
1

Propagation of space moments
In the Vlasov-Poisson Equation

and further results

Paru dans Ann. I.H.P., Anal. NonLinéaire (1997).
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Résumé. Pour une solution f = f(t, x, v) du système de Vlasov-Poisson nous
prouvons que, si la donnée initiale f 0 possède des moments dans la variable
d’espace x d’ordre plus grand que 3, alors f possède également des moments
d’ordre plus grand que 3 dans la variable x − vt (propagation des moments
d’espace d’ordre élevé). Nous prouvons également la propagation des moments
d’ordre peu élevé dans les variables d’espace ou de vitesse. Enfin, nous établissons
diverses estimations a priori pour des solutions du système de Vlasov-Poisson
ayant une énergie cinétique infinie.

Abstract. We show that, if the initial data has moments in the space variable x
higher than three, then the corresponding solution f(t, x, v) of the Vlasov-Poisson
System has also moments in x− vt higher than three (propagation of high space
moments). We also prove the propagation of low moments in the space or in
the velocity variable, and state further a priori estimates for solutions of the
Vlasov-Poisson System having infinite kinetic energy.

Key-words. Vlasov-Poisson System, propagation of moments, infinite kinetic
energy.
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1 Introduction

We consider the three dimensional Vlasov-Poisson System (VPS). In this system,
the function f(t, x, v) ≥ 0 represents the microscopic density of particles located
at the position x ∈ R3, with velocity v ∈ R3, at the time t ∈ R, evolving in the
self-consistent (repulsive or attractive) Coulomb potential it creates. The system



III. MOMENTS D’ESPACE DANS VLASOV-POISSON 2

reads, 

∂tf + v · ∇xf + E · ∇vf = 0 ,
f(t = 0, x, v) = f 0(x, v) ≥ 0 ,

E(t, x) = ± 1

4π

x

|x|3
∗ ρ(t, x) ,

ρ(t, x) =
∫
R3 f(t, x, v) dv .

(1.1)

Here, ρ(t, x) represents the macroscopic density of particles located at the
point x and at the time t, E(t, x) is the self-consistent Coulombic or Newtonian
force-field created by ρ, and the sign − corresponds to a gravitational interaction
(astrophysics), whereas + describes an electrostatic interaction (semi-conductor
devices). In fact, we will not distinguish between the repulsive and attractive
cases in the sequel.

On the other hand, the Free-Transport equation is closely related to the VPS.
It describes the free evolution of a particle-system with no interactions, and reads,{

∂tf + v · ∇xf = 0 ,
f(t = 0, x, v) = f 0(x, v) ≥ 0 .

(1.2)

This equation has the (unique) solution f(t, x, v) = f 0(x − vt, v) and generates
the macroscopic density ρ0(t, x) =

∫
v f

0(x − vt, v)dv. From a ’semi-group’ point
of view, (1.2) gives the C0 group associated with (1.1), which is easily seen to be
unitary in the spaces Lp(R3

x × R3
v) (1 ≤ p ≤ ∞).

Our main results concerning the VPS are the following :

(i) We prove that, if the initial data f 0 satisfies f 0 ∈ L1 ⋂
L∞ and∫

x,v(|x|m + |v|ε)f 0 < ∞ for some m > 3, ε > 0, then one can build a solu-

tion of (1.1) such that
∫
|x − vt|k f(t, x, v) dx dv ∈ L∞loc(Rt), for all k < m

(Theorem 5.1). This result, which we call propagation of space moments (of high
order), is obvious on the Free-Transport equation above (even with ε = 0), and
we show in fact that the nonlinearity in the VPS ’preserves’ this property. We
emphasize the fact that the solutions we build here have infinite kinetic energy.

(ii) The point (i) above leads to the restriction m > 3 and the case of the
low moments remains. We show that one can propagate the velocity and the
space moments of the initial data f 0 under the two possible sets of assumptions:
(|x|m + |v|p) f 0 ∈ L1 for some m > 3, p > 0, or for m > 0, p > 3 (Theorem 6.1).
This result shows how one can also propagate the low moments in the VPS in
one variable if we control enough moments in the other variable.

(iii) The first point allows to develop a theory of solutions to (1.1) with infinite
kinetic energy, and we state here various results in this direction. The idea is that
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a priori estimates (regularizing effects) on the force field E(t, x) can be obtained
as soon as the initial data f 0 ∈ L1 ⋂

L∞ has one additional moment (Theorem
2.1). In this sense, the initial kinetic energy

∫
x,v |v|2f 0 is one particular moment,

which does not need being finite. This kind of regularizing effect is well-known at
the quantum level (See below). We also state decay estimates for the Repulsive
VP System.

Global weak solutions to (1.1) were built in [11] under the natural assumptions
f 0 ∈ L1 ⋂

L∞,
∫
v |v|2f 0 < ∞ (See also [1], [2], [13] ). Also, global renormalized

solutions were built in [7] for initial datas satisfying f 0 ∈ L1 (mass), f 0 log+ f 0 ∈
L1 (’entropy’), and v2f 0 ∈ L1 (kinetic energy).

Besides, the construction of smooth solutions to the VPS was achieved in
two different settings. On the one hand, [20] and [23] used compactly supported
solutions and studied the characteristic curves of the natural ODE associated to
the System; in this setting, they showed that smooth and compactly supported
initial datas (say C1

c (R6)) remain, say, C1
c through time evolution, thanks to an

appropriate decomposition of the phase-space (See [21] for refinements, [22] for
a review paper on these methods). On the other hand, smooth solutions were
also built by [16] for initial datas f 0 ∈ L1 ⋂

L∞ having velocity moments of order
higher than three, and they proved that these moments are propagated through
time evolution.

All the above mentioned papers treat the case of solutions having finite kinetic
energy (

∫
x,v v

2f 0(x, v) <∞). However, solutions with infinite kinetic energy were
recently built in [19], under the assumptions f 0 ∈ L1 ⋂

L∞, |x|2f 0 ∈ L1 (See [18]
for results in the same direction concerning the Boltzmann equation): here, a new
dispersive identity on the VPS is proved (See also [14]) that allows to propagate
the second space moment, in the sense that

∫
|x− vt|2f(t, x, v) dx dv ∈ L∞loc(Rt)

(See (i) above). Surpringly, this gives rise to regularising effects in the VPS when
the kinetic energy is not initially bounded, such as the estimate ‖E(t, x)‖L2

x
≤

Ct−1/2 as t tends to 0 (See [19] for more details).

The present paper is a natural continuation of the works by [16] on the one
hand, where the propagation of high moments in v was considered but not the x
moments, and by [19] on the other hand, which concerns only the special case of
the second space moment and the associated conservation law. To our knowledge,
nothing was known concerning the general problem of the propagation of space
moments in the VPS and the corresponding existence theory for solutions with
infinite kinetic energy.

Indeed, we rely here on general x-moments in order to build solutions to
the VPS (point (i) above): since we cannot derive, in general, any conservation
law for these moments, only PDE arguments allow to prove the propagation of
space moments. The main difficulty at this level stems from the fact that we
deal here with solutions having infinite kinetic energy. In order to treat this
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important feature, the key point is that the VPS gives rise to a regularizing effect
which implies, roughly speaking, that the potential energy immediately becomes
finite as t > 0 under the assumptions we make here (See Theorem 2.1 below).
Therefore, a natural singularity at t = 0 appears which contains most of the
mathematical difficulties of our approach, and makes the main difference with
the above papers. Notice that this kind of situations had been already pointed
out in [19] for the case of the second space moment (the problem is much simpler
in this case since we already have a conservation law).

Our method shows also how to propagate the low velocity moments which
were not considered in [16] (point (ii) above).

Finally, the point (iii) above (Theorem 2.1 below) generalizes regularizing
effects obtained in [5] and [19]. In fact, this Theorem contains the starting point
of our approach: the major difficulty while dealing with the VPS is to bound the
force field E(t, x) = x/4π|x|3 ∗ρ in the Lq

x spaces, which gives rise to the problem
of bounding ρ in Lp for p > 1. In order to do so, one can use auxiliary moments
of f 0, and try to propagate them through time evolution. Following this idea, we
introduce in section 2 several preliminary lemmas in this direction, and deduce
some a priori estimates on the force field E(t, x). For instance, we show that the
existence of a space moment at the time t = 0 gives a finite potential energy for
t > 0 (See Theorem 2.1).

We would like to give another strong motivation for this work: the propagation
of x-moments at the quantum level has been studied widely in the literature (See
[6] and the references therein). But nothing was known at the classical level,
which is mathematically more difficult because the impulsion v corresponds to
i~∇ at the quantum level, a stronger operator. Recall that the quantum analogue
of the VPS is the Hartree Equation, or the Schrödinger-Poisson System (See e.g.
[15], [19], [4]). Hence, the quantum analogue of the property (i) above concerning
the space moments of the solution is,

xmφ ∈ L2 ⇒ (x+ it~∇)m ψ(t) ∈ L2 , ∀t ∈ R ,

where φ ∈ L2 is the initial data, and ψ(t) is the corresponding solution to the
Hartree Equation. This property is well-known, and one should notice that, al-
though the x moments are propagated at the classical level under the assumption
|v|εf 0 ∈ L1 for some ε > 0, the Hartree equation allows to propagate the space
moments of the initial data φ without any further assumption on the regularity
of φ ( i.e. we do not need to assume ∇εφ ∈ L2 for some ε > 0 ). Also, the reg-
ularizing effect described in Theorem 2.1 below has a well-known (and stronger)
quantum analogous, that is for instance,

xφ ∈ L2 ⇒ ψ(t) ∈ L2
⋂
L6 for t 6= 0
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in three dimensions of space (See [6], [4]).
The end of this paper is organised as follows : in section 2, we prove a general

Lemma that we use throughout the paper, and deduce a priori estimates for
solutions to the VPS ; section 3 is devoted to the local-in-time propagation of
the space moments, and sections 4-5 show how to deal with arbitrary large time
intervals ( points (i)-(ii) ); finally, section 6 deals with the propagation of low
space and velocity moments, which are not considered in a first approach (point
(iii) ).

Our main results are Theorems 2.1, 5.1, 6.1.

2 Some a priori estimates

Before beginning our analysis of the VP equation, we first introduce some (com-
monly used) notations : Lp denotes either Lp(R3) or Lp(R3 ×R3), if the context
makes it clear. We sometimes write also Lp

x instead of Lp(R3
x), and Lp

x,v instead
of Lp(R3

x × R3
v). The corresponding norms appears frequently as ‖.‖p. For in-

stance, we use the convention ‖ρ(t, x)‖Lp
x
≡ ‖ρ(t, x)‖p ≡ ‖ρ(t)‖p (and the same

for E(t, x), ...). As usual p′ stands for the conjugate exponent of p, that is :
1/p + 1/p′ = 1. Finally, we denote C(a1, · · · , an) a positive constant depending
only on the arguments.

Now, and as it was announced in the previous section, we first introduce
several preliminary inequalities on the microscopic density f(t, x, v), which will
be used later. We begin with the

Definition 2.1 Let f(t, x, v) ≥ 0 be a solution to the VPS and f 0(x, v) the
corresponding initial data. We define, for k ≥ 0 :
(i) (space moments)

Mk(t, x) :=
∫

R3
|x− vt|kf(t, x, v)dv , Mk(t) :=

∫
R6
|x− vt|kf(t, x, v)dx dv ,

(ii) (velocity moments)

Nk(t, x) :=
∫

R3
|v|kf(t, x, v)dv , Nk(t) :=

∫
R6
|v|kf(t, x, v)dx dv ,

(iii) the macroscopic density generated by the Free-Transport Equation (See In-

troduction) is: ρ0(t, x) :=
∫

R3
f 0(x− vt, v)dv .

We now state the

Lemma 2.1 Let f 0(x, v) ∈ L1 ⋂
L∞, f 0 ≥ 0. Then, there are constants C =

C(‖f 0‖L1
⋂

L∞) such that :

(1) ∀ p ≤ q , ‖ρ0(t, x)‖Lp
x
≤ C ‖f 0(x, v)‖L1

v(L
q
x)
,

(2) ∀ 1 ≤ p ≤ 3+k
3
, ‖ρ0(t, x)‖Lp

x
≤ C Nk(0)

3
kp′ ,

(3) ∀ p ≤ q , ‖ρ0(t, x)‖Lp
x
≤ C t

− 3
p′ ‖f 0‖L1

x(L
q
v)

(4) ∀ 1 ≤ p ≤ 3+k
3
, ‖ρ0(t, x)‖Lp

x
≤ C t

− 3
p′ Mk(0)

3
kp′ .
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We see here how we can control the Lp norms of ρ0(t) (t 6= 0) in terms of some
moments of f 0 (moments of Lp type in one variable, or more usually moments
with weights). Notice that an exponent θ ∈ [0, 1] should appear in the inequalities
(1) and (3) above, giving for instance ‖f 0(x, v)‖θ

L1
v(L

q
x)

on the r.h.s. instead of

‖f 0(x, v)‖L1
v(L

q
x)

. For sake of simplicity, we do not write this exponent here,

since it plays no role in the sequel. We do not prove the Lemma 2.1 which is an
easy consequence of the following

Lemma 2.2 Let f(x, v) ∈ L1 ⋂
L∞ and set Mk(t, x) :=

∫
|x − vt|kf(x, v)dv,

Mk(t) :=
∫
Mk(t, x)dx, Nk(t, x) :=

∫
|v|kf(x, v)dv, and Nk(t) :=

∫
Nk(t, x)dx as

in Definition 2.1 . Then, there are constants C = C(‖f‖L1
⋂

L∞) such that :

(1) ∀ p ≥ q , ‖f(x− vt, v)‖Lp
x(L

q
v)
≤ ‖f‖Lq

v(L
p
x)
,

(2) ∀ 1 ≤ p ≤ 3+k
3+l

, ‖Nl(t, x)‖Lp
x
≤ C Nk(t)

l
k
+ 3

kp′ ,

(3) ∀ p ≥ q , ‖f(x− vt, v)‖Lp
x(L

q
v)
≤ C t−3( 1

q
− 1

p
) ‖f‖Lq

x(L
p
v)
,

(4) ∀ 1 ≤ p ≤ 3+k
3+l

, ‖Ml(t, x)‖Lp
x
≤ C t

− 3
p′ Mk(t)

l
k
+ 3

kp′ .

Proof of Lemma 2.2 We begin by proving the point (1). Indeed, for p ≥ q,

‖f(x− vt, v)‖Lp
x(L

q
v)

≤ ‖f(x− vt, v)‖Lq
v(L

p
x)

≤ ‖f(x, v)‖Lq
v(L

p
x)
. (2.1)

The point (2) is proved in [16], and (3) can be found in [5]. Now the point
(4) is analogous to the proof of (2) in [16]. Indeed, if we set Ml(t, x) =

∫
v |x −

vt|lf(x, v)dv, we have

Ml(t, x) =
∫
|x−vt|≤R

|x− vt|lf(x, v) dv +
∫
|x−vt|≥R

|x− vt|lf(x, v) dv

≤ ‖f(x, v)‖Lq
v

(
∫
|x−vt|≤R

Rlq′dv)1/q′ +R−k+l Mk(t, x)

≤ ‖f(x, v)‖Lq
v
Rl (

R

t
)3/q′ (

∫
|V |≤1

dV )1/q′ +R−k+l Mk(t, x) .

The point (4) is then obtained by letting R
k+ 3

q′ = Mk(t, x) t
3/q′ ‖f(x, v)‖−1

Lq
v

and

p′ = kq′+3
k−l

in the last inequality.

Remark 2.1 As a direct consequence of Lemma 2.1-(4), the Riesz-Sobolev in-
equality (See [24]) immediatly implies,

∀ 3/2 < p ≤ 3(3 + k)

6− k
(<∞ if k > 6)

‖E0(t)‖p ≤ C t−(2− 3
p
)M

1
k
(2− 3

p
)

k . (2.2)



III. MOMENTS D’ESPACE DANS VLASOV-POISSON 7

Remark 2.2 The points (1) and (2) in Lemma 2.1 give an L∞ bound in time on
‖ρ0(t)‖p, although estimates (3) and (4) give at the same time some decay of the
latter as t goes to infinity and a regularizing effect on the Lp norms (p > 1) of
ρ0(t) as t goes to 0. Both phenomenas behave in (3) as well as in (4) like t−3/p′.
One should also notice that this negative power of t in (4) does not depend on the
value of k: a better regularity of f 0 in terms of its x-moments does not improve
the decay of the macroscopic density.

Concerning the blow-up of ρ0(t) at t = 0, we shall see in the subsequent
sections that it gives rise to a difficulty when one wants to propagate the x-
moments Mk of the initial data f 0 through the VPS. That is the reason why we
will assume in sections 3-5 that f 0 has an additional moment of small order in
the velocity variable. On the other hand, the decay estimate ‖ρ0(t)‖p ≤ C t−3/p′

as t→∞, is in fact optimal, as we show it now.

Lemma 2.3 (1) (Free Transport Equation) Let f 0 6= 0 and ρ0(t) be as in Lemma
2.1. Then there exists a positive constant C = C(f 0) such that,

‖ρ0(t)‖p ≥ C (1 + |t|)−
3
p′ .

(2) (Repulsive VP System) Let f 0 ∈ L1 ⋂
L∞, f 0 6= 0, satisfy (|v|2 + |x|2)f 0 ∈ L1.

Let f(t, x, v) be a corresponding solution of the Repulsive VPS which preserves
energy. Then, there exists a positive constant
C = C(‖f 0‖L1

⋂
L∞ , ‖(|v|2 + |x|2)f 0‖L1) such that,

‖ρ(t, x)‖Lp
x
≥ C (1 + |t|)−

3
p′ .

Proof of Lemma 2.3. The proof of these properties on the quantum level
(Hartree equation or Free Schrödinger equation) can be found in [12] and [3]. We
adapt them in the ’classical’ context. We first prove the point (1). Let R > 0,
we have, ∫

|x|≤Rt
ρ0(t)dx ≤ ‖ρ0(t)‖p (Rt)3/p′ , (2.3)

and, for t ≥ 1,∫
|x|≤Rt

ρ0(t)dx =
∫
|X+V t|≤Rt

f 0(X,V )dX dV

≥
∫
|X+V t|≤Rt ; |X|≤R

f 0(X,V )dX dV

≥
∫
|V |≤R/2 ; |X|≤R

f 0(X,V )dX dV = const. > 0 , (2.4)

for R sufficiently large. Estimates (2.3) and (2.4) give the result.
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Now we prove the point (2). To do this, we argue as in [12] and show in fact
that, for R sufficiently large,

lim inf
t→∞

∫
|x|≤Rt

ρ(t, x)dx > 0 . (2.5)

Combining (2.5) with (2.3) gives the result. Now suppose (2.5) is false. In this
case we find an increasing sequence tk → ∞ such that

∫
|x|≤Rtk

ρ(tk, x)dx → 0.
Thus,

∫
|x|≤Rtk

v2f(tk, x, v)dxdv ≤ 2
∫
|x|≤Rtk

(v − x

tk
)2f(tk, x, v) + 2

∫
|x|≤Rtk

x2

t2k
f(tk, x, v)

≤ C

1 + tk
+ 2R2

∫
|x|≤Rtk

ρ(tk, x)dx , (2.6)

where C = C(‖f 0‖L1
⋂

L∞ , ‖x2f 0‖L1). This last inequality is a consequence of the

conservation law derived in [19], [14] which reads,

∂t

[ ∫
x,v
|x− vt|2f(t, x, v)dx dv + t2

∫
x
|E(t, x)|2dx

]
= +t

∫
x
|E(t, x)|2dx ≤ C ,

and implies that, ∫
x,v
|x− vt|2f(t, x, v)dxdv ≤ C(1 + t) . (2.7)

Hence we get in (2.6),∫
|x|≤Rtk

v2f(tk, x, v)dxdv → 0 as k →∞ . (2.8)

¿From this we deduce,

lim
k→∞

∫
|x|≥Rtk

v2f(tk, x, v)dxdv = lim
k→∞

∫
x,v
v2f(tk, x, v)dxdv

= lim
k→∞

∫
x,v
v2f 0dxdv +

∫
x
E2(t = 0)dx−

∫
x
E2(tk)dx ,

thanks to the conservation of energy. But (2.7) and the conservation law stated
above imply, ∫

x
E2(tk, x)dx ≤ C t−1

k ,

Thus, ∫
|x|≥Rtk

v2f(tk, x, v)dxdv →k→∞

∫
x,v
v2f 0dxdv +

∫
x
E2(t = 0)dx . (2.9)
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We now observe that,∫
|x|≥Rtk

ρ(tk, x)dx→k→∞

∫
x,v
f 0dxdv , (2.10)

and (2.7) implies,

(
∫
|x|≥Rtk

v2f(tk, x, v) dxdv)
1/2 ≥

≥ (
∫
|x|≥Rtk

x2

t2k
f(tk, x, v) dxdv)

1/2 − (
∫
|x|≥Rtk

(
x

tk
− v)2f(tk, x, v) dxdv)

1/2

≥ R (
∫
|x|≥Rtk

f(tk, x, v) dxdv)
1/2 − C

t
1/2
k

.

We pass to the limit in the above inequality and get, thanks to (2.9), (2.10),

(
∫

x,v
v2f 0(x, v)dxdv +

∫
x
E2(t = 0)dx)1/2 ≥ R ‖f 0‖1/2

1 , (2.11)

which is a contradiction if R is large enough. This ends the proof of this Lemma.

We now want to derive some a priori estimates on the force field in the VPS
from Lemma 2.1. We first need the following

Definition 2.2 (1) Let a ≥ 6/5. We define

pmax(a) :=
3a

3− a
(= ∞ if a ≥ 3 ) ,

pmin(a) := [pmax(a)]
′ =

3a

4a− 3
(= 1 if a ≥ 3 ) ,

I(a) := ]3/2; 3[
⋂

[pmin(a); pmax(a)] .

(2) Let m ≥ 3/5. We define

qmax(m) :=
9 + 3m

6−m
(= ∞ if m ≥ 6 ) ,

qmin(m) := [qmax(m)]′ =
9 + 3m

4m+ 3
(= 1 if m ≥ 6 ) ,

J(m) := ]3/2; 3[
⋂

[qmin(m); qmax(m)] .

Remark 2.3 Notice that

I(a) = {2} iff a = 6/5 ,
I(a) =]3/2; 3[ iff a ≥ 3/2 ,

J(m) = {2} iff m = 3/5 ,
J(m) =]3/2; 3[ iff m ≥ 3/2 .
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Lemma 2.1 above allows us now to state the following

Theorem 2.1 Let f 0(x, v) ∈ L1 ⋂
L∞, f(t, x, v) be a strong solution of the VPS

(See [19] for the precise definition) with initial data f 0, and E(t, x) be the corre-
sponding force field.

(1) Assume, in addition, f 0 ∈ L1
v(L

a
x) for some a ≥ 6/5. Then, we have,

‖E(t)‖p ≤ C(T, ‖f 0‖L1
⋂

L∞ , ‖f 0‖L1
v(L

a
x)

) ,

for all 0 ≤ |t| ≤ T and all p ∈ I(a).

(2) Assume, in addition, Nm(0) <∞ for some m ≥ 3/5. Then, we have,

‖E(t)‖p ≤ C(T, ‖f 0‖L1
⋂

L∞ , Nm(0)) ,

for all 0 ≤ |t| ≤ T and all p ∈ J(m).

(3) Assume, in addition, f 0 ∈ L1
x(L

a
v) for some a ≥ 6/5. Then, we have,

‖E(t)‖p ≤ t−(2− 3
p
) C(T, ‖f 0‖L1

⋂
L∞ , ‖f 0‖L1

x(La
v)) ,

for all 0 ≤ |t| ≤ T and all p ∈ I(a).

(4) Assume, in addition, Mm(0) <∞ for some m ≥ 3/5. Then, we have,

‖E(t)‖p ≤ t−(2− 3
p
) C(T, ‖f 0‖L1

⋂
L∞ ,Mm(0)) ,

for all 0 ≤ |t| ≤ T and all p ∈ J(m).

Remark 2.4 The results of Theorem 2.1 give a priori estimates in the VPS as
the initial data has infinite initial kinetic energy. This generalises the correspond-
ing results obtained in [19] which only considers the case M2(0) <∞. Following

the remark 2.2 above, we notice that ‖E(t)‖p blows up at most like t−(2− 3
p
) at

t = 0 (cases (3) and (4)), or it is locally bounded (cases (1) and (2)).

Remark 2.5 A natural question is : do the estimates of Theorem 2.1 give sta-
bility results (and, in particular, existence results) for the VPS with initial data
f 0 in the above spaces ?

Unfortunately, the answer is negative : Let f 0
n be a sequence of initial data

converging strongly to f 0 in the desired spaces, and fn(t, x, v) be the corresponding
sequence of solutions to the VPS (say f 0

n ∈ C∞c , and in this case fn(t, x, v) ∈
C∞(Rt;C

∞
c (R3

x × R3
v)) ). The compactness of the velocity averaging as stated in

[9], [10], [8] allow to show the local strong convergence of
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∫
|v|≤R f

n(t, x, v)dv to
∫
|v|≤R f(t, x, v)dv for any 0 < R <∞, and thus we can pass

to the limit in the sense of distributions in

∂tf
n + v · ∇xf

n + En · ∇vf
n = 0 ,

recalling that fn converges weakly towards some f .
But we do not know if

sup
n

∫
|v|≥R

fndv −→R→∞ 0 ,

(for example in the L1
x norm) under the only assumptions of Theorem 2.1. We

can only prove it when ‖En(t)‖p is bounded for some p > 3. Thus, it is not clear
whether

ρn(t, x) −→ ρ(t, x) =
∫

v
f(t, x, v)dv in D′ ,

a loss of mass could occur and we cannot pass to the limit in Poisson’s equation.

Proof of Theorem 2.1 . Following [16] and [19], we split the force field into
two parts,

E(t, x) = E0(t, x) + E1(t, x) ,

where, 
E0(t, x) :=

x

4π|x|3
∗x ρ

0(t, x) =
x

4π|x|3
∗x

∫
v
f 0(x− vt, v)

E1(t, x) :=
∫ t

0
s

∫
v
(E f)(t− s, x− vs, v) dv ds .

As it will be clear below, E0(t) represents the short-time potential, and we have
in some sense E(t) ≈ E0(t) as t→ 0.

We now estimate each term E0 and E1 separately.

First step. We first consider E0. Under the assumption of the point (1) in
Theorem 2.1, we write, thanks to the Riesz-Sobolev inequality, combined with
Lemma 2.1 (1),

‖E0(t)‖p ≤ C ‖ρ0(t)‖ 3p
3+p

, for 3/2 < p <∞

≤ C ‖f 0‖L1
v(L

a
x)
,

and this last inequality holds as soon as 3p/(3 + p) ≤ a, that is p ≤ pmax(a).
Here, C denotes a constant as in Theorem 2.1 (1) (in fact, it is independant of t,
T ).

The case (2) is treated similarly, as well as (3) and (4), where one obtains an

additional factor t−(2− 3
p
).

Second step. We now consider E1. In order to treat this term, we state an easy
and fundamental Lemma, that will be used throughout this paper, and which we
borrow from [16].
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Lemma 2.4 Let p/a′ ≥ 1 and E(t, x), E1(t, x) as above. Then the following
holds,

‖E1(t)‖p ≤
∫ t

0
s1− 3

a ‖E(t− s)‖a ‖f 0‖
a′−1

a′∞ ‖f(t− s, x− vs, v)‖1/a′

Lp/a′

x (L1
v)
ds .

Proof of Lemma 2.4 . We write,

‖
∫ t

0
s

∫
v
(E f)(t− s, x− vs, v) dvds‖Lp

x
≤

≤
∫ t

0
s1− 3

a ‖E(t− s)‖a ‖
( ∫

v
fa′(t− s, x− vs, v) dv

)1/a′

‖Lp
x
ds ,

which gives Lemma 2.4, using the fact that ‖f(t)‖∞ ≤ ‖f 0‖∞, for all t.

We now come back to the proof of Theorem 2.1. In each case (1)-(4), we apply
Lemma 2.4, choosing p = a′, (that is p′ = a), which allows to ”cancel” the factor

‖f(t − s, x − vs, v)‖1/a′

Lp/a′

x (L1
v)

in this Lemma, thanks to the conservation of the

L1-norm.
Let us begin with the case (1). Using a constant C which depends on f 0 as

mentionned in Theorem 2.1, we get,

‖E1(t)‖p ≤ C
∫ t

0
s
1− 3

p′
(
‖E0(t− s)‖p′ + ‖E1(t− s)‖p′

)
ds

≤ C
∫ t

0
s
1− 3

p′ ds+ C
∫ t

0
s
1− 3

p′ ‖E1(t− s)‖p′ ds , (2.12)

because the term ‖E0(t)‖p′ in (2.12) can be upper bounded thanks to the first
step, which requires the restrictions 3/2 < p′ ≤ pmax(a) . Moreover, since 3/2 <

p′ < 3, we can choose a real q > 1 such that s
1− 3

p′ ∈ Lq
loc. Hence,

‖E1(t)‖p ≤ C
(
1 + [

∫ t

0
‖E1(s)‖q′

p′ ]
1/q′

)
. (2.13)

We now come back to Lemma 2.4, we change p into p′ and take a = p, and
we obtain,

‖E1(t)‖p′ ≤ C
∫ t

0
s1− 3

p

(
‖E0(t− s)‖p + ‖E1(t− s)‖p

)
ds

≤ C + C
∫ t

0
s1− 3

p ‖E1(t− s)‖p ds , (2.14)

thanks to the first step, combined again with the restrictions 3/2 < p ≤ pmax(a),
p < 3. Hence,

‖E1(t)‖p′ ≤ C
(
1 + [

∫ t

0
‖E1(s)‖q′

p ]1/q′
)
, (2.15)
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for the same choice of q as in (2.13). As in [19], estimates (2.13) together with
(2.15) give, thanks to Gronwall’s Lemma, ‖E1(t)‖p ∈ L∞loc(Rt). Now, the point
(1) of Theorem 2.1 is proved.

The second point can be obviously treated in exactly the same way. Now, the
proof of the last two assertions follows the same two steps. In these cases, the
first step gives,

‖E0(t− s)‖p ≤ C |t− s|−(2− 3
p
) , ∀ 3/2 < p ≤ pmax(a) or qmax(m) .

Hence, ∫ t

0
s1− 3

p ‖E0(t− s)‖p ds ∈ L∞loc(Rt) , ∀ p ∈ I(a) or J(m) ,

which allows to adapt easily the second step above. Now, the Theorem 2.1 is
proved.

3 Propagation of high space-moments for small

time intervals.

With the regularity of the force field obtained in the previous section (Theorem
2.1), a natural question is now : is it possible to propagate the initial moment of
f 0 through time evolution ? In the case where |v|mf 0 ∈ L1 (case (2) in Theorem
2.1), it has been shown in [16] that solutions to the VPS can be built which satisfy
|v|kf(t) ∈ L∞loc(Rt;L

1
x,v) for all 0 ≤ k < m (propagation of the velocity moments).

Their proof needed the additional assumption m > 3. Our goal is now to treat
the case of moments in the space variable, (case (4) in Theorem 2.1), and to build
solutions to the VPS such that |x− vt|mf(t) ∈ L∞loc(Rt;L

1
x,v) (See Introduction).

The corresponding question in cases (1) and (3) above will not be treated here
(moments of Lp-type in the space or velocity variable).

In this section as well as in the next one, we make the following assumptions
on the initial data, and use the following conventions :

(H1) f 0 ∈ L1 ⋂
L∞, (|x|m + |v|ε) f 0 ∈ L1 for some m > 3 and ε > 0.

(H2) We will always work on a bounded time interval |t| ≤ T , where T > 0 is
fixed. In fact, as the VPS is time reversible, we even restrict ourselves to the
(fixed) time interval [0;T ].

(H3) We often omit the explicit dependence of the various constants with re-
spect to the parameters of the problem. Unless explicitly mentioned, any con-
stant C depends a priori on T and on the norms of the initial data appearing
in (H1) (that is ‖f 0‖L1

⋂
L∞ , ‖|x|mf 0‖L1 , ‖|v|εf 0‖L1).
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Moreover, the whole calculations below should first be written on very smooth
functions, and we always deal with C∞ and compactly supported functions (See
Remark 2.5). We will skip the corresponding limiting argument as it is obvi-
ous here : indeed, we show below a uniform bound of the type |v|εf(t, x, v) ∈
L∞loc(Rt;L

1
x,v) (Lemma 3.1), and this prevents a ’loss of mass’ as mentioned in the

Remark 2.5.

(H4) We use the following notation for the behaviour of a function g(t) near t = 0,

|g(t)| ≤ C t−α+0 ⇔ ∃ C , ∃ β < α , s.t. ∀ |t| ≤ T , |g(t)| ≤ C |t|−β ,

where C depends a priori on f 0 and T (See (H3)).

The main result of this section is the following

Theorem 3.1 Let 3 < k < m. Then there exists a time tk > 0 such that

Mk(t) ∈ L∞([0; tk]) .

Remark 3.1 More precisely, we should write, ‖Mk(t)‖L∞([0;tk]) ≤ C where C
and tk depend on f 0, T as in (H3).

This Theorem is proved at the end of this section.
Using the PDE, one can write the following (formal) calculation,

∂tMk(t) ≤ k t
∫

x
|E(t, x)|Mk−1(t, x)dx

≤ k t ‖E(t)‖p ‖Mk−1(t, x)‖p′ , (3.1)

and, thanks to Lemma 2.2, we get (See Theorem 2.1 and its proof for the nota-
tions),

∂tMk(t) ≤ C t1−
3
p

(
‖E0(t)‖p + ‖E1(t)‖p

)
Mk(t)

1− 1
k
+ 3

kp . (3.2)

At this point, we come back to the proof of Theorem 2.1 (4) and observe that it
gives in fact the following refined estimates for 3/2 < p < 3, t1−

3
p ‖E1(t)‖p ≤ C t−1+0 , (≤ C t−1+(2− 3

p
) ) ,

t1−
3
p ‖E0(t)‖p ≤ C t−1 ,

Thus, for any possible choice of k and p, a factor t−1 appears in (3.2), which
prevents any direct use of Gronwall’s Lemma. Therefore, our very first aim in

this section will be to replace the worse term, t1−
3
p ‖E0(t)‖p, in (3.2) by t−1+0.

This is possible through the assumption |v|εf 0 ∈ L1 in (H1). The propagation of
the space moments

∫
x,v |x|k f 0(x, v)dxdv = Mk(0) on small time intervals will be

deduced from this first step.
We begin with the
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Lemma 3.1 Let f 0 satisfy (H1). Then, for α > 0 with α/ε small enough, we
have :

(1) ‖E0(t)‖3+α ∈ L1
loc(Rt) ,

(2) Nα(t) :=
∫

x,v
|v|α f(t, x, v) dx dv ∈ L∞loc(Rt) .

Proof of Lemma 3.1 . It is proved in [19] that (1) implies (2) (See also Section
6), so that we only prove (1). We have,

‖E0(t)‖3+α ≤ C ‖ρ0(t)‖ 3(3+α)
6+α

,

and we show that this last term belongs to L1
loc(Rt), thanks to an interpolation

of L
3(3+α)
6+α

x between L1+α
x and L5/3

x . Indeed, the assumption |v|εf 0 ∈ L1
x,v allows to

show that ‖ρ0(t)‖1+α is bounded (in time) for α small enough :

‖ρ0(t)‖ 3(3+α)
6+α

≤ ‖ρ0(t)‖θ
5/3 ‖ρ0(t)‖1−θ

1+α , (3.3)

where,

1 + α <
9 + 3α

6 + α
< 5/3 ,

θ

5/3
+

1− θ

1 + α
=

6 + α

9 + 3α
.

The estimate (3.3) implies, via Lemma 2.1,

‖ρ0(t)‖ 3(3+α)
6+α

≤ C t−
6θ
5 M2(0)

3θ
5 N3α(0)

1−θ
1+α ,

and we now use the fact that N3α(0) =
∫
x,v |v|3α f 0(x, v)dxdv <∞ for α ≤ ε/3.

Moreover, M2(0) =
∫
x,v |x|2 f 0(x, v)dxdv <∞ and, 6θ/5 < 1.

Indeed, this last inequality is given by,

θ =
1

1+α
− 6+α

9+3α
1

1+α
− 1

5/3

= 5
3− 4α− α2

18− 21α− 9α2
< 5/6 ,

for all 0 < α < 1.
This gives,

‖ρ0(t)‖ 3(3+α)
6+α

≤ C t−1+0 .

Hence Lemma 3.1 is proved.

We deduce now from the previous result the

Lemma 3.2 Let 0 ≤ k < m. Let k′ ≤ m satisfy

3(k + 3)

6 + k
<

3 + k′

3
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(in particular, k′ = k is allowed for 3 < k < m). Then, there exists an exponent
β > 0 such that,

‖E(s)‖3+k ≤ C s−(2− 3
3+k

)+0 Mk′(s)
β .

Proof of Lemma 3.2 . Let p := 3 + k. Choose k′ ≤ m such that,

3(3 + k)

6 + k
=

3p

3 + p
<

3 + k′

3
.

Now, observe that the quantity 3p/(3 + p) increases with p, and choose a γ > 0
satisfying,

3(p+ γ)

3 + (p+ γ)
≤ 3 + k′

3
.

We write then, following the same idea as in the proof of Lemma 3.1,

‖E(s)‖p ≤ C ‖ρ(s)‖ 3p
3+p

≤ C ‖ρ(s)‖θ
3(p+γ)

3+(p+γ)

‖ρ(s)‖1−θ
3+α

3

,

where α > 0 is a small number (See Lemma 3.1). Now we let q := 3(p+γ)
3+(p+γ)

, and
obtain, applying Lemma 2.1,

‖E(s)‖p ≤ C s
− 3θ

q′ Mk′(s)
3θ

k′q′ Nα(s)
3(1−θ)
3+α , (3.4)

where,

3 + α

3
<

3p

3 + p
<

3(p+ γ)

3 + (p+ γ)
= q ,

1− θ

(3 + α)/3
+
θ

q
=

3 + p

3p
,

q ≤ 3 + k′

3
.

But we check that,
3θ

q′
< 2− 3

p
,

because,
3θ

q′
= 3 [

2p− 3

3p
− (1− θ)α

3 + α
] < 2− 3

p
.

We now observe that Lemma 3.1 implies Nα(s) ∈ L∞loc in time, so that (3.4) gives,

‖E(s)‖p ≤ C s−(2− 3
p
)+0 Mk′(s)

β ,

with β := 3θ
k′q′

. This ends the proof of Lemma 3.2.

Proof of Theorem 3.1 . We make the following change of notation,

M̃k(t) := sup
s∈[0;t]

Mk(s) ,
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and let k ≥ 1, p = 3 + k. This allows to write,

∂tM̃k(t) ≤ ∂tMk(t)

≤ k t
∫

x,v
|E(t)| f(t) |x− vt|k−1dxdv

≤ C t ‖E(t)‖p ‖M̃k−1(t, x)‖p′

≤ t C t−(2− 3
p
)+0 M̃k′(t)

β t−
3
p M̃k(t)

k+2
k+3 ,

and the last inequality is a consequence of Lemmas 2.2 and 3.2. We have chosen
here k′ as in Lemma 3.2. Thus, choosing now k′ = k,

∂tM̃k(t) ≤ C t−1+0 M̃k′(t)
β M̃k(t)

k+2
k+3 (3.5)

∂tM̃k(t) ≤ C t−1+0 M̃k(t)
δ , (3.6)

for some exponent δ > 0. We conclude thanks to Gronwall’s Lemma.

We have now proved that the moments Mk(t) can be propagated through
time evolution in VPS, for small time intervals. We now want to propagate these
quantities for arbitrary large times, and in fact the previous method does clearly
not apply, since we do not control the exponent δ in the Gronwall’s-like inequality
(3.6). Another series of estimates is needed, which are proved in the next section.
As in [16], this work is much more delicate.

4 Propagation of high space-moments for large

time intervals.

We still use the assumptions and notations (H1)-(H4), as in the previous section.
We fix some k such that 3 < k < m, and we want to find a solution to the

VPS satisfying Mk(t) ∈ L∞([tk;T ]). Here, tk > 0 represents the (small) time
interval such that Mk(t) ∈ L∞([0; tk]) as in Theorem 3.1.

As a last notation, we assume throughout this section

(H5) 0 < t0 ≤ tk/2 is a fixed time, whose value will be chosen later.

The main result of this section is the

Theorem 4.1 Assume E(t, x) ∈ L∞loc(Rt;L
3/2
x ). Then, for all 3 < k < m, we

have
Mk(t) ∈ L∞loc(Rt) .

Remark 4.1 We show in section 5 how to relax the assumption E ∈ L∞loc(Rt;L
3/2
x ),

which does not hold in general (only the weaker space L3/2,∞
x can be obtained).
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The proof of this Theorem is given at the end of this section. We first state the
following fundamental estimate,

Lemma 4.1 Let 3 < k < m. Then, for all tk ≤ t ≤ T , we have,

‖
∫ t0

0
s

∫
v
(E f)(t− s, x− vs, v) dv ds ‖3+k ≤ C tγ0 (1 +Mk(t))

β ,

where γ, β > 0 are some exponents (whose value depends on k), and C depends
on f 0, T (See H3), and k.

Remark 4.2 Here and in the sequel, we will often omit the distinction between
Mk(t) and M̃k(t) (See the proof of Theorem 3.1).

Proof of Lemma 4.1 . Let q := 3 + k, and,

A(t) := ‖
∫ t0

0
s

∫
v
(E f)(t− s, x− vs, v)dvds ‖3+k .

A first application of Lemmas 2.1 and 2.2 gives,

A(t) ≤
∫ t0

0
s(1− 3

p
) ‖E(t− s)‖p t

− 3(q−p′)
qp′ Mk′(t− s)

3(q−p′)
k′qp′ ds , (4.1)

whenever k′ and p, which will be chosen later, satisfy,

1 ≤ q

p′
≤ 3 + k′

3
, p ∈]3/2; 3[ .

Now we observe that Theorem 2.1 (4) gives,

‖E(t)‖p ∈ L∞([
tk
2

;T ]) , ∀ 3/2 < p < 3 .

Hence, we get in (4.1),

A(t) ≤ C t
2− 3

p

0 Mk′(t)
3(q−p′)

k′qp′ , (4.2)

where,

C = t
− 3(q−p′)

qp′
k sup{‖E(t− s)‖p / s ∈ [0; t0] , t ∈ [tk;T ] } <∞ ,

because t− s ≥ tk/2 > 0. Thus, (4.2) gives,

A(t) ≤ C tγ0 Mk′(t)
β , (4.3)

for some exponents γ, β > 0 . We write, as in the proof of Theorem 3.1,

∂tMk′(t) ≤ C t1−
3

3+k′ ‖E(t)‖3+k′ Mk′(t)
k′+2
k′+3 . (4.4)
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We now integrate (4.4) over the time interval [tk′ ; t], (we avoid the time t = 0)
where tk′ is such that Mk′(s) ∈ L∞loc([0; tk′ ]) (See Theorem 3.1). In fact, we can
even assume tk′ = tk. Hence,

Mk′(t)
1

3+k′ ≤ C Mk′(tk)
1

3+k′ + C sup
s∈[tk;t]

(‖E(s)‖3+k′) ,

and,

Mk′(t) ≤ C (1 + sup
s∈[tk;t]

(‖E(s)‖3+k′) )3+k′ . (4.5)

Now (4.5) together with (4.3) give,

A(t) ≤ C tγ0 (1 + sup
s∈[tk;t]

(‖E(s)‖3+k′) )β̃ , (4.6)

where β̃ > 0 is another exponent related to β. We now use Lemma 2.1 (4) in
order to majorise ‖E(s)‖3+k′ on the time interval [tk; t], and obtain,

‖E(s)‖3+k′ ≤ ‖ρ(s)‖ 3(3+k′)
6+k′

≤ C Mk(s)
1
k

(2− 3
3+k′ ) . (4.7)

This holds for s ∈ [tk; t] (away from s = 0), and k is the exponent of Lemma 4.1.
Indeed, the coefficients p, k′ and k have to satisfy (9 + 3k′)/(6 + k′) ≤ (3 + k)/3,
p ∈]3/2; 3[, and we recall that (3+k)/p′ < (3+k′)/3 (See (4.1)) . Thus, choosing
p′ close enough to 3, we obtain a k′ arbitrary close to k (but > k), whereas the
assumption k > 3 implies (9 + 3k)/(6 + k) < (3 + k)/3. With such a choice of k′

and p′, we obtain (4.7) above.
Now (4.6) and (4.7) give,

A(t) ≤ C tγ0 (1 +Mk(t)
β) ,

for some exponents γ and β > 0. This ends the proof of Lemma 4.1.

We are now able, thanks to Lemma 4.1, to prove Theorem 4.1.

Proof of Theorem 4.1 . In fact, the major difficulty for our purpose was to
obtain the local-in-time propagation of the moments Mk(t), since undesirable
factors t−1 were obtained in a first approach (See Theorem 3.1). The way from
this local property towards the global-in-time propagation follows now the same
ideas as in [16]. Indeed, let 3 < k < m. We write,

‖E(t)‖3+k ≤ ‖E0(t)‖3+k + ‖E1(t)‖3+k

≤ ‖E0(t)‖3+k + ‖
∫ t0

0
s

∫
v
(E f)(t− s, x− vs, v)‖3+k + ‖

∫ t

t0
· · · ‖3+k(4.8)

:= A(t) +B(t) +D(t) , (4.9)
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and we upper bound each term of this sum.
First, Lemma 2.1 gives,

A(t) ≤ C ‖ρ0(t)‖ 3(3+k)
6+k

≤ C Mm(0)
3+2k

m(3+k) ,

for all k ≤ m and t ∈ [tk;T ].
Secondly, we obtain through Lemma 4.1,

B(t) ≤ C tγ0 (1 +Mk(t)
β) ,

for all 3 < k < m and t ∈ [tk;T ].
Finally, we estimate the term D(t). In order to do so, we apply Lemma 2.4

with the choice a = 3/2 (a′ = 3), p = 3 + k, and then estimate the quantity
‖f(t− s, x− vs, v)‖

Lp/a′

x (L1
v)

thanks to Lemma 2.1 . We get,

D(t) ≤
∫ t

t0
s−1 ‖E(t− s)‖3/2 t

− 3(p−3)
3p Mk(t− s)

3(p−3)
3kp ds

≤ C | log(t0)|Mk(t)
1

k+3 .

Collecting these inequalities in (4.9), we obtain,

‖E(t)‖3+k ≤ C (1 + tγ0 Mk(t)
β + | log(t0)|Mk(t)

1
k+3 ) , (4.10)

for all t ∈ [tk;T ].
We now choose tγ0 := Mk(t)

−β in (4.10), which is only possible for large values
of Mk(t) (recall the restriction t0 ≤ tk/2). Obviously, it is the only interesting
case. We obtain therefore,

‖E(t)‖3+k ≤ C (1 +Mk(t)
1

3+k log(Mk(t)) ) , (4.11)

and we write as in (4.4) and (3.5)

∂tMk(t) ≤ t1−
3

3+k ‖E(t)‖3+k Mk(t)
k+2
k+3 (4.12)

≤ C (1 +Mk(t)
1

k+3 log(Mk(t)) ) Mk(t)
k+2
k+3 ,

for all t ∈ [tk;T ]. Gronwall’s Lemma gives the result.

5 Conclusion : Propagation of high space-moments.

We now prove the main theorem of this paper, and show how to relax the addi-
tional assumption E(t, x) ∈ L∞loc(Rt;L

3/2
x ) made in Theorem 4.1 .
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Theorem 5.1 Let f 0 ∈ L1 ⋂
L∞. Assume |x|mf 0 ∈ L1 for some m > 3, and

|v|εf 0 ∈ L1 for some ε > 0. Then, there exists a solution f(t) to the VPS such
that, for all 3 < k < m and |t| ≤ T , we have,

Mk(t) =
∫

x,v
|x− vt|kf(t, x, v) ≤ C(T, ‖f 0‖L1

⋂
L∞ , ‖|x|mf 0‖L1 , ‖|v|εf 0‖L1) .

Remark 5.1 As in Remark 2.2, one can also bound E(t) and ρ(t) in Lp spaces
for the solutions given by Theorem 5.1. This is an obvious consequence of Lemma
2.1.

Proof of Theorem 5.1 . We argue as in [16]. Let χR be a C∞ function, χR ≡ 0
for |x| ≥ R + 1, χR ≡ 1 on |x| ≤ R (R > 0). We introduce

FR(t, x) :=
(1− χR(x)) x

4π|x|3
∗ ρ(t, x) ,

ER(t, x) :=
χR(x) x

4π|x|3
∗ ρ(t, x) ,

and we write,

∂tf + v · ∇xf + FR · ∇vf = −ER · ∇vf . (5.1)

We introduce the flow Φt
s(x, v) := (X t

s(x, v);V
t
s (x, v)) defined as the solution of,{

∂tX
t
s(x, v) = V t

s (x, v) ; Xs
s (x, v) = x ,

∂tV
t
s (x, v) = FR(t,X t

s(x, v)) ; V s
s (x, v) = v .

Classically, we now rewrite (5.1) as,

f(t, x, v) = f 0(Φ0
t (x, v))−

∫ t

0
(∇vERf)(t− s,Φt−s

t (x, v)) ds . (5.2)

On the other hand, observing that Φs
t(x, v) = (Xs

t (x, v), V
s
t (x, v)) defines a

diffeomorphism on R6, we have the formula,

[
∂

∂v
ERf ](t− s,Φt−s

t (x, v)) = (
∂

∂v
X t

t−s)(Φ
t−s
t (x, v)) · ∂

∂x
[ERf(t− s,Φt−s

t (x, v))]

+(
∂

∂v
V t

t−s)(Φ
t−s
t (x, v)) · ∂

∂v
[ERf(t− s,Φt−s

t (x, v))] ,(5.3)

where the symbols ∂
∂v

and ∂
∂x

in (5.3) denote the Jacobian matrix with respect
to v or x. For sake of simplicity, we introduce the notation,

∂x1

∂V
(x, v) :=

∂

∂v
(X t

t−s)(Φ
t−s
t (x, v)) ,

∂v1

∂V
(x, v) :=

∂

∂v
(V t

t−s)(Φ
t−s
t (x, v)) .
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With this notation, we rewrite (5.3) as,

[
∂

∂v
ERf ](t− s,Φt−s

t (x, v)) =
∂

∂x
[
∂x1

∂V
· (ERf)(t− s,Φt−s

t (x, v))]

−[
∂

∂x

∂x1

∂V
] · (ERf)(t− s,Φt−s

t (x, v)) +
∂

∂v
[
∂v1

∂V
· (ERf)(t− s,Φt−s

t (x, v))]

−[
∂

∂v

∂v1

∂V
] · (ERf)(t− s,Φt−s

t (x, v)) . (5.4)

Now we use (5.4) in (5.2), integrate the resulting formula with respect to v and
perform the convolution with the kernel x/4π|x|3. This gives,

E(t, x) =
x

4π|x|3
∗x

∫
v
f 0(Φ0

t (x, v))dv +
∫ t

0

∫
v
(ER f)(t− s,Φt−s

t (x, v))
∂x1

∂V
dvds

− x

4π|x|3
∗x

∫ t

0

∫
v
(ER f)(t− s,Φt−s

t (x, v))
∂

∂x

∂x1

∂V
dvds

− x

4π|x|3
∗x

∫ t

0

∫
v
(ER f)(t− s,Φt−s

t (x, v))
∂

∂v

∂v1

∂V
dvds , (5.5)

that is,

E(t, x) = a(t, x) + b(t, x) + c(t, x) + d(t, x) . (5.6)

Our aim is now to reproduce the proof of Theorem 4.1 in the present case, where
the flow (x, v) → (x − vt, v) has been replaced by the unknown flow (x, v) →
(X0

t , V
0
t ).

It is now easy to see that the flow (X t
s, V

t
s ), which is C∞ in (x, v), tends to

(x + v(t− s), v) in C0(|t|, |s| ≤ T ;C2(R6)) as R → ∞, uniformly in x, v (T > 0
is fixed). This assumption is a direct consequence of the estimates,

‖FR‖∞ , ‖DFR‖∞ , ‖D2FR‖∞ ≤ C/R2 ,

where C depends only on ‖f 0‖L1
⋂

L∞ .

Taking this remark into account allows to majorize a, b, c, and d in (5.2) for
t ∈ [tk;T ], as in the proof of Theorem 4.1.

Estimates for a. We have,

‖a(t, x)‖L3+k
x

≤ C ‖
∫

v
f 0(Φ0

t (x, v))dv‖ 3(3+k)
6+k

≤ C t−δ
∫

x,v
|x− vt|mf 0(Φ0

t (x, v))dxdv ,

thanks to Lemma 2.1, where δ > 0 is some exponent,

≤ C
∫

X,V
|X t

0(X,V )− t V t
0 (X,V )|m f 0(X,V )dXdV ,

because t ≥ tk > 0 ,

≤ C (
∫

X,V
|X|m f 0(X,V )dXdV + η) ,
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where η > 0 is an arbitrary small number, thanks to the convergence of the force
field FR and of the flow (X t

s, V
t
s ) that we already observed.

Estimates for c and d. We write, as in Lemma 2.4 ,

‖c(t, x)‖
L3+k

x
≤

∫ t

0
‖

∫
v
(ER f)(t− s,Φt−s

t (x, v))
∂

∂x

∂x1

∂V
dv‖ 3(3+k)

6+k

ds (5.7)

≤ C
∫ t

0

∥∥∥ ‖ER(t−s,X t−s
t (x, v))‖La

v
‖f(t−s,Φt−s

t (x, v))‖
La′

v

∥∥∥ 3(3+k)
6+k

‖ ∂
∂x

∂x1

∂V
‖∞ ds .

We estimate each factor of the right-hand-side in (5.7),

‖ER(t− s,X t−s
t (x, v))‖a

La
v

=
∫

v
|ER|a(t− s,X t−s

t (x, v))dv

=
∫

X
|ER|a(t− s,X) |∂X

∂v
|−1 dX , (5.8)

where we have set X := X t−s
t (x, v), the x-variable being fixed here. Now X →

x− vs in C0(|s|, |t| ≤ T ;C2(R6)) as R→∞ (See above). Thus,

|∂X/∂v|−1 → s−3 as R→∞ , (5.9)

in C0(s, t;C1), so that the change of variables v → X is indeed allowed for large
values of R (when s 6= 0). We get,

‖ER(t− s,Xs
0)‖La

v
≤ C (s(1− η))−3/a ‖ER(t− s)‖a ,

for η > 0 arbitrary small.
Furthermore, we observe that 3(3+k)/(6+k) ∈]3/2; 3[, so that one can choose

a′ = 3(3 + k)/(6 + k) in (5.7), and in this way the second term of the estimate
(5.7) becomes constant.

Finally, ∂
∂x

∂x1

∂V
→ 0 asR→∞, and we have the refined estimate | ∂

∂x
∂x1

∂V
(x, v)| ≤

Cη|s|, as R → ∞, uniformly for |s|, |t| ≤ T and x, v ∈ R3. Collecting all these
informations we obtain,

‖c(t, x)‖
L3+k

x
≤ η ,

η > 0 being an arbitrary small number. The same can be proved in a similar way
for the term ‖d(t, x)‖

L3+k
x

.

Estimates for b. We need an estimate analogous to that of Lemma 2.4, which
would hold for the modified flow (X t

s, V
t
s ) and with E replaced by ER. Once we

have this estimate, we can end the proof of Theorem 5.1 by arguing as in Theorem
4.1, thanks to the regularity ER(t) ∈ L∞loc(Rt, L

3/2
x ). Indeed, for all α > 0 and

t > 0 we have,

‖ER(t)‖L3/2 ≤ C‖ρ(t)‖L1
⋂

L1+α

≤ CN3α(t)

≤ C ,
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thanks to Lemma 3.1 . But we write, as in (5.7)-(5.9),

‖b(t, x)‖3+k =
∫ t

0
‖

∫
v
(ER f)(t− s,Φt−s

t (x, v))
∂x1

∂V
dv‖3+k ds

≤
∫ t

0
‖ER(t− s,X t−s

t (x, v))‖La
v
‖f(t− s,Φt−s

t (x, v))‖
L3+k

x (La′

v )
‖∂x1

∂V
‖∞ ds

≤ C
∫ t

0
s1−3/a (1 + η) ‖ER(t− s)‖a ‖f(· · · )‖1−θ

∞ ‖f(· · · )‖θ

Lp/a′

x (L1
v)
ds ,(5.10)

where θ = 1/a′, p = 3 + k, and η > 0 is small. It remains to estimate, thanks to
Lemma 2.1,

‖f(· · · )‖1/a′

Lp/a′

x (L1
v)

≤ t−δ
[ ∫

x,v
|x− vt|k′ f(· · · ) dx dv

] 3(p−a′)
k′pa′ , (5.11)

where 1 ≤ p/a′ ≤ (3 + k′)/3, and δ > 0 is some exponent. Since t ≥ tk > 0, this
exponent is unimportant. Moreover,∫

x,v
|x− vt|k′ f(· · · ) dxdv =

∫
X,V

|X t
t−s − tV t

t−s|k
′
f(t− s,X, V ) dXdV

≤
∫

X,V
(η + |X − V (t− s)|)k′ f(t− s,X, V ) dXdV

≤ Mk′(t− s) + η , (5.12)

for η > 0 arbitrary small, thanks to the convergence of the flow Φt
s as R → ∞.

Collecting the inequalities (5.10)-(5.12), we get,

‖b‖3+k ≤ C
∫ t

0
[s1− 3

a (1 + η) ‖ER(t− s)‖a Mk′(t− s)
3(p−a′)

k′pa′ + η] ds .(5.13)

Proof of the Theorem. Collecting the estimates on a, c and d in (5.6) gives, for
t ∈ [tk, T ],

‖E(t)‖3+k ≤ C + C‖
∫ t

0

∫
v
ERf(t− s,Φt−s

t (x, v))
∂x1

∂V
dv ds‖3+k

≤ C + C‖
∫ t0

0

∫
v
· · · ‖3+k + C‖

∫ t

t0

∫
v
· · · ‖3+k , (5.14)

where t0 is as in the proof of Theorem 4.1 . Now we use the estimate (5.13) for
the two terms

∫ t0
0 · · · and

∫ t
t0
· · · , with the choice a > 3/2 in the first integral and

a = 3/2 in the second integral. This gives, as in the proof of Theorem 4.1,

(5.15)

‖E(t)‖3+k ≤ C + C
∫ t0

0
s1− 3

a ‖ER(t− s)‖a Mk′(t− s)
3(p−a′)

k′pa′ ds+ C| log t0|Mk(t)
1

k+3 .
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Moreover, the term
∫ t0
0 · · · in (5.15) is estimated as in Lemma 4.1 with E replaced

by ER. Thus, (5.15) gives,

‖E(t)‖3+k ≤ C + C tγ0 (1 +Mk(t)
β) + C | log t0|Mk(t)

1
k+3 ,

(See (4.10)-(4.12)), and we conclude as in the proof of Theorem 4.1 . Our proof
is now complete.

6 Propagation of low space and velocity mo-

ments.

As in [16], we come up against the difficulty of propagating the moments of order
≤ 3 in the VPS. Thus, at this level, only the moments in v or x of order > 3
can be propagated. We end this paper by showing how this restriction can be
removed.

Theorem 6.1 (1) Let f 0 ∈ L1 ⋂
L∞. Assume |x|mf 0 ∈ L1 for some m > 3, and

|v|pf 0 ∈ L1 for some p > 0.
Then, there exists a solution f(t, x, v) of the VPS such that,

∀ k ∈ [0; p[ , Nk(t) =
∫

x,v
|v|k f(t, x, v) dxdv ∈ L∞loc(Rt) ,

∀ k ∈ [0;m[ , Mk(t) =
∫

x,v
|x− vt|k f(t, x, v) dxdv ∈ L∞loc(Rt) .

(2) Let f 0 ∈ L1 ⋂
L∞. Assume |v|mf 0 ∈ L1 for some m > 3, and |x|pf 0 ∈ L1 for

some p > 0.
Then, there exists a solution f(t, x, v) of the VPS such that,

∀ k ∈ [0; p[ , Mk(t) ∈ L∞loc(Rt) ,

∀ k ∈ [0;m[ , Nk(t) ∈ L∞loc(Rt) ,

Remark 6.1 As we can see, the existence of some moments in the x variable
allows to propagate the low moments in v, and the converse holds as well.

On the other hand notice that, as in Remark 2.2, we can bound E(t) and ρ(t)
in some Lp spaces through Lemma 2.1.

Proof of Theorem 6.1 . We first show the point (1). The result concerning
Mk has already been proved and we concentrate on Nk. We assume p ≥ 1, and
want to propagate Nk(t) for 1 ≤ k < p. If 0 ≤ p < 1, the method below applies,
replacing Nk(t) by

∫
x,v(1+ |v|2)k/2 f(t, x, v). Moreover, we can also assume p ≤ 3,
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since the propagation of moments of order > 3 has been shown in [16]. Thus, we
write as in [19],

∂tNk(t) ≤ C (‖E0(t)‖3+k + ‖E1(t)‖3+k) Nk(t)
k+2
k+3 . (6.1)

Let us now show that ‖Ei(t)‖3+k ∈ L1
loc(Rt) (i = 0, 1). If this holds, (6.1)

immediately gives the result thanks to Gronwall’s Lemma. We first majorise
‖E1(t)‖3+k.

Lemmas 2.4 and 2.1 together give, for the values q = 3 + k, a′ ∈]3/2; 3[, and
1 ≤ q/a′ ≤ (3 +K)/3 (3 < K < m is now fixed),

‖E1(t)‖3+k ≤ C
∫ t

0
s1− 3

a ‖E(t− s)‖a t
−3 q−a′

qa′ MK(t− s)
3(q−a′)

Kqa′ ds . (6.2)

Moreover, Theorem 2.1 gives,

‖E(t− s)‖a ≤ C |t− s|−(2− 3
a
) ,

and, thanks to the propagation of the moment MK(t), we have,

MK(t) ∈ L∞loc(Rt) .

Therefore, we obtain in (6.2),

‖E1(t)‖3+k ≤ C [
∫ t

0
s1− 3

a (t− s)−(2− 3
a
) ds] t

− 3(q−a′)
qa′ .

Hence, ‖E1(t)‖3+k ∈ L1
loc(Rt) (choose a′ ∈]3/2; 3[ close to 3 and use q < p ≤ 3 <

K).
It remains to show that the same holds for ‖E0(t)‖3+k. We argue as in the

proof of Lemma 3.1, and we notice that the assumption k < p ≤ 3 allows one to
write,

‖E0(t)‖3+k ≤ C ‖ρ0(t)‖ 9+3k
6+k

≤ C ‖ρ0(t)‖θ
3+m

3
‖ρ0(t)‖1−θ

3+k
3

, (6.3)

where,

3 + k

3
<

9 + 3k

6 + k
<

3 +m

3
,

θ

(3 +m)/3
+

1− θ

(3 + k)/3
=

6 + k

9 + 3k
, θ ∈]0; 1[ .

Now Lemma 2.1 gives in (6.3),

‖E0(t)‖3+k ≤ C t−
3mθ
3+m Mm(0)

3θ
3+m Nk(0)

3(1−θ)
3+k ,
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and it remains to show that 3mθ
3+m

< 1. But,

3mθ

3 +m
=

3m

3 +m

[3/(3 + k) − (6 + k)/(9 + 3k)

3/(3 + k) − 3/(3 +m)

]
= m

3− k

3(m− k)
< 1 (m > 3) .

This ends the proof of the first point.
The second one is very similar, and can actually be treated in a much easier

way. Again we restrict ourselves to the case 1 ≤ p ≤ 3, and we write, for
1 ≤ k < p,

∂tMk(t) ≤ C t1−
3

3+k Mk(t)
k+2
k+3 (‖E0(t)‖3+k + ‖E1(t)‖3+k) . (6.4)

Lemma 2.1 gives, thanks to k < 3 < m,

‖E0(t)‖3+k ≤ C ‖ρ0(t)‖ 3(3+k)
6+k

≤ C Nm(0) .

Moreover, Lemma 2.4 and 2.1 together give, for k < 3 < K < m, a ∈]3/2; 3[,

‖E1(t)‖3+k ≤ C
∫ t

0
s1− 3

a ‖E(t− s)‖a NK(t− s)
3(p−a′)

Kpa′ . (6.5)

The propagation of the moments NK(t) gives in (6.5),

‖E1(t)‖3+k ∈ L∞loc(Rt) ,

and we conclude thanks to Gronwall’s Lemma in (6.5).

References

[1] A.A. Arsenev, Global existence of a weak solution of Vlasov’s system of equa-
tions, U.S.S.R. Comput. Math. Phys., Vol. 15, 131-143 (1975).

[2] A.A. Arsenev, Some estimates for the solution of the Vlasov equation, (Rus-
sian) Zh. Vychiol. Mat. i Mat. Fiz. 25 , No. 1, 80-87 (1985).

[3] J.E. Barab, Nonexistence of asymptotically free solutions for a nonlinear
Schrödinger equation, J. Math. Phys., Vol. 25, No. 11, 3270-3273 (1984).

[4] F. Castella, L2 Solutions to the Schrödinger-Poisson System : Existence,
Uniqueness, Time Behaviour, and Smoothing Effects, to appear in Math. Meth.
Mod. Appl. Sci. (1997).



III. MOMENTS D’ESPACE DANS VLASOV-POISSON 28

[5] F. Castella, B. Perthame, Estimations de Strichartz pour les Equations de
Transport Cinétique, C. R. Acad. Sci. Paris, Vol. 322, 535-540 (1996).

[6] T. Cazenave, An introduction to nonlinear Schrödinger Equations, Second
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