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Abstract We study a system of infinitely many coupled Schrödinger equa-
tions with self-consistent Coulomb potential as the initial data has only a regu-
larity of L2-type. We first establish Strichartz’ inequalities in the framework of
vector-valued wave functions (density matrices). This allows us to prove a well-
posedness result, and strong smoothing effects. Also, we state blow-up (resp.
decay) estimates for the solution as time goes to zero (resp. infinity).

Key-words Schrödinger-Poisson System, Strichartz’ estimates, density ma-
trices, infinite kinetic energy, asymptotic behaviour.

1 Introduction

In the present paper, we are interested in the analysis of the so-called Schrödinger-
Poisson System (SPS), which is a simple model used in studying the quantum
transport in semi-conductor devices (See [ILZ],[MRS],[BM],[Ar],[Wa]). It can be
written as a system of infinitely many coupled Schrödinger equations:

∀j ∈ N
{
∂tψj(t, x) = i

2
∆xψj(t, x)− iV (t, x)ψj(t, x) ,

ψj(x)|t=0 = φj(x) ,
(1)

where  V (t, x) =
C

|x|
∗x n(t, x) ,

n(t, x) =
∑
j λj |ψj(t, x)|2 ,

(2)

and λ = (λj)j∈N is an l1 sequence of positive real numbers, C = ± 1

4π
(+ : repul-

sive, and - : attractive potential). This system appears in quantum mechanics
and semi-conductor theory, and a more precise motivation is described at the end
of this introduction.

The SPS (1)-(2) can be understood by considering the infinite vector ψ(t, x) =
(ψ0(t, x), ψ1(t, x), ψ2(t, x), ...). The vector ψ is a wave function corresponding to
a ”mixed” quantum state : each ”pure” wave function ψj is associated with
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the probability λj, thus generates the particle density nj := λj|ψj|2, so that
the whole vector ψ generates the total density n =

∑
j λj|ψj|2, and satisfies the

(vector-valued) Schrödinger equation

∂tψ =
i

2
∆xψ − iV (t, x) ψ ,

where V is the Coulomb potential created by n , and ∂tψ denotes the vector
(∂tψ0, ∂tψ1, ...). This last Schrödinger Equation is clearly the SPS.

From now on, we will say that the infinite vector ψ is a mixed quantum state,
and each function ψj is a pure quantum state.

In the ”pure” case λ = (1, 0, 0, ...), ψ reduces to ψ0 and the SPS is merely the
Hartree-Equation (HE) : ∂tψ0(t, x) = i

2
∆xψ0(t, x)− i(

C

r
∗x |ψ0(t, x)|2).ψ0(t, x) ,

ψ0(t, x)|t=0 = φ0(x) .
(3)

Concerning the SPS, our goal in this paper is the following :

(i) the main tool to prove all the results stated here will be an intensive use of
Strichartz-type inequalities. They are well-known in the case of pure quantum
states (that is in the case of exp(it∆) acting on functions ψ0 ∈ L2), and we will
first generalize them in the case of mixed quantum states (Theorem 2.1 below).
All the results quoted in (ii)-(iv) below are more or less consequences of these
inequalities.

(ii) we state an existence and uniqueness result for the SPS when the initial data
φ = (φj)j∈N only satisfies

∑
j λj‖φj‖2

L2(R3) <∞ (Theorem 2.2 below).

(iii) concerning the L2 solutions obtained in (ii) we study the asymptotic be-
haviour of the solution ψ(t, x) to the SPS as t → 0 and t → ∞, when the first
moment of the initial data belongs to L2 (Theorems 2.3-2.5 below). As t → 0,
we prove a smoothing effect, showing that ψ(t, x) belongs to L2(R3)

⋂
L6(R3) as

soon as t 6= 0.

(iv) Once the points (i)-(iii) are proved, we prove several smoothing effects sim-
ilar to (iii), under assumptions on the various moments of the initial data. For
example, the solution to the SPS with initial data φ in L2 becomes immediately
C∞ in the space variable if all the moments of φ belong to L2 (Theorem 2.6).

(v) In order to complete this study, which is carried out in (i)-(iv) with rough
initial datas, we prove in the Appendix the well-posedness of the SPS in every
Sobolev space Hm (m ≥ 1), i.e. when we deal with ”smooth” initial datas.
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The points (i)-(v) improve in the following way other results that can be found
in the literature : as written above, the point (i) is a generalisation, for mixed
quantum states, of well-known estimates. As in the pure case of the HE, they are
the key for the study of the SPS with initial data in L2. This type of inequalities
were first obtained in [Str], and later in [GV3], [Ya]. A recent and spectacular
development of the Strichartz’ inequalities can be found in [Bo]. We refer also
to [GV1], [Cz], [CP] for related results. Now, the point (ii) is an extension, in
the case of mixed quantum states, of results in [Cz], [HO1], [HNT], [Ts], which
develop an L2 theory in the case of the HE and other Schrödinger Equations (pure
quantum states). It also improves the H2 or H1 theories developed in [ILZ], [BM],
or [Ar] in the case of the SPS (mixed quantum states - See also [Wa]). On the
other hand, the decay estimates obtained in (iii) as t→ 0 are close to estimates
obtained in [Pe] concerning the Vlasov-Poisson equation. To our knowledge, they
are new concerning both the SPS and the HE with initial datas in L2. As t→∞,
we restate decay estimates obtained in [ILZ], [DF], [HT] in the H2 or H1 cases
for the SPS and the HE, which hold then in the more general L2 case. In fact,
in the case of the HE, they can also be derived from results in [HO1]. Finally,
points (iv)-(v) extend to the SPS results proved in [HO1], [HT] concerning the
single HE.

Before going into the statement and proofs of the results, we now carry out
the derivation of the SPS (See also [ILZ],[BM], [MRS],[Ar],[LP]).

We consider a (quantum) particle system in R3 evolving in the self-consistent
attractive or repulsive Coulomb potential it creates.

The quantum formalism tells us this system is entirely described through its
”density-matrix” ρ(t, x, y) ( (x, y) ∈ R3 × R3 , t ∈ R ), which is a hermitian
(∀t ∈ R , ρ(t, x, y) = ρ∗(t, y, x)), positive, and trace-class operator acting on
the Hilbert space L2(R3). Indeed, the knowledge of the density matrix allows to
calculate the expectation of any quantum operator A associated with the system
(that is, any hermitian, positive, and trace-class operator acting on L2(R3)),
thanks to the formula

< A >:= Tr(ρ.A).

The function ρ satisfies the Von-Neumann-Heisenberg Equation (VNHE){
i∂tρ = [H, ρ] = H.ρ− ρ.H ,
ρ|t=0 = ρ0 ,

(4)

where H is the Hamiltonian of the system,

H =
−∆x

2
+ V (t, x) , (5)

and V is the self-consistent Coulomb potential of the system, created by the
particle-density n(x) := ρ(t, x, x),

V (t, x) =
C

r
∗ ρ(t, x, x) . (6)
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In fact, it seems that this equation needs to be solved in abstract spaces of
trace-class operators ρ (See [Ar]), and this is the reason why many authors have
used, as in [ILZ],[BM], [Wa], another (almost equivalent) model, that is the SPS,
which gives a solution to the VNHE through the following (formal) manipulations
: as ρ0 enjoys the hermitian symmetry, it can be written as a tensor product

ρ0(x, y) =
∑
j

λjφj(x).φ
∗
j(y) , (7)

where the λj’s are the eigenvalues of ρ0, and the φj’s are its eigenvectors. More-
over, {

(i) ∀j , λj ≥ 0 ,
(ii) λ = (λj)j∈N ∈ l1 ;

∑
j λj = 1 ,

(8)

In fact, (8)-(i) is a consequence of ρ0 being a positive operator, (8)-(ii) is a
consequence of ρ0 being trace-class (which allows us to normalize λ as above).

Now, if we consider the SPS (1)-(2) with initial datas ψj|t=0 = φj and weights
λj given by the decomposition (7), formal manipulations show that a solution
(ψj(t))j∈N to the SPS provides a natural solution to the VNHE,

ρ(t, x, y) :=
∑
j

λjψj(t, x).ψ
∗
j (t, y) .

These calculations complete the derivation of the SPS. As it is written above,
many authors have studied the VNHE through the (almost equivalent) SPS, and
the L2 theory we develop here is also concerned with the SPS. In [Ar] however,
we find a direct study of the VNHE, which is carried out in an H1 case. To our
knowledge, the problem of developing an L2 theory directly on the VNHE is still
open.

The end of this paper is organized as follows : in the second section, we collect
the notations used throughout this article, and state all the results proved here;
the third section is devoted to the proof of the Strichartz-type inequalities we
will need while dealing with solutions in L2; in the fourth section, we prove the
existence and uniqueness result concerning the SPS when the initial data only
satisfies

∑
j λj‖φj‖2

L2 <∞; sections 5 and 6 deal with the time behaviour of these
L2-solutions as the first moment of the initial data belongs to L2, and we show
there some smoothing effects ; section 7 is devoted to the proof of a more general
smoothing effect, and appendix 8 is a study of the SPS in the Sobolev space Hm.

2 Definitions and main results

In this section, we introduce the notations and give our main results. These
will be proved in the subsequent sections.
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In the sequel λ = (λj)j∈N ∈ l1 is the (fixed) sequence of nonnegative real
numbers associated with the initial data ρ0 (Cf Introduction).

Besides, the following notations will be used : T (t) denotes the unitary group

generated by i
∆

2
in L2(R3) or, indifferently, in the space L2(λ) defined below (See

[ILZ] and references therein, or [Pa] for a general course on evolution equations) ;
Lp(R3) will always be denoted by the single symbol Lp ; for p ∈ [1,∞], we denote
by p′ the conjugate exponent of p, defined by 1/p + 1/p′ = 1 ; z∗ denotes the
conjugate of the complex number z ; the function ψ(t, x) will frequently appear
as ψ(t), ψ(x), or even ψ ; finally, for any multi-index α, we denote by |α| its
length, and write, for instance, xα instead of xα1

1 x
α2
2 x

α3
3 .

Definition 2.1 (i) let p ∈ [1,∞], then
Lp(λ) = {φ = (φj)j∈N ; ‖φ‖2

Lp(λ) =
∑
j λj‖φj‖2

Lp <∞}.
(ii) let m ∈ N, then

Hm(λ) = {φ = (φj)j∈N ; ‖φ‖2
Hm(λ) =

∑
j λj‖φj‖2

Hm <∞ }.
(iii) let T > 0, q, p ∈ [1,+∞], then

Lq,pT (λ) = Lq([−T, T ];Lp(λ)) ,
Lq,ploc(λ) = Lqloc(R3;Lp(λ)) ,
Lq,p(λ) = Lq(R;Lp(λ)).

(iv) let T > 0, q, p ∈ [1,+∞], then
Xq,p
T = L∞,2

T (λ)
⋂
Lq,pT (λ) with ‖ψ‖Xq,p

T
:= ‖ψ‖L∞,2

T (λ) + ‖ψ‖Lq,p
T (λ) ,

Y q,p
T = L1,2

T (λ) + Lq
′,p′

T (λ) with
‖ψ‖Y q,p

T
= infψ1+ψ2=ψ(‖ψ1‖L1,2

T (λ) + ‖ψ2‖Lq′,p′
T (λ)

) .

Notice that, in the case λ = (1, 0, 0, ...), the spaces Lp(λ) reduce to the ordi-
nary spaces Lp(R3). The spaces H2(λ), H1(λ), L2(λ) were already used in [ILZ]
and [BM] (See also [Wa]). Moreover, the introduction of the spaces Xq,p

T and
Y q,p
T is classical in the theory of the HE (see, e.g. [HO1]), and we only generalise

here these spaces to study the general SPS. These last two spaces will mainly be
useful in sections 6 and 7.

Definition 2.2 We will say that a pair (q, p) is admissible, and write (q, p) ∈ A,
if the following holds :
(i) 2 ≤ p < 2n

n−2
= 6 where n = dim(Rn) (n = 3).

(ii) 2
q

= n(1
2
− 1

p
) = 3(1

2
− 1

p
).

We are now able to state the main results of the present article. The first
one is a generalisation of the well-known Strichartz’ inequalities in the case of our
weighted Lp spaces. The difficulty here comes from the definition of Lq,p(λ), which
has however to be used later on. An obvious extension of the classical Strichartz’
inequality is for instance

∑
j λj‖T (t)φj‖2

Lq,p ≤ C(q)
∑
j λj‖φj‖2

L2 , which cannot
be used for our purpose.
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Theorem 2.1 (Strichartz’ inequalities for mixed quantum states) Let T > 0 and
(q, p) be an admissible pair. Then the following holds :
(i) there exists a constant C(q), depending only on q, such that for all φ ∈ L2(λ)

‖T (t)φ‖Lq,p
T (λ) ≤ C(q) ‖φ‖L2(λ).

(ii) for all (a, b) ∈ A, there exists C(a, q) such that for all f ∈ Lq
′,p′

T (λ)

‖
∫ t

0
T (t− s)f(s)ds‖La,b

T (λ) ≤ C(a, q) ‖f‖
Lq′,p′

T (λ)
,

(iii) in particular, there exists a constant C(q), depending only on q, such that
for all f ∈ Y q,p

T

‖
∫ t

0
T (t− s)f(s)ds‖Xq,p

T
≤ C(a, q) ‖f‖Y q,p

T
.

The second inequality will be of crucial importance while dealing with the
non-linearity V (ψ)ψ. Indeed, our method will be to transform the Schrödinger-
Poisson System into the integral equation :

ψ(t) = T (t)φ− i
∫ t

0
T (t− s)f(s)ds := α+ β ,

where f(s) = V (ψ(s))ψ(s). We are able to control the L2(λ) norm of α in terms
of the single L2(λ) norm of φ. But to control the L2(λ) norm of β in terms of the
L2(λ) norm of ψ is merely impossible. In particular, the application ψ → V (ψ)ψ
is not locally Lipschitz in L2(λ) (while it is in every Hm(λ) when m ≥ 1). The
main tool to avoid these problems will be to control the La,bT (λ) norms of β by

some Lq
′,p′

T (λ) norms of V ψ (through Theorem 2.1), which will be possible, as we
will see, in terms of some Lq,pT (λ) norms of ψ (See Lemma 4.1 below). In fact, the
non-linearity β is, roughly speaking, Lipschitz in the spaces Lq,ploc(λ) with (q, p)
admissible.

Remark 2.1. The Strichartz’ inequalities for mixed quantum states are stated
here under the assumption λ = (λj)j∈N ∈ l1 with λj ≥ 0 for all j, and in the case
of the dimension n = 3. It is obvious, in view of the proof below, that it can be
extended to all dimensions, and also under the weaker assumption λ ∈ l1 (without
assuming the positivity of the weights λj), just by modifying our weighted norms
in the obvious way : ‖φ‖2

L2(λ) :=
∑
j |λj| ‖φj‖2

L2 (See [Cz] for the corresponding
results one can get in the non-weighted Lp spaces).

In particular, the study that we carry out here in a three dimensional space
could be done in any dimension, as in [HO1] in the case of the single HE. Since
the physical meaning of the SPS is less obvious then, we will not work in a general
dimension.

Also, it is clear from the proof given below that the constants appearing in
Theorem 2.1 do not depend on the sequence λ ∈ l1.
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Theorem 2.2 (Existence and uniqueness for the SPS posed in L2(λ)).
Let φ ∈ L2(λ). Let σ ∈]3

2
, 3[, p = 2σ

σ−1
> 3, and let q = q(p) be such that (q, p)

is admissible. Then, there exists a unique function

ψ ∈ C0
(
R, L2(λ)

) ⋂
Lq,ploc(λ) ,

solution to the SPS with initial data φ. In this case, V (ψ)ψ(t) ∈ L1,2
loc(λ)+Lq

′,p′

loc (λ).
Moreover, the following holds :
(i) ∀t ∈ R, ‖ψ(t)‖L2(λ) = ‖φ‖L2(λ) ,

(ii) ∀(a, b) ∈ A, ψ ∈ La,bloc(λ) ,
(iii) Let φm be a sequence of initial datas in L2(λ) such that φm

m→∞−→ φ in L2(λ).
Then the corresponding sequence ψm of solutions to the SPS verifies

∀(a, b) ∈ A, ψm
m→∞−→ ψ ∈ La,bloc(λ).

Remark 2.2. In Theorem 2.2 and below, we deal with solutions to the SPS in the
following sense : the assumption V (ψ)ψ(t) ∈ L1,2

loc(λ) + Lq
′,p′

loc (λ) allows to define
solutions in a weak sense, e.g. in the distributional sense for each component
of the vector-valued functions. We may also define solutions of the SPS in an
integral sense (see [Pa]): ∀t , ψ(t) = T (t)φ−i

∫ t
0 T (t−s)V (ψ)ψ(s)ds . We will see

that these two different definitions are equivalent here, and we will therefore not
make any distinction between them, except in the proof of Theorem 2.2 where
we prove this equivalence.

Remark 2.3. Theorem 2.2 is very close to the corresponding existence and
uniqueness result one can prove on the single HE stated in the usual space L2.
The difficulty in Theorem 2.2 is to generalize the Strichartz’ inequalities in the
weighted spaces Lp(λ). Once this difficulty has been overcome, the situation
becomes easier to handle, and we see that the SPS and the HE have a very
similar structure. In fact, Theorems 2.4 (vii), 2.5, and 2.6 below extend to the
SPS other results that are ”classical” in the case of the Hartree Equation and
other Schrödinger Equations (See [Cz],[HO1],[HNT],[Ts], and references therein),
and their proofs are very similar to the ones in [HO1]. Besides, to our knowledge,
the results and methods of Theorem 2.3 are new, both for the HE and the SPS.

Theorem 2.3 (Asymptotic behaviour at t=0)
Let φ ∈ L2(λ) satisfy x φ ∈ L2(λ). Let ψ(t) ∈ C0(R;L2(λ))

⋂
La,bloc(λ), for all

(a, b) ∈ A, be the corresponding solution of the SPS, and n(t) =
∑
j λj|ψj(t)|2

the corresponding particle density. Let T > 0. Then there exist constants C
depending only upon ‖φ‖L2(λ), ‖x φ‖L2(λ), T, p such that :

(i) ∀|t| ≤ T, ∀p ∈ [2, 6], ‖ψ(t)‖Lp(λ) ≤
C

|t|3( 1
2
− 1

p
)
,
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(ii) ∀|t| ≤ T, ∀p ∈ [1, 3], ‖n(t)‖Lp ≤ C

|t|3(1− 1
p
)
,

(iii) ∀|t| ≤ T, ∀p ∈]3,∞], ‖V (t)‖Lp ≤ C

|t|(1−
3
p
)
,

(iv) ∀|t| ≤ T, ∀p ∈]3
2
,∞[, ‖∇V (t)‖Lp ≤ C

|t|(2−
3
p
)
.

Theorem 2.4 (Asymptotic behaviour at t = ∞)
Let φ, ψ(t), and n(t) be as in Theorem 2.3. Then there exist constants C

depending only upon ‖φ‖L2(λ), ‖x φ‖L2(λ), p such that :

(i) ∀|t| ≥ 1, ∀p ∈ [2, 6], ‖ψ(t)‖Lp(λ) ≤
C

|t|
3
2
( 1
2
− 1

p
)
,

(ii) ∀|t| ≥ 1, ∀p ∈ [1, 3], ‖n(t)‖Lp ≤ C

|t|
3
2
(1− 1

p
)
,

(iii) ∀|t| ≥ 1, ∀p ∈ [6,∞], ∀ε > 0, ‖V (t)‖Lp ≤ C

|t|(
2
3
− 1

p
−ε)

, (ε = 0 when p = 6) ,

(iv) ∀|t| ≥ 1, ∀p ∈]3, 6], ∀ε > 0, ‖V (t)‖Lp ≤ C

|t|(1−
3
p
−ε)

,

(v) ∀|t| ≥ 1, ∀p ∈]2,∞[, ∀ε > 0, ‖∇V (t)‖Lp ≤ C

|t|(1−
1
p
−ε)

, (ε = 0 when p = 2) ,

(vi) ∀|t| ≥ 1, ∀p ∈]3
2
, 2[, ∀ε > 0, ‖∇V (t)‖Lp ≤ C

|t|(2−
3
p
−ε)

,

(vii) The pseudo-conformal law holds, that is, for all t ∈ R,

‖(x+ it∇)ψ(t)‖2
L2(λ) + t2 ‖∇V (t)‖2

L2 = ‖x φ‖2
L2(λ) +

∫ t

0
s ‖∇V (s)‖2

L2 ds.

Theorem 2.5 (Regularity)
Let φ and ψ(t) be as in Theorem 2.3. Then the following holds :

(i) ψ(t) ∈ C0(R∗;Lp(λ)) for 2 ≤ p ≤ 6,

(ii) V (t) ∈ C0(R∗;Lp) for 3 < p ≤ ∞,

(iii) ∇V (t) ∈ C0(R∗;Lp) for 3/2 < p <∞,

(iv) (x+ it∇)ψ(t) ∈ C0(R;L2(λ)).

Remark 2.4. Time decays like in Theorem 2.3 have been obtained in [Pe] for
the Vlasov-Poisson case, which is a limiting case when the SPS is rescaled with a
vanishing Planck constant. Notice that these decays are the same in the case of
the free Schrödinger Equation : the potential V does not modify the asymptotic
behaviour of the solution as t→ 0.
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Those of Theorem 2.4 extend, in the L2(λ)-case, estimates that were obtained
in [ILZ] for the SPS, under the assumption φ ∈ H2(λ). We do not know whether
they are optimal, and no better estimate is available, neither in the case of datas
in H1(λ), nor in the case of the single HE with initial data in H1. To our
knowledge, only lower and upper bounds on the order of decay as t → ∞ are
available concerning the single HE (see [HO2]).

Remark 2.5. One can see that, in the L2(λ) case, the function ψ(t) is ”almost”
in H1(λ), in the sense that it is in L2(λ)

⋂
L6(λ) for all t 6= 0 (recall that H1 ⊂

L2 ⋂
L6 in dimension 3), and that all the estimates obtained in the H2(λ) case

hold true under our weaker assumptions. The only problem is that ∇ψ /∈ L2(λ).
Indeed, if there was a t0 6= 0 such that ∇ψ(t0) ∈ L2(λ), we would get ∀t , ψ(t) ∈
H1(λ), just by solving the SPS with initial data ψ(t0) ∈ H1(λ) .

In fact, the main idea concerning the HE or the SPS is that the gain of one
moment in the x variable for the initial data φ implies a gain of regularity for the
solution ψ(t)|t6=0, through the following formula (See sections 6-7 below):

exp(−itx
2

2t
) (x+ it∇)αψ(t) = (it∇)α exp(−itx

2

2t
) ψ(t).

This idea is a key ingredient in [HO1], [Cz] and others for the study of the HE, and
allows for instance to prove the C∞ smoothing effect written above (see Theorem
2.6). The operator x+ it∇ is called the Galilei operator and corresponds to the
Galilei invariance of the physical equations.

To conclude this remark, we can notice that, in our case, (x+ it∇)ψ ∈ L2(λ),
which can be understood as follows : since the particles have an infinite kinetic
energy ( ∇ψ /∈ L2(λ) ), they instantaneously go to infinity ( x ψ /∈ L2(λ) ). But
this compensation phenomenon allows (x+ it∇)ψ to remain bounded in L2(λ).

Remark 2.6. The pseudo-conformal law of Theorem 2.4 was first introduced in
[GV2] in the case of the HE, and is proved in the regular H2(λ) case for the SPS
in [ILZ].

We now want to state a smoothing effect similar to Theorem 2.5, which is in
fact more general. In order to do this, we need the following

Definition 2.3 Let k ∈ N. We define the space Ek by

E1 = L2(λ)
⋂
L6(λ) ,

E2 = L2(λ)
⋂
L∞(λ)

⋂
C0(λ) ,

Ek = E2

⋂
Ck−2(λ) for k ≥ 3 .

They are naturally endowed with the norms ‖u‖2
E1

=
∑
j λj(‖uj‖2

L2 + ‖uj‖2
L6),

‖u‖E2 and ‖u‖Ek
being defined in the similar way. Here, Ck is the usual space of

functions of class Ck.
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Remark 2.6. In view of the classical Sobolev imbeddings, it is straightforward
to check that Hk(λ) ⊂ Ek with continuous imbedding, for every k ∈ N.

We can now state the

Theorem 2.6 (A general smoothing effect)
Let φ ∈ L2(λ) and ψ(t) ∈ C0(R;L2(λ)) be the corresponding solution to the SPS.
Let J = x + it∇. Suppose also there exists k ∈ N ⋃{+∞} such that, for every
multi-index α satisfying |α| ≤ k, we have xα φ ∈ L2(λ) (all the moments of φ up
to order k belong to L2(λ)). Then, the following holds :
(i) ∀|α| ≤ k , Jαψ(t) ∈ C0(R;L2(λ)),

(ii) ψ(t) ∈ C0(R∗;Ek) , (ψ is ”almost” in Hk(λ)) .

3 Proof of Strichartz’ inequalities

This proof is close to those in [GV1], [Cz], or [Ya] concerning other Strichartz-
type inequalities. It is performed in four steps. Note that, in the statement of
Theorem 2.1, the real number T > 0 plays no particular role, so that in the
sequel, we will take T = ∞, and work in the spaces

Lq,p∞ (λ) := Lq,p(λ) := Lq(R;Lp(λ)).

We begin with the following (easy) Lemma :

Lemma 3.1 (i) Let 2 ≤ p ≤ ∞, φ ∈ Lp′(λ) and t 6= 0. Then

‖T (t)φ‖Lp(λ) ≤
C

|t|3( 1
2
− 1

p
)
‖φ‖Lp′ (λ),

(ii) For φ, ψ ∈ L2(λ), define the scalar product

< φ|ψ >L2(λ):=
∑
j

λj < φj|ψj >L2 .

Then, the adjoint of T (t) with respect to < .|. >L2(λ) is

T (t)∗ = T (−t) .

Proof of Lemma 3.1.
To prove (i), we argue as usual

‖T (t)φ‖2
Lp(λ) =

∑
j

λj‖T (t)φj‖2
Lp

≤
∑
j

λj
C

|t|3.2.(
1
2
− 1

p
)
‖φj‖2

Lp′

≤ (
C

|t|3.(
1
2
− 1

p
)
.‖φ‖Lp′ (λ))

2 .
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The second part of the Lemma is obvious, since the same holds true for T (t)
acting on L2(R3).

We now notice that the proof of Strichartz inequalities in the case of T (t)
acting on L2(R3) is a consequence of the Lemma above stated in the simple case
L2(λ) = L2(R3), and of duality arguments combined with Riesz inequalities and
interpolation arguments (See [Cz], [GV1],[Ya]). Hence, our main goal will be
to check that the duality and interpolation arguments used in the non-weighted
spaces Lp hold true in the weighted spaces Lp(λ). This is stated in the following
Lemma.

Lemma 3.2 (i) Let 1 < p <∞. Then, the dual space to Lp(λ) is identified with
Lp

′
(λ) through the inner product < .|. >L2(λ),

(φ, ψ)(Lp(λ),Lp′ (λ)) :=< φ|ψ >L2(λ) ,

(ii) Let 1 < p, q <∞. Then, the dual space to Lq,p(λ) is identified with Lq
′,p′(λ)

through

(φ(t), ψ(t))(Lq,p(λ),Lq′,p′ (λ)) :=
∫

R
< φ(t)|ψ(t) >L2(λ) dt ,

(iii) (Hölders’ Inequality) Let 1 ≤ p ≤ ∞. Then,

(φ, ψ)(Lp(λ),Lp′ (λ)) ≤ ‖φ‖Lp(λ) ‖ψ‖Lp′ (λ) ,

(iv) Let 1 ≤ p0, q0, p1, q1 <∞. Let p and q satisfy

1

p
=

1− θ

p0

+
θ

p1

;
1

q
=

1− θ

q0
+
θ

q1
; θ ∈]0, 1[ .

Then the interpolated space of order θ between Lq0,p0(λ) and Lq1,p1(λ) is

[Lq0,p0(λ), Lq1,p1(λ)]θ = Lq,p(λ) .

Remark 3.1. Here, we consider the complex interpolation theory, with the
notations of [BL].

Proof of Lemma 3.2 : (iii) is straightforward. Besides, we notice that (i)
implies (ii). Indeed, (i) implies that Lp(λ) is a reflexive space with dual space
Lp

′
(λ) when 1 < p < ∞. So it enjoys the Radon-Nykodym property. As a

consequence (See [DU]), we obtain

(Lq,p(λ))′ =
(
Lq(R;Lp(λ))

)′
= Lq

′(
(Lp(λ))′

)
= Lq

′
(Lp

′
(λ))

and (ii) is proved.
We now show (i) by noticing the following : let dµ be the measure

dµ :=
∑
j

λjδj
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on N, where δj is the Dirac measure at j ∈ N. Then

Lp(λ) = l2(N, dµ;Lp(R3)).

Thus, by the same argument as above, we obtain (i) since

(Lp(λ))′ =
(
l2(N, dµ;Lp(R3))

)′
= l2(N, dµ;Lp

′
(R3)) = Lp

′
(λ).

We can now prove (iv). We have, under the assumptions of Lemma 3.2 (See
[BL])

[Lq0,p0(λ), Lq1,p1(λ)]θ = [Lq0(R; Lp0(λ)) , Lq1(R; Lp1(λ))]θ

= Lq(R; [Lp0(λ) , Lp1(λ)]θ),

and

[Lp0(λ) , Lp1(λ)]θ = [l2(N, dµ; Lp0(R3)) , l2(N, dµ; Lp1(R3))]θ

= l2(N, dµ; [Lp0(R3), Lp1(R3)]θ)

= l2(N, dµ;Lp(R3))

= Lp(λ).

And (iv) is proved.

We are now able to prove Theorem 2.1 through the following serie of Lemmas:

Lemma 3.3 Let (q, p) be an admissible pair and ψ ∈ Lq′,p′(λ). Then,

∥∥∥ ∫ +∞

−∞
‖T (t− s)ψ(s)‖Lp(λ)ds

∥∥∥
Lq
≤ C(q) ‖ψ‖Lq′,p′ (λ).

Remark 3.2. Here and throughout the section, we will write Bochner integrals
that may not make sense. In order to avoid such problems, all the subsequent
majorisations should be obtained first on very smooth functions, then in the
general case thanks to a density argument (see [Cz]). For instance, we should
first deal with functions ψ whose components ψj belong to S, with the additional
condition

∑
j λj‖ψj‖2

S < ∞. Denote by S(λ) the space of all such functions.
In fact, it is clear that T (t) maps S(λ) to itself, and that S(λ) is dense in the
weighted Lp spaces.
Proof of Lemma 3.3 : We have, using Lemma 3.1 (i),

A :=
∥∥∥ ∫ +∞

−∞
‖T (t− s)ψ(s)‖Lp(λ)ds

∥∥∥
Lq

≤
∥∥∥ ∫ +∞

−∞

C ‖ψ(s)‖Lp′ (λ)

|t− s|3( 1
2
− 1

p
)
ds

∥∥∥
Lq
.
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But, since (q, p) is admissible, we have 3 (
1

2
− 1

p
) =

2

q
and 2 ≤ p < 6 < ∞,

2 < q ≤ ∞.
Thus except for the special case (q, p) = (∞, 2), for which the results are

however obvious, we can use the Hardy-Riesz-Sobolev inequality (See [St]) and
get

A ≤ C(q) ‖ψ(s)‖Lq′,p′ (λ) , (9)

and the proof is complete.

Lemma 3.4 Let (q, p) be an admissible pair. The following results hold true :

(i) ‖
∫ t
0 T (t− s)ψ(s)ds‖Lq,p(λ) ≤ C(q) ‖ψ(s)‖Lq′,p′ (λ),

(ii) ‖
∫ t
0 T (t− s)ψ(s)ds‖L∞,2(λ) ≤ C(q) ‖ψ(s)‖Lq′,p′ (λ),

(iii) ‖
∫ t
0 T (t− s)ψ(s)ds‖Lq,p(λ) ≤ C(q) ‖ψ(s)‖L1,2(λ).

Proof of Lemma 3.4. Thanks to Lemma 3.3, (i) is obvious. We have now
obtained the statement of Theorem 2.1 (ii) in the simple case (a, b) = (q, p). We
now want to prove a slight generalisation of (ii) and (iii). Let K(t, s) ∈ L∞(R2),
with, for convenience, ‖K‖L∞ = 1. We prove

(ii’) ‖
∫
s∈RK(t, s)T (t− s)ψ(s)ds‖L∞,2(λ) ≤ C(q) ‖ψ(s)‖Lq′,p′ (λ),

(iii’) ‖
∫
s∈RK(t, s)T (t− s)ψ(s)ds‖Lq,p(λ) ≤ C(q) ‖ψ(s)‖L1,2(λ).

Now, (ii’) is immediate. Indeed, thanks to Lemmas 3.1 (ii), and 3.2 (iii),
‖

∫
s∈RK(t, s)T (t− s)ψ(s)ds‖2

L2(λ) =

= <
∫
s∈R

K(t, s)T (t− s)ψ(s)ds|
∫
u∈R

K(t, u)T (t− u)ψ(u)du >L2(λ)

=
∫
s∈R

< K(t, s)ψ(s)|
∫
u∈R

K(t, u)T (s− u)ψ(u)du >L2(λ)

≤ ‖K(t, s)ψ(s)‖Lq′,p′ (λ) ‖
∫
u∈R

K(t, u)T (s− u)ψ(u)du‖Lq,p(λ)

≤ ‖ψ(s)‖Lq′,p′ (λ) ‖
∫
u∈R

K(t, u)T (s− u)ψ(u)du‖Lq,p(λ) .

Hence, thanks to Lemma 3.3,

‖
∫
s∈R

K(t, s)T (t− s)ψ(s)ds‖2
L2(λ) ≤ C(q) ‖ψ(s)‖2

Lq′,p′ (λ).

Therefore (ii’), thus (ii), are proved.
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Next, we prove (iii’). We avoid here the special case q = ∞, for which the
result follows from (ii’). We write

‖
∫
s∈RK(t, s)T (t− s)ψ(s)ds‖Lq,p(λ) =

= sup{A(φ); φ(t) ∈ Lq′,p′(λ), ‖φ(t)‖Lq′,p′ (λ) = 1} ,

A(φ) :=
∫
t∈R <

∫
s∈RK(t, s)T (t− s)ψ(s)ds|φ(t) >L2(λ) dt .

The term A(φ) can be upper bounded thanks to Hölder’s inequality in the
weighted spaces (Lemma 3.2 (iii)),

A(φ) =
∫
t∈R

∫
s∈R

K(t, s) < T (t− s)ψ(s)|φ(t) >L2(λ)

=
∫
s∈R

< ψ(s)|
∫
t∈R

K(t, s)T (s− t)φ(t) >L2(λ)

≤ ‖ψ(s)‖L1,2(λ) ‖
∫
t∈R

K(t, s)T (s− t)φ(t)dt ‖L∞,2(λ)

≤ ‖ψ(s)‖L1,2(λ) ‖φ(t)‖Lq′,p′ (λ),

thanks to (ii’). This completes the proof of (iii’), hence of (iii).

We can now prove Theorem 2.1 (ii) for any admissible pair (a, b), just by inter-
polating the different inequalities in the Lemma 3.4 :

Proof of Theorem 2.1 (ii). Let (a, b) be an admissible pair. We first treat the
case q ≤ a <∞.

Then it is enough to suppose that{
q < a <∞ ,
2 < b < p ,

(the case (a, b) = (∞, 2) has already been proved), and we interpolate the in-
equalities in Lemma 3.4 (i)-(ii) with

1

a
=
θ

q
+

1− θ

∞
;

1

b
=
θ

p
+

1− θ

2
.

Indeed, Hölder’s inequality in space (Lemma 3.2 (iii)), then in time, reads
‖

∫ t
0 T (t− s)ψ(s)ds‖La,b(λ) ≤

≤
∥∥∥ ‖ ∫ t

0
T (t− s)ψ(s)ds‖θLp(λ) ‖

∫ t

0
T (t− s)ψ(s)ds‖1−θ

L2(λ)

∥∥∥
La

≤ ‖
∫ t

0
T (t− s)ψ(s)ds‖θLq,p(λ) ‖

∫ t

0
T (t− s)ψ(s)ds‖1−θ

L∞,2(λ)

≤ C(q) ‖ψ(s)‖Lq′,p′ (λ) ,



I. SYSTEME DE SCHRÖDINGER-POISSON 15

thanks to Lemma 3.4 (i) and (ii). And Theorem 2.1 (ii) is proved in this case.

Next, we treat the case 2 < a < q.
We can then suppose {

2 < a < q <∞ ,
2 < p < b .

Lemma 3.4 (i) and (iii) written for the admissible pair be (a, b) tells us that the
linear operator

F : ψ −→
∫ t

0
T (t− s)ψ(s)ds

maps {
La

′,b′(λ) −→ La,b(λ) with norm ≤ 1 ,
L1,2(λ) −→ La,b(λ) with norm ≤ C(a).

(10)

Then we choose θ ∈]0, 1[ such that

1

q′
=
θ

a′
+

1− θ

1
;

1

p′
=
θ

b′
+

1− θ

2
.

Interpolating the spaces La
′,b′(λ) and L1,2(λ) involved in (9) as recalled in Lemma

3.2 (iv), we get

F : Lq
′,p′(λ) −→ La,b(λ) with norm ≤ C(a)θ.

This ends the proof of Theorem 2.1 (ii).
In order to end this section, we state now the

Proof of Theorem 2.1 (i). It is an easy calculation, since we can use the usual
Strichartz’ inequality and write

‖T (t)φ‖Lq,p(λ)2 = ‖(
∑

λj‖T (t)φj‖2
Lp )1/2‖2

Lq

= ‖
∑
j

λj‖T (t)φj‖2
Lp ‖Lq/2 (q ≥ 2)

≤
∑
j

λj‖T (t)φj‖2
Lq,p

≤
∑
j

λj‖φj‖2
L2 = ‖φ‖2

L2(λ) .
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4 Proof of Theorem 2.2

In order to separate the difficulties, we begin by defining the short range and long
range part of the potential (respectively denoted by V1 and V2), as follows :

V (ψ) = C/r ∗
∑
j

λj |ψj(x)|2

:= K1(r) ∗
∑
j

λj |ψj(x)|2 +K2(r) ∗
∑
j

λj |ψj(x)|2

:= V1(ψ) + V2(ψ),

where K1 := C χ(r)/r and K2 := C (1 − χ(r))/r) and χ is a C∞ function
satisfying : χ(r) = 1 for 0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2.

Now we want to pass to the limit in the SPS in order to deduce an L2(λ)
theory from the available H1(λ) theory. The following Lemma gives a control of

the nonlinearities Vk(ψ)ψ (k = 1, 2) in some space L
q
′
k,p

′
k

loc (λ), where (qk, pk) ∈ A.
It allows in turn to use Strichartz’ inequalities of Theorem 2.1. Of course, V1 and
V2 behave differently, and the main idea is that Theorem 2.1 gives a control of∫ t
0 T (t − s) Vk(ψ)(s) ψ(s) (k = 1, 2) in any space La,bloc(λ), in term of one single

L
q
′
k,p

′
k

loc (λ)-norm of Vk(ψ)ψ.

Lemma 4.1 Let ψ(t) and φ(t) be two solutions of the SPS with respective initial
datas ψ0 and φ0 ∈ H1(λ). Let T > 0, σ ∈]3

2
, 3[, p = 2σ

σ−1
> 3, and let q = q(p) be

such that (q, p) is admissible. Let q′ and p′ be the conjugated exponents of q and
p. Let M = Max(‖ψ0‖L2(λ); ‖φ0‖L2(λ)). Then the following holds :
(i) (short range potential)

‖V1(ψ(t)) ψ(t)− V1(φ(t)) φ(t)‖
Lq′,p′

T (λ)
≤ C(p) M2 T 1− 2

q ‖ψ(t)− φ(t)‖Lq,p
T (λ),

(ii) (long range potential)
‖V2(ψ(t)) ψ(t)− V2(φ(t)) φ(t)‖L1,2

T (λ) ≤ C M2 T ‖ψ(t)− φ(t)‖L∞,2
T (λ),

(iii) in particular,

‖V (ψ(t)) ψ(t)− V (φ(t)) φ(t)‖Y q,p
T
≤ C M2 max(T, T 1− 2

q ) ‖ψ(t)− φ(t)‖Xq,p
T
.

In other words, each function ψ → Vk(ψ)ψ k = 1, 2 is roughly speaking locally

Lipschitz from some space La,bT (λ) into La
′,b′

T (λ) with (a, b) admissible, and the
corresponding Lipschitz constant reads C(M) Tα with α > 0, so that Tα → 0
as T → 0. This will be fundamental for the sequel. The technical difficulty is
that the relevant admissible pairs are not the same in the case of the short range
potential ( (a, b) = (q, p) with (q, p) defined above) and of the long range potential
( (a, b) = (∞, 2) ).

Besides, note that, as ‖ψ(t)‖L2(λ) and ‖φ(t)‖L2(λ) are constant with respect to
t, M is also an upper bound of these quantities, for all t.
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Proof of Lemma 4.1. We first prove (i). We notice that K1 ∈ Lσ. Then,
thanks to Hölder’s and Young’s inequalities, we have

∀v, w ∈ L2 , ∀u ∈ Lp , ‖(K1 ∗ u.v) w‖Lp′ ≤ C ‖u‖Lp ‖v‖L2 ‖w‖L2 , (11)

∀u, v ∈ L2 , ∀w ∈ Lp , ‖(K1 ∗ u.v) w‖Lp′ ≤ C ‖u‖L2 ‖v‖L2 ‖w‖Lp . (12)

Then, for a fixed k ∈ N, we may estimate :

Ak := ‖(K1 ∗
∑
j

λj|ψj|2)ψk − (K1 ∗
∑
j

λj|φj|2)φk‖Lp′

≤ ‖(K1 ∗
∑
j

λj(ψj − φj)ψ
∗
j ) ψk‖Lp′ + ‖(K1 ∗

∑
j

λjφj(ψj − φj)
∗) ψk‖Lp′

+‖(K1 ∗
∑
j

λj|φj|2) (ψk − φk)‖Lp′

:= a+ b+ c.

Thanks to (11), we get

a ≤
∑
j

λj‖K1 ∗ ((ψj − φj).ψ
∗
j ) ψk‖Lp′

≤ C(p)
∑
j

λj‖ψj − φj‖Lp‖ψj‖L2‖ψk‖L2

≤ C(p) ‖ψ − φ‖Lp(λ) ‖ψ‖L2(λ) ‖ψk‖L2 .

The same estimates give

b ≤ C(p) ‖φ‖L2(λ) ‖ψ − φ‖Lp(λ) ‖ψk‖L2 .

And, thanks to (12)
c ≤ C(p) ‖φ‖2

L2(λ) ‖ψk − φk‖Lp .

A summation over k and Hölder’s inequality in time give
‖V1(ψ(t)) ψ(t)− V1(φ(t)) φ(t)‖

Lq′,p′
T (λ)

= ‖(∑k λkA
2
k)

1/2‖
Lq′

T

≤ C(p)
∥∥∥(∑

k

λk‖φ‖2
L2(λ) ‖ψ − φ‖2

Lp(λ) ‖ψk‖2
L2 + λk‖φ‖4

L2(λ) ‖ψk − φk‖2
Lp)1/2

∥∥∥
Lq′

T

≤ C(p)
∥∥∥ (‖φ‖2

L2(λ) ‖ψ − φ‖2
Lp(λ) ‖ψ‖2

L2(λ) + ‖φ‖4
L2(λ) ‖ψ − φ‖2

Lp(λ) )1/2
∥∥∥
Lq′

T

≤ C(p) M2 ‖ ‖ψ − φ‖Lp(λ) ‖Lq′
T

≤ C(p) M2 T 1− 2
q ‖ψ − φ‖Lq,p

T (λ) ,

and the point (i) is proved. Next, we note that the proof of (ii) is exactly the
same, thanks to the inequality

∀u, v, w ∈ L2 , ‖(K2 ∗ u.v) w‖L2 ≤ C‖u‖L2 ‖v‖L2 ‖w‖L2 ,
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because K2 ∈ L∞. And the proof of Lemma 4.1 is complete.

Proof of Theorem 2.2.
First step. We begin with the existence statement. Let T > 0 to be chosen later.
And let φm ∈ H1(λ) be a sequence of initial datas satisfying φm

m→∞−→ φ ∈ L2(λ).
Let ψm(t) ∈ H1(λ) be the corresponding solutions to the SPS. Let also M =
supm,t(‖ψm(t)‖L2(λ)) <∞.

We show that ψm(t) is a Cauchy sequence in the spaces La,bT (λ) for every
admissible pair (a, b), and for some T > 0 sufficiently small. Indeed, for all
m ∈ N and t ∈ R, we can write

ψm(t) = T (t)φm−i
∫ t
0 T (t−s)V1(ψm)(s) ψm(s)ds −i

∫ t
0 T (t−s)V2(ψm)(s) ψm(s)ds.

Hence, for all m, k ∈ N and t ∈ R, we have

ψm(t)− ψk(t) = T (t)(φm − φk)

−i
∫ t

0
T (t− s)(V1(ψm)(s) ψm(s)− V1(ψk)(s) ψk(s))ds

−i
∫ t

0
T (t− s)(V2(ψm) ψm(s)− V1(ψk) ψk(s))ds

:= α+ β + γ .

From now on, let (a, b) be any admissible pair. We estimate the La,bT (λ) norm of
α, β, and γ, thanks to Theorem 2.1 and Lemma 4.1 :

‖α‖La,b
T (λ) ≤ C(a) ‖φm − φk‖L2(λ) , (13)

‖β‖La,b
T (λ) ≤ C(a, q) ‖V1(ψm)(t) ψm(t)− V1(ψk)(t) ψk(t)‖Lq′,p′

T (λ)
, (14)

where (q, p) is the admissible pair defined in Lemma 4.1. Note here the impor-
tance of Theorem 2.1 (ii) : we can control any La,bT (λ) norm of β in terms of one

single Lq
′,p′

T (λ) norm. Hence (14) implies, together with Lemma 4.1 (i),

‖β‖La,b
T (λ) ≤ C(a, q) M2 T 1− 2

q ‖ψm(t)− ψk(t)‖Lq,p
T (λ) . (15)

Finally, Theorem 2.1 (ii) and Lemma 4.1 (ii) implie

‖γ‖La,b
T (λ) ≤ C(a) ‖V2(ψm)(t) ψm(t)− V2(ψk)(t) ψk(t)‖L1,2

T (λ)

≤ C(a) M2 T ‖ψm(t)− ψk(t)‖L∞,2
T (λ) . (16)
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Collecting the inequalities (13),(15), and (16) gives

‖ψm(t)− ψk(t)‖La,b
T (λ) ≤ C(a, q)

(
‖φm − φk‖L2(λ) +M2 T 1− 2

q (17)

‖ψm(t)− ψk(t)‖Lq,p
T (λ) +M2 T ‖ψm(t)− ψk(t)‖L∞,2

T (λ)

)
.

The inequality (17) holds for any admissible pair (a, b). Therefore, if we write
it in the special case (a, b) = (q, p) and then in the case (a, b) = (∞, 2) we get,
after summation

‖ψm(t)− ψk(t)‖Xq,p
T
≤ C(q) ‖φm − φk‖L2(λ) (18)

+C(q) M2 T 1− 2
q ‖ψm(t)− ψk(t)‖Xq,p

T
,

where we have taken T ≤ 1 in order to upper bound T by T 1− 2
q in (17) (recall

that Xq,p
T = Lq,pT (λ)

⋂
L∞,2
T (λ)). Finally, the inequality (18) shows that there is

a T0 = T0(q,M) sufficiently small such that

‖ψm(t)− ψk(t)‖Lq,p
T0

(λ)
⋂

L∞,2
T0

(λ) ≤ 2 C(q,M) ‖φm − φk‖L2(λ).

Therefore, ψm is Cauchy in Lq,pT0
(λ)

⋂
L∞,2
T0

(λ). Also, inequality (17) shows in
turn, for a fixed a, that there is a Ta = T (a, q,M) sufficiently small such that

‖ψm(t)− ψk(t)‖La,b
Ta

(λ) ≤ 2 C(a, q,M) ‖φm − φk‖L2(λ).

We now have proved the existence of a limit ψ such that :

ψm
m→∞−→ ψ in Lq,pT0

(λ), La,bTa
(λ), and L∞,2

T0
(λ). (19)

As the sequence ψm belongs to C0([−T0, T0];L
2(λ)) and its L2(λ) norm is

independent of t, we get

ψ ∈ C0([−T0, T0];L
2(λ)) , ‖ψ(t)‖L2(λ) = ‖φ‖L2(λ). (20)

We now remark that T0 = T0(q,M) and Ta = T (a, q,M), and as above mentioned
( See (20) ), the upper bound M (depending on ‖φ‖L2(λ) = ‖ψ|t=0‖L2(λ)) can be
chosen constant during the time evolution, so that one can reiterate the argument
(with initial data ψ(T0), ψ(2T0), ...) and cover the whole real line. Therefore the
statements (19), (20) hold true for all T0 > 0, and

ψm
m→∞−→ ψ in Lq,ploc(λ), La,bloc(λ) as (a, b) ∈ A, C0(R;L2(λ)).

The last point we would like to make clear before ending this part of the proof is
the equations satisfied by the limit ψ.
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We have, for all m, j ∈ N and for all t ∈ R

∂tψ
j
m =

i

2
∆ψjm − iV1(ψm) ψjm − iV2(ψm) ψjm (21)

where the ψjm are the components of the vector ψm (and the same notation for
the limit ψ). And the convergence of ψjm to ψj in C0(R;L2(λ)) implies that

ψjm
m→∞−→ ψj , ∆ψjm

m→∞−→ ∆ψj in D′. (22)

Also, ψm
m→∞−→ ψ in C0(L2(λ))

⋂
Lq,ploc(λ). So, by Lemma 4.1 (i), we get

V1(ψm) ψm
m→∞−→ V1(ψ) ψ in Lq

′,p′

loc (λ) (23)

hence this convergence holds in D′ for each component. Next, by Lemma 4.1 (ii),

V2(ψm) ψm
m→∞−→ V2(ψ) ψ in L1,2

loc(λ) (24)

hence this convergence holds in D′ for each component.

Finally, note that the density nm :=
∑
j λj|ψm|2 also converges to n :=

∑
j λj|ψ|2

in C0(L1). Thus, the statements (21)-(24) clearly imply that the Schrödinger
equation holds for each ψj :

∂tψ
j =

i

2
∆ψj − iV1(ψ) ψj − iV2(ψ) ψj =

i

2
∆ψj − iV (ψ) ψj

But,we can also pass to the limit in the integral equation, and obtain alternatively

ψ(t) = T (t)φ− i
∫ t

0
T (t− s)V1(ψ) ψ(s)ds − i

∫ t

0
T (t− s)V2(ψ) ψ(s)ds

= T (t)φ− i
∫ t

0
T (t− s)V (ψ)(s) ψ(s)ds .

This concludes the first part of the proof (existence).

Second step. We now prove uniqueness. Let ψ be a solution to the SPS in the
class C0(R;L2(λ))

⋂
Lq,ploc(λ). We first prove that ψ, which is a solution to the

SPS considered as a Partial Differential Equation, is also a solution to the SPS
in the integral form used above (see the Remark 2.2).

Indeed, Lemma 4.1 implies that V1(ψ) ψ belongs to Lq
′,p′

loc (λ) and V2(ψ) ψ
belongs to L1,2

loc (See (23) and (24) above). Then, one checks that

∀j , ∂sT (t− s)ψj(s) = −i T (t− s)V1(ψ(s))ψj(s)− i T (t− s))V2(ψ(s))ψj(s) ,

holds, e.g. in the distributional sense. Hence, by integration on s, one sees that
ψ is also a solution to the integral equation

ψ(t) = T (t)φ− i
∫ t

0
T (t− s)V1(ψ(s))ψ(s) − i

∫ t

0
T (t− s)V2(ψ(s))ψ(s).
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This last integration on s requires an easy regularization argument, and we skip
the proof.

We now check the uniqueness on this integral formulation, first locally in time,
hence globally, as in the ”existence” part of the proof. Indeed, the estimates used
above show that two solutions of the SPS that coincide at t = 0 also coincide on
[−T0, T0] for sufficiently small T0 > 0 ( estimate (18) ), and one can reiterate the
argument thanks to (20).

It remains to prove the continuous depence on the initial data, but it is an
easy consequence of the methods used in the ”existence” part of the proof, and
we skip it.

5 Proof of Theorem 2.3

We need a preliminary remark. In the case of the Lp spaces, one has the classical
result (See [Cz]),

‖T (t)φ‖Lp ≤ C(‖φ‖L2 , ‖x φ‖L2)

|t|3( 1
2
− 1

p
)

, p ∈ [2, 6].

One can easily extend this result in the weighted Lp(λ) spaces, and get

‖T (t)φ‖Lp(λ) ≤
C(‖φ‖L2(λ), ‖x φ‖L2(λ))

|t|3( 1
2
− 1

p
)

, p ∈ [2, 6].

Then, let T > 0 and p ∈]2, 6[, the case p = 2 being obvious in the sequel, and
denote C a constant C(‖φ‖L2(λ), ‖x φ‖L2(λ), T, p). The case p = 6 will be treated
in section 6 below. With the notations of Theorem 2.3, we have

ψ(t) = T (t)φ+
∫ t

0
T (t− s)(

C

r
∗ (

∑
j

λjψjψ
∗
j )).ψ(s)ds.

Therefore, for t > 0,

‖ψ(t)‖Lp(λ) ≤ C

t3( 1
2
− 1

p
)
+

∫ t

0

C

(t− s)3( 1
2
− 1

p
)
‖1

r
∗ (

∑
j

λjψjψ
∗
j ).ψ(s)‖Lp′ (λ)

≤ C
1

t3( 1
2
− 1

p
)
+ C

∫ t

0

1

(t− s)3( 1
2
− 1

p
)
‖ψ(s)‖La(λ) ‖ψ(s)‖L2(λ) ‖ψ(s)‖L2(λ) ds ,

with
1

a
=

2

3
− 1

p
, thanks to Hölder and Riesz inequalities. Hence, using Hölder’s

inequality in time

‖ψ(t)‖Lp(λ) ≤
C

t3( 1
2
− 1

p
)

+Ct−3( 1
2
− 1

p
)+ 1

µ M2 (
∫ t

0
‖ψ(s)‖αLa(λ) ds)

1
α . (25)
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Here, we have set

M = ‖φ‖L2(λ) = ‖ψ(t)‖L2(λ) ;
1

α
=

3

2p
− 1

4
∈ ]0,

1

2
[

1

µ
=

5p− 6

4p
∈ ]

1

2
, 1[ ; t ≤ T .

But one checks that
2

α
= 3(

1

2
− 1

a
), and α ∈]2,∞[, a ∈]2, 6[, so that (α, a) is

admissible. Therefore ψ belongs to Lα,aloc (λ).
Thus (25) implies

‖ψ‖Lp(λ) ≤
C

t3( 1
2
− 1

p
)

This proves the part (i) of Theorem 2.3 for p ∈ [2, 6[. The case p = 6 will
be treated in section 6 below. The other statements in Theorem 2.3 are direct
consequences of this estimate through Hölder and Riesz inequalities.

6 Proof of Theorem 2.4.

We divide the proof in two steps. First we prove that the pseudo-conformal law of
Theorem 2.4 (vii) holds as an inequality (see below). In a second step, it is then
possible to deduce the decay estimates of Theorem 2.4. In section 7 below, we will
prove that the function Jψ(t) := (x + it∇)ψ(t) (see the Remark 2.5) belongs to
C0(R;L2(λ)). We will deduce then Theorem 2.5, and also the pseudo-conformal
law of Theorem 2.4 (vii) (as an equality).

First step. Proof of the pseudo-conformal law as an inequality. Let φm ∈ H1(λ)
be a sequence of initial datas which converge to φ in L2(λ) and such that x φm
converges also to x φ in L2(λ). Let ψm(t) be the corresponding solutions of the
SPS. We have (See [ILZ]), for all t

‖(x+ it∇)ψm(t)‖2
L2(λ) + t2 ‖∇V (ψm)(t)‖2

L2 =

‖x φm‖2
L2(λ) +

∫ t

0
s ‖∇V (ψm)(s)‖2

L2 ds. (26)

Now, we show that we can pass to the limit in each term, and we begin by
t2 ‖∇V (ψm)(t)‖2

L2 . But, thanks to Hölder and Riesz inequalities,
‖∇V (ψm(t))−∇V (ψ(t))‖L2 =

= ‖C x

r3
∗x

∑
j

λj(|ψjm(t)| − |ψj(t)|) (|ψjm(t)|+ |ψj(t)|)‖L2

≤ C ‖
∑
j

λj(|ψjm(t)| − |ψj(t)|) (|ψjm(t)|+ |ψj(t)|)‖L6/5

≤ C ‖ψm(t)− ψ(t)‖L2(λ) ‖ψm(t) + ψ(t)‖L3(λ). (27)
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Therefore, (27) and estimate (i) of Theorem 2.3 give, for all 0 < ε < t < T <
+∞,

‖∇V (ψm(t))−∇V (ψ(t))‖L2 ≤ C ‖ψm(t)− ψ(t)‖L2(λ), (28)

where C is a constant C(ε, T, ‖φ‖L2(λ), ‖x φ‖L2(λ)). But, as a consequence of the

assumption φm
m→∞−→ φ, ψm(t) converges to ψ(t) in C0(R;L2(λ)) (See Theorem

2.2 (iii)). Hence,

∇V (ψm(t))
m→∞−→ ∇V (ψ(t)) in C0([ε, T ];L2) ∀ 0 < ε < T < +∞. (29)

Next, we treat the integral term of (26). We have, using Theorem 2.3 (iv),

|
∫ ε

0
s ‖∇V (ψm(s))‖2

L2ds| ≤
∫ ε

0
s
C(‖φ‖L2(λ), ‖x φ‖L2(λ), T )

s
ds

≤ ε C(‖φ‖L2(λ), ‖x φ‖L2(λ), T ). (30)

Therefore (30) together with (29) implies that the integral term in (26) converges
in C0(R) to

∫ t
0 s ‖∇V (ψm)(s)‖2

L2 .
Thus, by taking the limit in (26) on each compact set [ε, T ], thanks to (29)-

(30), we can conclude that, for all t ∈ R,

(x+ it∇)ψ(t) ∈ L2(λ) ,

and also

‖(x+ it∇)ψ(t)‖2
L2(λ) + t2 ‖∇V (ψ)(t)‖2

L2 ≤ ‖x φ‖2
L2(λ) (31)

+
∫ t

0
s ‖∇V (ψ)(s)‖2

L2ds.

We will show in section 7 below that this inequality is in fact an equality.

Second step. Decay estimates as t→∞. We write, thanks to (31), and using the
same arguments as in the second step

‖(x+ it∇)ψ(t)‖2
L2(λ) + t2 ‖∇V (ψ)(t)‖2

L2 ≤ ‖(x+ i∇)ψ(1)‖2
L2(λ)

+‖∇V (ψ)(1)‖2
L2 +

∫ t

1
s ‖∇V (ψ)(s)‖2

L2ds .

This implies, thanks to Theorem 2.3 (iv) together with (31) stated for t = 1,

t2 ‖∇V (ψ)(t)‖2
L2 ≤ ‖(x+ i∇)ψ(1)‖2

L2(λ) + ‖∇V (ψ)(1)‖2
L2 +

∫ t

1
s ‖∇V (ψ)(s)‖2

L2ds ,

hence,

t2 ‖∇V (ψ)(t)‖2
L2 ≤ C(‖φ‖L2(λ), ‖x φ‖L2(λ)) +

∫ t

1
s ‖∇V (ψ)(s)‖2

L2ds . (32)
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Therefore Gronwall’s Lemma gives in (32)

∀t ≥ 1 , ‖∇V (ψ)(t)‖L2 ≤
C(‖φ‖L2(λ), ‖x φ‖L2(λ))

t
1
2

. (33)

And, combining (33) with Theorem 2.3 (iv) for p = 2, we obtain

∀t ∈ R , ‖∇V (ψ)(t)‖L2 ≤
C(‖φ‖L2(λ), ‖x φ‖L2(λ))

|t| 12
.

This proves the statement (v) in Theorem 2.4 for p = 2. Also, we obtain, thanks
to (31)

∀t ∈ R , ‖(x+ it∇)ψ(t)‖2
L2(λ) ≤ C(‖φ‖L2(λ), ‖x φ‖L2(λ)) (1 + |t|) . (34)

As usual (See [Cz]), we consider ψg(t) := exp(− ix2

2t
)ψ(t). We notice the

Lemma 6.1 The following formula holds true :
it∇ψg(t) = exp(− ix2

2t
)(x+ it∇)ψ(t) .

In particular, for t 6= 0, the assumption (x + it∇)ψ(t) ∈ L2(λ) is equivalent to
∇ψg(t) ∈ L2(λ).

Thanks to this lemma, (34) writes

‖∇ψg(t)‖L2(λ) ≤
C(‖φ‖L2(λ), ‖x φ‖L2(λ))

t
1
2

(1 +
1

t
)

1
2 . (35)

Then, Gagliardo-Nirenberg’s inequality gives

‖ψg(t)‖Lp(λ) = ‖ψ(t)‖Lp(λ) ≤ C(p) ‖∇ψg(t)‖aL2(λ) ‖ψg(t)‖
(1−a)
L2(λ) , (36)

with a = 3(1
2
− 1

p
), and p ∈ [2, 6]. Notice that Gagliardo-Nirenberg’s inequality

in the weighted spaces Lp(λ) is a straightforward consequence of the usual one.
Finally, (35) and (36) give the asymptotic behaviour as t→ 0 and t→∞ of

‖ψ(t)‖Lp(λ) for p ∈ [2, 6]. Now, Hölder’s and Riesz’ Inequalities give the results
of Theorems 2.3 (ii)-(iv), 2.4 (ii). Now it remains to state the decay estimates of
Theorem 2.4 for V (t) and ∇V (t) as t → ∞. Again, Riesz’ Inequality gives the
estimates  ‖∇V (t)‖p ≤ C |t|−(1− 3

2p
) , ∀ p ∈]3/2;∞[ , ∀ |t| ≥ 1 ,

‖V (t)‖p ≤ C |t|−
1
2
(1− 3

p
) , ∀ p ∈]3;∞[ , ∀ |t| ≥ 1 .

Now, we write (Hölder),

‖∇V (t)‖p ≤ ‖∇V (t)‖θ2 ‖∇V (t)‖(1−θ)
q

≤ C |t|−
θ
2 |t|−(1−θ)(1− 3

2q
) ,
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and we choose successively q <∞ but close to ∞ in the case p > 2, then q > 3/2
but close to 3/2 in the case p < 2, and get Theorem 2.4 (v)-(vi), including the
case p = 2 which is given in (33). Finally, we write (Gagliardo-Nirenberg),

‖V (t)‖p ≤ C ‖∇V (t)‖ 3p
3+p

,

and use Theorem 2.4 (v)-(vi) in order to get Theorem 2.4 (iii)-(iv). This method
holds as p 6= ∞. In the case p = ∞, we should write,

‖V (t)‖∞ ≤ C ‖∇V (t)‖θ3+ε ‖V (t)‖(1−θ)
r ,

and choose ε > 0 close to 0, r ∈]3,∞[, θ close to 1.

7 Proof of Theorems 2.5 and 2.6

The proof is performed in two steps. As it was announced at the beginning of
section 6, we first prove that Jψ(t) = (x + it∇)ψ(t) ∈ C0(R;L2(λ)). Then we
deduce that the pseudo-conformal law of Theorem 2.4 (vii) holds as an equality,
and also prove Theorem 2.5 as an easy consequence of the continuity of Jψ. In
a second step, similar arguments allow to prove Theorem 2.6.

First step. Proof of the continuity of Jψ(t). Let φm and ψm be as in section
6. One can easily check the following formula, where the ψjm are the components
of the vector ψm,

∂tJψm =
i

2
∆Jψm − i(

C

r
∗

∑
j

λj|ψjm|2) Jψm + (
2C

r
∗ Im(

∑
j

λjψ
j ∗
m Jψjm))ψm.

Hence this equation gives, for all k,m ∈ N, the integral formulation

Jψm − Jψk = A+B +D , (37)

where A, B, D are given by

A := T (t)(xφm − xφk) ,

B := −i
∫ t

0
T (t− s)

(
(
C

r
∗

∑
j

λj|ψjm|2) Jψm − (
C

r
∗

∑
j

λj|ψjk|2) Jψk
)
(s)ds ,

D :=
∫ t

0
T (t− s)

(
(
2C

r
∗ Im(

∑
j

λjψ
j ∗
m Jψjm))ψm

−(
2C

r
∗ Im(

∑
j

λjψ
j ∗
k Jψjk))ψk

)
(s)ds .

We now prove that the sequence Jψm is Cauchy in the space
Xq,p
T := C0([−T ;T ];L2(λ))

⋂
Lq,pT (λ) for 0 < T < 1 sufficiently small, where

the admissible pair (q, p) is as in Theorem 2.2 (see definition 2.2). In order to do
this, we need the following Lemma.
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Lemma 7.1 Let T > 0, and σ, p, q be as in Lemma 4.1. Let u, v, w ∈
C0(R;L2(λ)). Let M(u, v) = supt∈[−T ;T ](‖u(t)‖L2(λ) + ‖v(t)‖L2(λ)). Then the
following holds :

(i) ‖(1/r ∗∑
j λjujvj) · w‖Y q,p

T
≤ C(q) M(u, v) max(T 1− 2

q , T ) ‖w‖Xq,p
T
,

(ii) ‖(1/r ∗∑
j λjujvj) · w‖Y q,p

T
≤ C(q) M(u,w) max(T 1− 2

q , T ) ‖v‖Xq,p
T
.

Proof of Lemma 7.1. It is a straightforward adaptation of the proof of Lemma
4.1.

We come back to the first step of our proof. First we note that

‖A‖Xq,p
T
≤ C(q)‖x φm − x φk‖L2(λ) .

Let nowM := supt∈[−1;1](‖Jψm(t)‖L2(λ)+‖Jψk(t)‖L2(λ)+‖ψm(t)‖L2(λ)+‖ψk(t)‖L2(λ)).
Section 6 (see (34)) shows that M is well-defined and depends only upon ‖φ‖L2(λ),
‖x φ‖L2(λ). We are able to majorize B and D as in the proof of Theorem 2.2 (see
estimates (14)-(18)). Indeed, thanks to Lemma 7.1 and Theorem 2.1 (iii),

‖B‖Xq,p
T
≤ C(q) M2 T 1− 2

q ( ‖Jψm − Jψk‖Xq,p
T

+ ‖ψm − ψk‖Xq,p
T

) ,

‖D‖Xq,p
T
≤ C(q) M2 T 1− 2

q ( ‖Jψm − Jψk‖Xq,p
T

+ ‖ψm − ψk‖Xq,p
T

) .

Therefore, if C denotes any constant depending only upon ‖φ‖L2(λ), ‖x φ‖L2(λ),
(37) implies

‖Jψm − Jψp‖Xq,p
T

≤ C ‖x φm − x φk‖L2(λ)

+C T 1− 2
q (‖Jφm − Jφk‖Xq,p

T
+ ‖ψm − ψk‖Xq,p

T
) . (38)

Now, for T = T (‖φ‖L2(λ) , ‖x φ‖L2(λ)) sufficiently small, we conclude as in section
4 that Jψm is Cauchy in Xq,p

T , since ψm is also Cauchy in this space.
Now, starting the same argument on [t − T ′; t + T ′], we find therefore a

T ′ depending only on ‖ψ(t)‖L2(λ), ‖J ψ(t)‖L2(λ) such that Jψm is Cauchy in
C0([t− T ′; t + T ′];L2(λ))

⋂
Lq([t− T ′; t + T ′];Lp(λ)). Since we already know by

section 6 that ‖J ψ(t)‖L2(λ) < ∞ for all t, this allows us to cover the whole real
line and show

Jψ(t) ∈ C0(R;L2(λ))
⋂
Lq,ploc(λ) .

Indeed, any compact interval of time is a finite union of small intervals
[t− T ′; t+ T ′].

Also, given a t ∈ R, we can take the limit in (26) as in the first step of section
6, but this time in C0(R;L2(λ)), and we get the equality in the pseudo-conformal
law.

The standard use of ψg (see Lemma 6.1 above) gives now Theorem 2.5. Indeed,
the assumption Jψ(t) ∈ C0(R;L2(λ)) implies ψg ∈ C0(R∗;H1(λ)). Thanks to
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Gagliardo-Nirenberg’s inequality (36), we get ψg ∈ C0(R∗;L2(λ)
⋂
L6(λ)), hence

Theorem 2.5.

Second step. Proof of Theorem 2.6. Theorem 2.6 is now proved in the case where
k = 1. We now deduce the general case from the following

Lemma 7.2 Let φ be as in Theorem 2.6 (k 6= ∞), φm ∈ H1(λ) such that xαφm
converges to xαφ in L2(λ) for all |α| ≤ k. Let ψm be the corresponding sequence
of solutions to the SPS. Finally, let T > 0. Then the following holds :
(i) ‖Jαψm‖Xq,p

T
≤ C(T, q, ‖(1 + x2)k/2φ‖L2(λ)) ,

(ii) Jαψm is Cauchy in Xq,p
T .

Proof of Lemma 7.2. The Lemma is already proved if k = 1. Suppose it is
proved up to order k. Let now α, |α| = k+1. Coming back to the SPS, we easily
get

Jαψm = T (t)xαφm + A+B +D , (39)

where

A = −i
∫ t

0
T (t− s)

(C
r
∗

∑
j

λj[(−1)α(Jαψjm)∗ψjm + ψj ∗m Jαψjm]
)
ψm(s)ds ,

B = −i
∫ t

0
T (t− s)

(C
r
∗

∑
j

λjψ
j ∗
m ψjm

)
Jαψm(s)ds ,

D = −i
∑
a,b,c

∫ t

0
T (t− s)

(C
r
∗

∑
j

λj(−1)a(Jaψjm)∗J bψjm
)
J cψm(s)ds .

In D, the sum is taken over all multi-index a, b, c 6= α such that a+ b+ c = α.
We prove (i). Let 0 < T0 < 1, T0 ≤ T , to be chosen later. We have, thanks

to Theorem 2.1 (i),

‖T (t)xαφm‖Xq,p
T0
≤ C(q)‖xαφm‖L2(λ) .

Besides, thanks to the induction hypothesis, Lemma 7.1 and Theorem 2.1 (iii)
give

‖D‖Xq,p
T0
≤ C(T, q, ‖(1 + x2)k/2φ‖L2(λ)).

Finally, we can again majorise A and B as we did for D, and write for instance

‖A‖Xq,p
T0
≤ T

1− 2
q

o C(T, q, ‖φ‖L2(λ)) ‖Jαψm‖Xq,p
T0
,

and the same for B. Collecting the inequalities in (39), we get

‖Jαψm‖Xq,p
T0

≤ C(q)‖xαφm‖L2(λ) + T
1− 2

q
o C(T, q, ‖φ‖L2(λ)) ‖Jαψm‖Xq,p

T0
(40)

+C(T, q, ‖(1 + x2)k/2φ‖L2(λ)) .
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Now we choose T
1− 2

q

0 = 1/2C(T, q, ‖φ‖L2(λ)) in (40) and get

‖Jαψm‖Xq,p
T0
≤ C(q)‖xαφm‖L2(λ) + C(T, q, ‖(1 + x2)k/2φ‖L2(λ)) .

Starting back from T0, and reiterating the argument on [0, 2T0] with the same T0

gives now, with obvious notations

‖Jαψm‖Xq,p([0;2T0]) ≤ C(q)‖Jαψm(T0)‖L2(λ) + C(T, q, ‖(1 + x2)k/2φ‖L2(λ))

≤ C(q)‖xαφm‖L2(λ) + C(T, q, ‖(1 + x2)k/2φ‖L2(λ)) .

Hence we can cover the whole interval [-T;T] and get Lemma 7.2 (i).
Part (ii) of this Lemma is obtained through the same manipulations and

makes use of the point (i). We refer also to the first step of this section.

Now, Lemma 7.2 (ii) clearly shows the point (i) in Theorem 2.6.
The point (ii) is given by considering the function ψg. Let t 6= 0 and α satisfy

|α| ≤ k. The point (i) of Theorem 2.6, combined with Lemma 6.1 above, implies

∇αψg(t) = (
1

it
)α exp(

−ix2

2t
)Jαψ(t) ∈ C0(R∗;L2(λ)) ,

hence
ψg(t) ∈ C0(R∗;Hk(λ)) .

Therefore, with the notation of Theorem 2.6, we get

ψg(t) ∈ C0(R∗;Ek) .

But for any k, we note that ‖ψg(t)‖Ek
= ‖ψ(t)‖Ek

, because ψ(t) = exp( ix
2

2t
)ψg(t).

Therefore, the point (ii) of Theorem 2.6 is proved.

8 Appendix

In the previous sections, we have developed a theory for the SPS with rough
initial datas, and observed in this case strong smoothing properties. We show
here how one can get a similar theory for smooth initial datas. We begin with
the following

Lemma 8.1 (i) Let u, v, w ∈ H1(λ). Then,

‖(1/r ∗
∑
j

λjujvj)w‖H1(λ) ≤ C‖u‖L2(λ)‖v‖L2(λ)‖w‖H1(λ) ,

‖(1/r ∗
∑
j

λjujvj)w‖H1(λ) ≤ C‖u‖L2(λ)‖v‖H1(λ)‖w‖L2(λ) ,
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(ii) Let m ≥ 1 and u, v, w ∈ Hm(λ). Then,

‖(1/r ∗
∑
j

λjujvj)w‖Hm(λ) ≤ C‖u‖Hm(λ)‖v‖Hm(λ)‖w‖Hm(λ) ,

(iii) Let m ≥ 1. Then, the nonlinearity V (ψ)ψ = (1/r ∗∑
j λj|ψj|2)ψ

is locally Lipschitz in Hm(λ).

Proof of Lemma 8.1. Thanks to the Sobolev imbeddingHm(λ) ⊂ L2(λ)
⋂
L6(λ),

a straightforward adaptation of the proof of Lemma 4.1 above gives

‖(1/r ∗
∑
j

λjujvj)w‖L2(λ) ≤ C‖u‖L2(λ)‖v‖L2(λ)‖w‖H1(λ) , (41)

‖(1/r ∗
∑
j

λjujvj)w‖L2(λ) ≤ C‖u‖L2(λ)‖v‖H1(λ)‖w‖L2(λ) . (42)

We write then

∇
(
(1/r ∗∑

j λjujvj)w
)

= (1/r ∗∑
j λj∇(uj)vj)w + (1/r ∗∑

j λjuj∇(vj))w

+(1/r ∗∑
j λjujvj)∇w ,

and, thanks to (41), (42), we get the desired estimates on ‖∇(1/r∗∑j λjujvj)w‖L2(λ).
Therefore, (i) is proved.

Then, (ii) becomes immediate by induction on m. Indeed, (ii) is proved for
m = 1 and, for any multiindex α, we have

∇α
(
(1/r ∗

∑
j

λjujvj)w
)

=
∑
β,γ,δ

(1/r ∗
∑
j

λj∇βuj∇γvj)∇δw ,

where the sum is taken over all β, γ, δ such that β + γ + δ = α. We note that
∇βu ∈ Hm−|β|(λ), ∇γv ∈ Hm−|γ|(λ), ∇δw ∈ Hm−|δ|(λ). But, the condition
β + γ + δ = α implies |β| + |γ| + |δ| = |α| = m ≥ 1. Thus, at least one of the
integers m − |β|, m − |γ|, or m − |δ| is greater than 1. We conclude thanks to
the Lemma 8.1 (i), by writing, say in the case m− |δ| ≥ 1,

‖(1/r ∗
∑
j

λj∇βuj∇γvj)∇δw‖L2(λ) ≤ C ‖∇βu‖L2(λ)‖∇γv‖L2(λ)‖∇δw‖H1(λ)

≤ C‖u‖Hm(λ)‖v‖Hm(λ)‖w‖Hm(λ) .

A summation over the multi-index gives the result (ii).
Now, (iii) is an easy consequence of (ii). Thus, Lemma 8.1 is proved.

Lemma 8.1 (iii) immediately gives the local-in-time well-posedness of the SPS
in Hm(λ) for m ≥ 1 (see, e.g. [Pa]). But this can be improved, since we have the
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Theorem 8.1 Let m ≥ 1, and φ ∈ Hm(λ). Then the SPS with initial data φ
has a unique global solution

ψ(t) ∈ C0(R;Hm(λ)) .

Moreover, the following regularity holds for all k such that m− 2k ≥ −1,

ψ(t) ∈ C0(R;Hm(λ))
⋂
C1(R;Hm−2(λ))

⋂
...

⋂
Ck(R;Hm−2k(λ)) .

Proof of Theorem 8.1. In order to prove the first part of the Theorem, it
suffices to show that the local solution ψ(t) built through Lemma 8.1 is in fact
global. Thus, we now prove that ‖ψ(t)‖Hm(λ) is bounded on bounded intervals.

This result is proved in [Ar] when m = 1 and in [ILZ] when m = 2. Now, we
prove it by induction on m. We write,

ψ(t) = T (t)φ+
∫ t

0
T (t− s)V (ψ)ψ(s)ds ,

hence, since the group T (t) is unitary on any space Hm(λ) (it preserves the L2(λ)
norm and it commutes with the derivation), we get,

‖ψ(t)‖Hm(λ) ≤ ‖φ‖Hm(λ) +
∫ t

0
‖V (ψ)ψ(s)‖Hm(λ)ds . (43)

It remains to bound the integral term in (43). But, following Lemma 8.1, we get
for m ≥ 2,

‖V (ψ)ψ(s)‖Hm(λ) ≤ C ‖ψ(s)‖2
Hm−1(λ) ‖ψ(s)‖Hm(λ) . (44)

(It suffices to count the orders of derivation as in the proof of Lemma 8.1
(ii)). Moreover, the induction on m gives that the term ‖ψ(s)‖Hm−1(λ) in (44) is
bounded on bounded intervals. Thus, if t ∈ [−M ;M ], (43) together with (44)
gives

‖ψ(t)‖Hm(λ) ≤ ‖φ‖Hm(λ) + C sup
[−M ;M ]

(‖ψ(s)‖Hm−1(λ))
2

∫ t

0
‖ψ(s)‖Hm(λ)ds ,

and we conclude thanks to Gronwall’s Lemma.
The second part of Theorem 8.1 is obtained by induction on k. Indeed, we first

write, thanks to Lemma 8.1, together with the assumption ψ ∈ C0(R;Hm(λ)),

∂tψ =
i

2
∆ψ − iV (ψ)ψ ∈ C0(R;Hm−2(λ)) ,

(the loss of two derivatives is in fact due to the Laplacian). Then, we set u := ∂tψ
and write

∂t,tψ =
i

2
∆u+ A(t) +B(t) , (45)
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where A(t), B(t) are given through

A(t) := −i
(2C

r
∗Re(

∑
j

λjujψ
∗
j )

)
ψ ,

B(t) := −i(C
r
∗

∑
j

λj|ψj|2)u .

Lemma 8.1, together with the assumptions ψ ∈ C0(R;Hm(λ)), u ∈ C0(R;Hm−2(λ)),
implies

∂t,tψ ∈ C0(R;Hm−4(λ)) .

And one can reiterate the argument, applying again Lemma 8.1 in order to get
that any time derivative ψ(k)(t) is continuous as soon as ψ(k−1)(t) ∈ H1(λ). Thus,
the induction can be carried out for values of k such that m− 2(k− 1) ≥ 1. This
gives the second part of the Theorem.

Acknowledgements. J. Ginibre recently indicated to us that S. Zagatti in-
troduced in an independent work ([Za]) spaces which are similar to the weighted
spaces Lp(λ) we use in the present paper (Definition 2.1). In particular, Strichartz’
inequalities that are equivalent to our Theorem 2.1 are mentionned in [Za], and
an existence Theorem similar to our Theorem 2.2 is proved. We would like to
thank J. Ginibre for having mentionned this reference to us.
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