ L1
loc for sufficiently small α.

We proceed in a similar way for the other term. First we write,

‖E2(t)‖3+α ≤ C
∫ t

0
µ(s) d(s)−3/2a′ ‖Mµ(s)(t− s, x)‖b ,

thanks to Young’s inequality in x, as we choose a and b such that,

1

b
− 1

a′
=

1

3 + α
, a′ ∈]1;∞[ .
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Thus, observing that C−1t ≤ µ(t) ≤ Ct and C−1t3 ≤ d(t) ≤ Ct3 for t ∈ [0; T ]
and some C > 0, we get

‖E2(t)‖3+α ≤ C
∫ t

0
s1−9/2a′ ‖

∫
v
E(t− s, x− µ(s)v) f(t− s, x− µ(s)v, v)‖b ds

≤ C
∫ t

0
s1−9/2a′ µ(s)−3/c ‖E(t− s)‖c ‖

∫
v
f c′(t− s, x− µ(s)v, v)‖1/c′

b/c′ ds

≤ C
∫ t

0
s1−9/2a′ µ(s)−3/c ‖E(t− s)‖c ‖ρµ(s)(t− s)‖1/c′

b/c′ds , (4.15)

thanks to Hölder in v and using the bound ‖f(t)‖∞ ≤ C(T ), as in [LPe]. In
view of the estimates (4.7)-(4.9), we choose c such that c ∈]3/2; 15/4] and b/c′ ∈
[1; 5/3]. Once this has been done, we replace the terms E and ρ in (4.15) according
to (4.7)-(4.9), and obtain,

‖E2(t)‖3+α ≤ C
∫ t

0
s1−9/2a′ µ(s)−3/c (t− s)−2+3/c (t−3/[b/c′]′)1/c′ ds .(4.16)

Now we choose a′ ≈ ∞ (but < ∞), b ≈ 3 + α (< 3 + α), and c′ ≈ 3 ( < 3), so
that the different constraints on the exponents are satisfied. After collecting the
exponents, we get in (4.16),

‖E2(t)‖3+α ≤ Ct−η ,

for some η > 0 which can be chosen arbitrarily small. Therefore, ‖E2(t)‖3+α ∈
L1

loc for possibly small α.
Collecting the estimates on the field gives,

d

dt
Vα(t) ≤ g(t)Vα(t)

for some g(t) ∈ L1
loc, and Lemma 4.3 is proved.

5 Regularizing effects

In the preceding section we established the existence of a ”singular” solution to
the VPFP, and proved estimates on the field and on the density. These estimates
read ‖E(t)‖p ≤ C t−2+3/p for p ∈]3/2; 15/4] and ‖ρ(t)‖q ≤ C t−3/p′ for q ∈ [1; 5/3],
locally in time (See (4.7)-(4.9) ). This was performed by using essentially the
behaviour of the transport operator ∂t + v · ∇x. Indeed we did not use the
convolutions by a Gaussian in formulae (2.2)-(2.6), which are typical for the
diffusion term −σ∆v: we did only estimate terms like ρo(t, x) =

∫
v f 0(x−µ(t)v, v)

with µ(t) ≈ t (compare with ρo(t, x) =
∫
v f 0(x− tv, v) when there is no diffusion

term).
The aim of this section is to establish such estimates as 15/4 < p ≤ ∞ and

5/3 < q ≤ ∞, using this time the effect of the diffusion. In particular, we
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show that the field E becomes immediately L∞x , which is a key estimate (See
Introduction). In fact, even Hölder estimates can be obtained on ρ and E, and
we shall use as in [Bo1], [Bo2], the following convention for Hölder norms,

‖u‖C0,α = ‖u‖q , as − α

3
=

1

q
∈]− 1

3
; 0[ .

This kind of regularizing effects has already been studied by F. Bouchut in the
finite kinetic energy case ([Bo1], [Bo2]), and we will follow the same approach.

For our purpose we introduce, the

Definition 5.1 For α, δ ≥ 0 and 1 ≤ q, p ≤ ∞, let

Kp,α(t) := sup
s∈[0,t]

sα‖E(s)‖p

Sq,δ(t) := sup
s∈[0,t]

sup
u∈[0,s]

(s− u)δ‖ρµ(u)(s− u)‖q

The same notations are used for negative values of p and q.

Using these notations, the results of the preceding section read, Kp,2−3/p(t) ≤ C
and Sq,3/q′(t) ≤ C for 3/2 < p ≤ 15/4, 1 ≤ q ≤ 5/3 and 0 ≤ t ≤ T , and we want
to look at greater values of p and q.

Now, the main result of this section reads,

Theorem 5.1 Let f 0, f(t) be as in Theorem 4.1. Then, for all 0 ≤ t ≤ T , there
exists a C as in Theorem 4.1 such that,

(i) ∀15/4 < p ≤ ∞ , ∀α > α(p) , Kp,α(t) ≤ C ,
(ii) ∀5/3 < q ≤ ∞ , ∀δ > δ(q) , Sq,δ(t) ≤ C .

Here, the coefficients α(p) and δ(q) are given by,
α(p) = 12/5− 9/2p for 15/4 < p ≤ 100/9 ,
α(p) = 33/10− 29/2p for 100/9 < p ≤ ∞ ,
δ(q) = 99/10− 29/2q for 5/3 < q ≤ ∞ .

Also, we have,
(iii) ∀0 < α < 1/3 , ∀γ > 66/5 , ‖ρ(t)‖C0,α + ‖∇xE(t)‖C0,α ≤ C t−γ .
(iv) ∀0 < α < 1 , ∀γ > 187/40 , ‖E(t)‖C0,α ≤ C t−γ .

The end of this section is devoted to the proof of this Theorem. Note that, in
this Theorem, the constants C depend also on α, δ, ...

According to the splitting (2.4)-(2.5), we shall also need the

Definition 5.2

K(1)
p,α(t) := sup

s∈[0,t]

sα‖E1(s)‖p

S
(1)
q,δ (t) := sup

s∈[0,t]

sup
u∈[0,s]

(s− u)δ‖ρ1
µ(u)(s− u)‖q .
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Also, K(2)
p,α(t) and S

(2)
q,δ (t) are defined in the similar way, for positive and negative

values of p and q.

Remark 1 We observe that Kp,α and Sq,δ are decreasing functions of α and δ,
in the sense that,

Kp,α(t) ≤ C(T )Kp,β(t) for α ≥ β .

Our first (and easier) task, is to bound K(1) and S(1). This is done in the
following Lemma. We see on these terms how the convolution in the x variable
allows to bound these terms for large values of p and q. Naturally, such regu-
larizing effects cannot be obtained in the Vlasov-Poisson case σ = 0. Note that
these terms correspond to the ”free” evolution of the system, i.e. S(1) represents
the density generated by the solution to the linear VPFP System ( where E = 0)
with initial data f 0.

Lemma 5.1 Under the assumptions of Theorem 5.1, we have,
(i) ∀15/4 < p ≤ ∞ , K

(1)
p,12/5−9/2p ≤ C ,

(ii) ∀5/3 < q ≤ ∞ , S
(1)
q,39/10−9/2q ≤ C .

The same estimates hold true for −1/3 < p, q < 0.

Proof of Lemma 5.1 . For the sake of simplicity, here and in the rest of this
section we will normalise all the constants appearing in (2.4)-(2.5) to unity. Also,
we restrict ourselves to the case q, p ≥ 0. With this convention, we write,

‖E1(t)‖p = ‖d(t)−3/2 exp(−x2/d(t)1/2) ∗x E0(µ(t), x)‖p

≤ C‖d(t)−3/2 exp(−x2/d(t)1/2)‖a‖E0(µ(t), x)‖b

with 1/b− 1/a′ = 1/p and a′ ∈ [1;∞]

≤ Cd(t)−3/2a′ µ(t)−2+3/b

thanks to Lemma 4.1 and Riesz-Sobolev Inequality

≤ Ct−3/2b−2+9/2p ,

and we choose the optimal value b = 15/4. Concerning the density, we write,

‖ρ1
µ(s)(t− s)‖q ≤ C‖d(t)−3/2 exp(−x2/d(t)1/2)‖a‖ρ0

µ(s)(µ(t− s), x)‖b

with 1/b− 1/a′ = 1/q .

We observe that,

ρ0
µ(s)(µ(t− s), x) =

∫
R3

f 0(x− µµ(s)(t− s)v, v) dv ,

µµ(s)(t− s) = µ(t) .
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Therefore,

‖ρ1
µ(s)(t− s)‖q ≤ Cd(t)−3/2a′‖ρ0(µ(t), x)‖b

≤ Ct−3/2b−3+9/2q ,

and we choose the optimal value b = 5/3. We indicate at the end of this section
how to treat the case q, p < 0. The proof is complete.

Now we want to study the behaviour of the non-linear terms K
(2)
p,α(p) and S

(2)
q,δ(q).

In order to do this, we first establish two Lemmas which will be enough to get
the conclusion of Theorem 5.1 . Two analogous Lemmas can be found in [Bo2],
for the case of the VPFP System with finite kinetic energy. In this more regular
case, the quantity Sq(t) := supλ≥0 ‖

∫
v f(t, x − λv, v)‖q is used, and it satisfies

an estimate of the type Ct−δ for some δ > 0. In our case however we could
not get anything better than Sq(t) = ∞. This is the reason why we used the
quantity Sq,δ(q) defined above (it corresponds to the choice λ = µ(t) in Sq(t)),
and a compensation phenomenon allows Sq,δ(q)(t) to remain bounded.

The desired Lemmas read as follows.

Lemma 5.2 Let r > 3/2, 1 ≤ p < ∞, δ ≥ 0.
Take q ∈ [1;∞] satisfying 1/q ∈]1/pr′ + 2/3r − 4/9; 1/pr′[,
and define γ = α + δ/r′ − 9/2(1/q − 1/pr′ − 2/3r + 4/9) .
Then we have the following estimate,

K(2)
q,γ (t) ≤ C Kr,α(t) Sp,δ(t)

1/r′ .

The same result holds true for −1/3 < q < 0.

Lemma 5.3 Let r > 6, 1 ≤ p ≤ ∞, δ ≥ 0.
Take q ∈ [1;∞] satisfying 1/q ∈]1/pr′ + 2/3r − 1/9; 1/pr′],
and define γ = α + δ/r′ − 9/2(1/q − 1/pr′ − 2/3r + 1/9) .
Then we have the following estimate,

S(2)
q,γ(t) ≤ C Kr,α(t) Sp,δ(t)

1/r′ .

The same result holds true for −1/3 < q < 0 with the additionnal restriction
1/q < 1/pr′.

These Lemmas give the way to estimate Sq,δ and Kp,α for great values of p
and q from a bootstrap argument. It shows also how the coefficients α and δ
describing the singularity at t = 0 get worse as p and q grow.

Proof of Lemma 5.2 . We argue as in the proof of Lemma 5.1 , using the
convolution with a kernel which belongs to any Lp (1 < p < ∞). As in the proof

17



of Lemma 5.1, we restrict ourselves to the case q ≥ 0, and we shall indicate at
the end of this section how to treat the convolutions in the case q < 0. We write,

‖E2(t)‖q = ‖
∫ t

0

µ(s)

d(s)3/2
A(

x

d(s)1/2
) ∗x Mµ(s)(t− s, x)‖qds

≤
∫ t

0
µ(s) d(s)−3/2a′ ‖Mµ(s)(t− s, x)‖pr′ds

with 1/pr′ − 1/a′ = 1/q and a′ ∈]1;∞[ ,

≤
∫ t

0
µ(s) d(s)−3/2a′ ‖E(t− s)‖r µ(s)−3/r‖ρµ(s)(t− s, x)‖1/r′

p ds ,

thanks to Hölder’s inequality in v (See (4.15) ). Hence,

‖E2(t)‖q ≤ C
∫ t

0
s1−9/2a′−3/r (t− s)−α−δ/r′ Kr,α(t) Sp,δ(t)

1/r′ ds . (5.1)

We estimate the right-hand side of (5.1) below,

First case : α + δ
r′

< 1.

In that case, the factor (t − s)−α−δ/r′ in (5.1) is integrable. Also, one easily
checks that the condition 1/q > 1/pr′+2/3r− 4/9 implies 1− 9/2a′− 3/r > −1,
so that the s-factor in (5.1) is indeed integrable. Therefore, (5.1) gives,

‖E2(t)‖q ≤ C t−γ Kr,α(t) Sp,δ(t)
1/r′ . (5.2)

Second case: α + δ
r′
≥ 1.

In that case, we argue as in [Bo2]. We want to modify the factor (t−s)−α−δ/r′

into an integrable term. For that purpose, we consider the VPFP System with
initial data f(ε, x, v) (ε > 0). We note f ε(t, x, v) the corresponding solution (and
we assume it is unique, since we deal here with regular solutions to the VPFP).
We note also Eε(t, x) the corresponding force field (and E1

ε (t, x), E2
ε (t, x) the

associated splitting.). With these notations, we observe,

Eε(t− s, x) = E(t− s + ε) ,

ρε
µ(s)(t− s) = ρµ(s)(t− s + ε) .

Hence we write, as in (5.1),

‖E2
ε (t)‖q ≤ C

∫ t

0
s1−9/2a′−3/r ‖Eε(t− s)‖r ‖ρε

µ(s)(t− s)‖1/r′

p ds

≤ C
∫ t

0
s1−9/2a′−3/r (t + ε− s)−α−δ/r′ Kr,α(t + ε) Sp,δ(t + ε)1/r′ ds .(5.3)

Now we take ε = t/2 in (5.3), and we get the result.
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Remark 2 Performing the operation ε = t/2 above changes the interval [0; T ]
into [0; 3T/2]. Also, the estimate in Lemma 5.2 above should write,

K(2)
q,γ (t) ≤ C Kr,α(3t/2) Sp,δ(3t/2)1/r′ .

For simplicity, we did not keep track of these technical points.

Proof of Lemma 5.3 . We proceed as above, and write,

‖ρ2
µ(s)(t− s)‖q = ‖

∫ t−s

u=0

µµ(s)(u)

dµ(s)(u)2
∇N (

x

dµ(s)(u)1/2
) ∗x Mµµ(s)(u)(t− s− u, x)‖q

(5.4)

≤ C
∫ t−s

u=0
µµ(s)(u)1−3/r dµ(s)(u)−1/2−3/2a′ ‖E(t− s− u)‖r ‖ρµµ(s)(u)(t− s− u, x)‖p ,

with 1/pr′ − 1/a′ = 1/q and a′ ∈ [1;∞] . Now we observe that µµ(s)(u) = µ(s+u),
so that

ρµµ(s)(u)(t− s− u, x) = ρµ(s+u)(t− (s + u), x) ,

and we get in (5.4),

‖ρ2
µ(s)(t− s)‖q ≤
≤

∫ t−s
u=0 µµ(s)(u)1−3/r dµ(s)(u)−1/2−3/2a′ (t− s− u)−α−δ/r′ Kr,α(t) Sp,δ(t)

1/r′ .

It is easy to check that,

µµ(s)(u)1−3/r

dµ(s)(u)1/2+3/2a′
≤ µ(u)1−3/r

d(u)1/2+3/2a′
.

Hence,

‖ρ2
µ(s)(t− s)‖q ≤

∫ t−s

u=0
u−1/2−3/r−9/2a′ (t− s− u)−α−δ/r′ Kr,α(t) Sp,δ(t)

1/r′ ,

and we conclude as in the proof of Lemma 5.2 .

We can now come to the

Proof of Theorem 5.1. Lemma 5.3 shows that one can bound S(2)
q,γ with the

help of Sp,δ for exponents q ≥ p. Since we already know how to bound S(1)
q,γ for

any q, this allows to bound Sq,γ thanks to Sp,δ for values q ≥ p. We have indeed
the obvious estimate S ≤ S(1) + S(2) (and the same for K). Before going further,
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we first look for the optimal values of the parameters, in the sense that we want
to get the greatest value of q combined with the lowest value of the associated γ.
Indeed, we recall that γ describes the rate at which our solution ”blows-up” at
t = 0.

In order to get this optimal choice, we observe that the Lp norm of the force
field ‖E(t)‖p should blow up at least like t−α, with α ≥ 12/5 − 9/2p, since it
is the case for the first term E1(t) in the splitting (See Lemma 5.1-(i) ). So we
cannot hope any better α than α ≥ 12/5− 9/2p in the statement of Lemma 5.3.
Therefore, using the explicit value of γ in this Lemma, we get,

γ ≥ 12

5
− 9

2r
+ (δ +

9

2p
)
1

r′
+

3

r
− 1

2
− 9

2q
.

Here, we use 1/q ≤ 1/pr′, and get,

γ ≥ 12

5
− 9

2r
+

δ

r′
+

3

r
− 1

2
:= γmin(q) . (5.5)

Now γmin(q) is the lowest possible value of γ associated with a fixed q. The
best possible choice of the parameters in then obtained by minimizing γmin(q)

under the constraint
1

q
∈]

1

pr′
+

2

3r
− 1

9
;

1

pr′
]. And this last condition gives the

two constraints,

1

r′
≥ p

q
and

1

r′
>

5/9− 1/q

2/3− 1/p
. (5.6)

Equating the right-hand sides of (5.6) gives the optimal relations between the
parameters,

q =
6

5
p and r′ ≈ 6

5
( but r′ < 6/5 ) , (5.7)

and in this case γ ≈ γmin(q) ( γ > γmin(q)).
The same considerations give the following optimal choice of the parameters

in Lemma 5.2,

q = 3p and r′ ≈ 3 (but r′ < 3 ) . (5.8)

After these preliminary considerations, we decompose the proof of Theorem
5.1 as follows.

First Step. We bound Kr,α(r) for some r > 6.
Let r > 6, r ≈ 6, whose value will be fixed later. According to (5.7), we apply

Lemma 5.3 with p = 5/3, δ(p) = 6/5, q = 5r′/3. This gives{
S

(2)
5r′/3,δ ≤ C Kr,α S

1/r′

5/3,6/5

δ = α + 6/5r′ − 9/2(−2/3r + 1/9) .
(5.9)
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We already observe in (5.9) that S5/3,6/5 ≤ C, thanks to (4.7).
On the other hand, Lemma 5.1 implies

S
(1)
5r′/3,δ(5r′/3) ≤ C . (5.10)

(See Theorem 5.1 for the definition of δ(q) ). It is easy to check on the formula
(5.9) that δ ≥ δ(5r′

3
). Finally, it is clear that the quantities Sq,δ are decreasing

functions of δ, according to the Remark 1 above. Therefore, (5.9) together with
(5.10) gives,

S5r′/3,δ ≤ C Kr,α(r) , (5.11)

and δ is given by (5.9). We translate this bound on the density into a bound on
the force field, thanks to Lemma 5.2. More precisely, we take, according to (5.8),
R ≈ 3/2, R > 3/2, and q = r, and write Lemma 5.2 in the form,{

K(2)
r,γ ≤ C KR,2−3/R S

1/R′

5r′/3,δ ≤ C KR,2−3/R K
1/R′

r,α(r)

γ = 2−3/R + δ/R′ − 9/2(1/r − 3/5r′R′ − 2/3R + 4/9) .
(5.12)

Now, in view of Lemma 5.2, this majorisation needs the following constraint,

1

r
∈]

3

5r′R′ +
2

3R
− 4

9
;

3

5r′R′ [ . (5.13)

The upper bound in (5.13) is equivalent to 1/r < 3/(5R′ + 3), and this last
quantity is ≈ 1/6, and > 1/6 as r ≈ 6 and R ≈ 3/2.

The lower bound in (5.13) is equivalent to

1

r
>

1 + 7R/3

24R− 9
,

and this last quantity is ≈ 1/6, < 1/6 under the same assumptions.
Therefore, (5.13) holds, and (5.12) is valid for r > 6, r ≈ 6 close enough

in function of R, and R > 3/2, R ≈ 3/2. Now we observe in (5.12) that γ ≈
α(r)/3 + 1 ≤ α(r) because α(r) ≈ 33/20 ≥ 3/2.

Therefore, combining (5.12) with K
(1)
r,α(r) ≤ C (See Lemma 5.1) and with

KR,2−3/R ≤ C (See (4.8) ) gives,

Kr,α(r) ≤ C K
1/R′

r,α(r) ,

thus,
Kr,α(r) ≤ C .

Second Step. We bound S∞,δ for any δ > δ(∞) .
We write Lemma 5.3 with p = q = ∞, r > 6 ( r ≈ 6 ) as in the first step, and

δ > δ(∞) ( δ ≈ δ(∞) ). We obtain,{
S(2)
∞,γ ≤ C Kr,α S

1/r′

∞,δ

γ = α + δ/r′ + 3/r − 1/2 .
(5.14)
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On the other hand, we already know

S
(1)
∞,δ(∞) ≤ S

(1)
∞, 39/10 ≤ C . (5.15)

Finally, one easily checks that γ ≤ δ since γ ≈ δ(∞). Therefore, combining (5.14)
and (5.15) gives, as in the first step,

S∞,δ ≤ CS
1/r′

∞,δ ,

thus,

S∞,δ ≤ C(T ) , (5.16)

This ends the second step.

Third Step. We bound Kq,α for any α > α(q) and 1 ≤ q < ∞.
Thanks to the second step, we know that Sp,δ ≤ C for all δ > δ(p) (interpolate

the bound on S∞,δ with the bound on S5/3 , 6/5 in (4.7) ). Therefore, writing
Lemma 5.2 with the choice r ≈ 3/2 (r > 3/2), q ≈ pr′ (q > pr′) gives,{

K(2)
q,γ ≤ C Kr,α(r) S

1/r′

p,δ

γ = α(r) + δ/r′ + 9/2(1/q − 1/pr′ − 2/3r + 4/9) .
(5.17)

Using Lemma 5.1 gives the desired bound on K, since γ ≈ α(q) in (5.17). The
case q = ∞ is recovered from the Hölder estimates below by interpolation.

Fourth Step. Hölder estimates.
We notice that we can apply exactly the same method in order to estimate

the Hölder norms of ρ and E. For this we only need to replace in the above
calculations the convolutions inequalities in Lp, by the convolutions inequalities
in C0,α. They read (See [Bo2], [Ho1]),

‖u ∗x a‖C0,α ≤ C‖u‖p (5.18)

for,
1 ≤ p ≤ ∞ , 1 ≤ l < ∞ , α = N(1/l − 1/p) ∈]0; 1[

a ∈ C1(RN − {0}) , |a(x)| ≤ C/|x|N/l′ , |∇a(x)| ≤ C/|x|1+N/l′ .

In our case, we use these convolution inequalities for the kernel a(x) = N (x) ∈ S,
or a(x) = A(x). When a = A, we observe indeed that, for all 0 ≤ β < 3, we
have, xβA(x) ∈ L∞ , (use the Fourier transform), and this allows the use of (5.18)
for a = A. Also, these considerations justify Lemmas 5.1-5.2-5.3 in the case of
negative exponents.
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We write now Lemma 5.3 for q ≈ −9 (q < −9) (this corresponds to the space
C0,β with β ≈ 1/3), r ≈ ∞, α ≈ 33/10, p = ∞, δ ≈ 99/10. This gives,

Sq,γ ≤ C , for γ ≈ 66/5 ,

and it proves Theorem 5.1-(iii). Part (iv) is obtained in the same way. We get
the estimates on ∇E by using the explicit formula for ∇E and observing that
∇A ∈ Lp (1 < p < ∞).

The proof of Theorem 5.1 is now complete.
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