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Séminaire E.D.P., Ecole Polytechnique, 2006-2007 (2007).

1 Introduction

We study the asymptotic behavior of a nonlinear gas of quantum particles, evolving in the
three dimensional space (x, z) ∈ R3 (x ∈ R2, z ∈ R), yet strongly confined along the vertical
z direction. The dynamics of the gas essentially occurs along the remaining, horizontal x
plane, and our goal is to recover the limiting dynamics along x, by performing the relevant
averaging procedure.

Such nonlinear and strongly confined gases are typically encountered in the study of Bose
condensation. In this context, an atomic gas is confined in a given region of space, and an
appropriate cooling procedure makes it possible to set all atoms in the same quantum state,
described by the same wave function Ψ. This somehow “macroscopic” wave function satisfies
a Schrödinger equation. The fact that the underlying gas is made up of many atoms which
interact pairwise is usually taken into account using a mean-field model, and the appropriate
equation is nonlinear.

Mathematically speaking, this situation is described by a nonlinear Schrödinger equation
in the presence of a small parameter. The confining Hamiltonian in the z direction, called
Hz in the sequel, carries a weight 1/ε which, as ε→ 0, enhances the time oscillations of Ψ,
of the form exp(−itHz/ε) (roughly), and the difficulty is to average out these oscillations.

We show that the strong confinement allows to develop an averaged model over the dis-
crete eigenspaces of Hz. This model describes the limiting dynamics along the x plane. The
point is, we are able to completely develop the averaging procedure over all the eigenspaces
at once. The limiting model is an infinite system of coupled, nonlinear, Schrödinger equa-
tions, describing the averaged evolution of Ψ over each eigenspace. In particular, all energy
levels are coupled through the averaged nonlinearity. This contrasts with the previous study
performed in [BMSW] (see also [BM] in the similar spirit), where only the ground state,
i.e. the eigenspace associated with the lowest eigenenergy of Hz, is treated, and the limiting
model is a single, scalar, nonlinear Schrödinger equation, describing the averaged evolution
of Ψ over this single eigenspace. This also contrasts with the Born-Oppenheimer situation,
where the emphasis is more on the separation between two distinguished eigenspaces, but
the spectrum is not necessarily discrete.

The key observation in the present study, that makes it possible to perform a clean
averaging procedure, relies on the fact that the operator exp(−itHz/ε) is almost periodic
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in time. In other words, it carries a discrete, possibly infinite, number of independent
time-oscillations. This observation allows to average exp(−itHz/ε) in time without having
to deal with the difficulty of small denominators (see [BCD] in the context of laser-matter
interaction). It also allows to formulate our limiting model in a “good” functional framework,
without having to project it over all the eigenspace of Hz, a difficult if not impossible task,
that is the very reason why the text [BMSW] restricts to a situation where only the ground
state is occupied. Obviously, the counterpart is that our error terms are bounded by nothing
better than o(1): a simpler, periodic framework (i.e. only one time-oscillation, as in [BMSW])
certainly allows to obtain improved convergence rates, yet it has to be stressed that such
a simplified framework is not generic. In the course of the analysis, we are also led to
identifying the Sobolev scale associated with the operator Hz = −∆z + Vc(z) (see below
for the notations), i.e. the domain of the successive powers (−∆z + Vc(z))m (m ≥ 0).
This turns out to be an important and difficult step of our analysis, which leads us to use
an appropriate pseudo-differential calculus, based on the Weyl-Hörmander calculus and the
associated Sobolev spaces developed by Bony and Chemin in [BC], later used by Hellfer and
Nier in [HN].

1.1 The model

Let (x, z) be the variable in R3 = R2 × R, where z ∈ R lies in the vertical direction (say),
and x ∈ R2 belongs to the horizontal plane3. Accordingly, take two Hamiltonians

Hx = −∆x + V (x), and Hz = − ∂2

∂z2
+ Vc(z), (1.1)

where both potentials V (x) and Vc(z) are assumed smooth, C∞, real valued, and bounded
from below. Without loss of generality, we may assume that both potentials are bounded
away from zero, i.e.

V (x) ≥ 1 and Vc(z) ≥ 1.

Other, more specific, assumptions on the potentials Vc(z) and V (x) are needed, which are
detailed now.

A key assumption of this paper is that Vc is confining, i.e.

Vc(z) −→
|z|→∞

+∞. (1.2)

As is well known [RS], this ensures that the spectrum of Hz = −∆z +Vc(z) is discrete, when
considered as a linear, unbounded operator over L2(R), with domain

D(Hz) = {Ψ(z) ∈ L2 s.t. ∂2
zΨ ∈ L2 and Vc(z) Ψ ∈ L2}.

Throughout this paper, the eigenelements of Hz will be denoted by the collection of eigenen-
ergies Ep ≥ 0 and eigenfunctions χp(z), as p runs in N. They satisfy, for any index p,

Hzχp(z) = Ep χp(z). (1.3)

3Needless to say, our techniques are immediately adapted in any dimension Rd = Rd−p × Rp
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Also, it is well known that Ep → +∞ as p→∞, and the χp’s may be chosen so as to form
an orthonormal basis of L2(R) (we will thus assume this orthonormality property from now
on).

For later functional analytic purposes, we shall actually assume a reinforced version of
confinement in the z direction. This is a more technical point. Our study requires the
following three conditions

∀α ∈ N,
∂αVc

∂zα
(z) = O

(
Vc(z)

)
as |z| → ∞, (1.4)

∃Mz > 0, Vc(z) = O
(
|z|Mz

)
as |z| → ∞, (1.5)

∃M ′
z > 0,

|∇z Vc(z)|
Vc(z)

= O
(
|z|−M

′
z

)
as |z| → ∞. (1.6)

In other words, Vc(z) should roughly behave like a symbol at infinity in z (this is the meaning
of assumptions (1.4) and (1.6)), and V should have at most polynomial growth at infinity in
z (this is assumption (1.5)). These assumptions typically exclude potentials behaving like
exp(z) at infinity or so, for which the analysis we present in this text probably becomes false
anyhow. Obviously, assumptions (1.2) and (1.4) are met in the prototype case where Hz

simply is the harmonic oscillator −∆z+z2, which is the example we keep in mind throughout
the paper, relevant in the context of Bose condensation.

Concerning the potential V (x) in the x direction, the present study may be carried either
when V (x) is confining or when it is uniformly bounded. For definiteness, and because the
physical situation we have in mind is again Bose condensation, we shall assume V (x) is
confining as is Vc(z), namely

V (x) −→
|x|→∞

+∞, (1.7)

∀α ∈ N,
∂αV

∂xα
(x) = O

(
V (x)

)
as |x| → ∞, (1.8)

∃Mx > 0, V (x) = O
(
|x|Mx

)
as |z| → ∞, (1.9)

∃M ′
x > 0,

|∇x V (x)|
V (x)

= O
(
|x|−M

′
x

)
as |x| → ∞. (1.10)

We stress that these assumptions are not essential in our analysis, and the alternative sit-
uation where V (x) ∈ C∞b (R2) (C∞ and bounded functions) could be handled as well (the
analysis is actually simpler then). Again, the prototype potential we have in mind is the
harmonic oscillator −∆x + x2.

Now, let ε > 0 be the small parameter that measures the relative strength of the con-
finement in the z direction, relative to that in the x plane. Take a smooth nonlinearity
F : R 7→ R, F ∈ C∞(R). The definite example in the context of Bose condensation is
F (u) = ±u. Our goal is to study the following nonlinear Schrödinger equation, written in
dimensionless form, along the limit ε→ 0:

i∂tΨ
ε(t, x, z) = Hx Ψε +

1

ε
Hz Ψε + F (|Ψε|2) Ψε. (1.11)
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Here Hx = −∆x + V (x), and Hz = −∆z + Vc(z), as before (see (1.1)). In other words, we
study the idealized limit where confinement in z is infinite, and the quantum particles are
essentially confined in the horizontal plane R2.

Needless to say, an initial datum is also prescribed for (1.11), namely

Ψε(0, x, z) = Ψ0(x, z) ∈ L2(R2 × R). (1.12)

In order to have “good” uniform bounds on Ψε, and on the nonlinear term F (|Ψε|2), we shall
additionally assume that Ψ0 possesses a “good” regularity in the Sobolev scale induced by
the nonnegative, self-adjoint operators Hx and Hz. This is a delicate point of our analysis,
which we now briefly discuss.

Namely, we shall suppose the following:

There exists an m > 3/2 such that

Ψ0 ∈ Bm :=
{
u ∈ L2(R3) s.t. Hm/2

x u ∈ L2(R3), and Hm/2
z u ∈ L2(R3)

}
. (1.13)

As we show later, it turns out the spaces B` (` ≥ 0) form a scale of Hilbert spaces, and they
may be endowed with either the norm

‖u‖2
B`

:= ‖u‖2
L2(R3) + ‖H`/2

x u‖2
L2(R3) + ‖H`/2

z u‖2
L2(R3), (1.14)

or the equivalent norm (we use the same notation for simplicity)

‖u‖2
B`

:= ‖u‖2
H`(R3) + ‖V (x)`/2 u‖2

L2(R3) + ‖Vc(z)`/2 u‖2
L2(R3), (1.15)

where H`(R3) denotes the usual Sobolev space.
The reason for the present assumption is the following. First, the condition m > 3/2 in

(1.13) makes Bm an algebra, and the nonlinear application Ψε 7→ F (|Ψε|2) Ψε is seen to be

locally Lipschitz in Bm. Second, and more importantly, the fact that the operators H
m/2
x

and H
m/2
z commute with Hx + Hz/ε in (1.11), allows to prove Ψε is uniformly bounded in

Bm, despite the singular term Hz/ε. Note that the crucial point according to which both
norms (1.14) and (1.15) are equivalent is not an obvious point, and the proof of this actually
is an important and difficult step of our analysis, see below.

At this point of the discussion, we are in position to try to characterize the limit of Ψε

in Bm. This is where almost-periodicity enters, which is the key observation of the present
text.

1.2 Heuristic approach to the strong confinement limit

The probably most natural approach is to first project the Schrödinger equation (1.11) over
the orthonormal basis (χp)p∈N. Admitting for the moment there exists a time T0 > 0

such that Ψε is bounded in C0([0, T0];Bm), uniformly with respect to ε, we may write the
orthogonal decomposition

Ψε(t, x, z) =
∑
p≥0

ψεp(t, x) χp(z) with ψεp(t, x) := 〈Ψε(t, x, z), χp(z)〉,
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and it may be assumed that the ψεp’s possess nice uniform bounds in the space
C0([0, T0]; l2(N;L2(R2))). (The l2 norm may be improved into a weighted l2 norm, using
the Ep’s). Here and throughout the paper, we use the notations

〈u, v〉 :=

∫
R
u v dz. (1.16)

Using this, the Schrödinger equation (1.11) may be decomposed into

i∂tψ
ε
p(t, x) = Hx ψ

ε
p +

Ep
ε
ψεp +

∑
r≥0

ψεr ×
〈
F
(∣∣∣∑

q≥0

ψεq(t, x)χq(z)
∣∣∣2) , χr(z)χp(z)

〉
, (1.17)

an infinite system of coupled, nonlinear, Schrödinger equations, on the ψεp(t, x)’s (p ∈ N,
x ∈ R2).

In view of (1.17), ∂tψ
ε
p clearly has size O(1/ε). For this reason, it is now natural to filter

out the oscillations exp(−itEp/ε) of ψεp induced by Hz, in the spirit of Schochet and Grenier’s
works [Sc], [Gr]. Hence, we define, for each p ≥ 0, the new unknown

φεp(t, x) := ψεp(t, x) exp (+itEp/ε) . (1.18)

The φεp’s naturally satisfy the filtered system

i∂tφ
ε
p(t, x) = Hx φ

ε
p +

∑
r≥0

φεr × e−it
Er−Ep

ε

〈
F
(∣∣∣∑

q≥0

φεq(t, x)χq(z) e−it
Eq
ε

∣∣∣2) , χr χp〉. (1.19)

Clearly, ∂tφ
ε
p has become an O(1) quantity. Even more, the system (1.19) is an infinite

dimensional, nonlinear and coupled differential system on the φεp’s (p ∈ N), of the form

∂tu
ε = Auε +B(t/ε, uε), (1.20)

and the nonlinearity B showing up on the right-hand-side of (1.19) clearly possesses some
“periodicity” in time, due to the oscillatory factors exp(itEp/ε) etc. (To be more precise, the
time dependence of the nonlinearity at hand turns out to be almost-periodic, as we discuss
later in the text).

At this level, it now becomes quite tempting to average in time the system (1.19), or,
equivalently, the toy model (1.20). This is actually the key ingredient in Schochet’s work
[Sc]. Indeed, it is well known that, provided the function B(τ, u) entering (1.20) possesses
some ergodicity property in time, the reference system (1.20) converges towards

∂tu = Au+Bav(u), where Bav(u) := lim
T→∞

1

T

∫ T

0

B(τ, u) dτ. (1.21)

We refer to [SV] and [LM] for statements of this form in the context of ODE’s. We also refer
to [BCD], [BCDG], or more recently [CDG1], [CDG2] for this kind of averaging procedure in
the context of laser-matter interaction, yet for infinite dimensional systems. We also refer to
the deep paper [MS] in the context of fluid mechanics, for the use of similar averaging tools
in infinite dimensional systems (here, very fine resonance questions are considered). In any
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circumstance, a prototype “ergodicity” assumption on the time-behavior of B(τ, u) is that
B is periodic in time. A more general assumption is that B(τ, u) is quasi-periodic in time,
which means B(τ, u) ≡ B(ω1τ, . . . , ωNτ, u), where B is 1-periodic in its first N arguments,
and the ωi’s are rationally independent frequencies. An even more general assumption is
that B(τ, u) is almost-periodic in time, which somehow corresponds to the quasi-periodic
framework with N = +∞ independent frequencies, and we refer to the sequel on that point.

For this reason, and despite the differential system satisfied by the φεp’s is infinite dimen-
sional, it is reasonable to expect that the φεp’s in (1.19) converge at least formally towards
the φp’s, solution to the averaged system

i∂tφp(t, x) = Hx φp(t, x) +
∑
r≥0

φr(t, x) (1.22)

× lim
T→∞

1

T

∫ T

0

[〈
F

(∣∣∣∑
q≥0

φq(t, x)χq(z) e−iτEq
∣∣∣2) , χr(z)χp(z)

〉
e−iτ(Er−Ep)

]
dτ.

All these steps require some care yet, before becoming rigorous statements. In some sense,
the goal of this paper is to rigorously prove the convergence towards (1.22), and even more
to exhibit a functional framework that is well adapted to this infinite dimensional problem.

1.3 Rigorous results

The difficulty in making the above statements correct is twofolds. Firstly, the above pro-
cedure requires to actually decompose Ψε over the χp’s, hence to write down series expan-
sions of the form

∑
r≥0 . . . as in (1.22). However, it turns out to be extremely difficult

to control the convergence of these series expansions, despite the fact that we have nice
l2(L2) bounds on the φεp’s. This is essentially due to the lack of information on the be-
havior of the coefficient 〈F (| · · · |2) , χr χp〉 appearing above, for large values of r and p.
Indeed, no orthogonality property is at hand to estimate this coefficient, except in the very
special case where χp(z) = exp(ipz), corresponding to periodic boundary conditions on z
(we may yet refer to W.-M. Wang’s delicate analysis [W1], [W2], of factors of the form∫

R
χp(x)χq(x)χr(x)χs(x) dx - p, q, r, s ∈ N - in the case when the χp’s are the eigenfunc-

tions of the harmonic oscillator). Secondly, there is actually a deeper difficulty. Indeed, in
order to quantitatively prove the convergence of systems of the form (1.20) towards (1.21),
one usually needs small denominator estimates. They turn out to be extremely difficult to
recover in the present context, and in truth they very probably are false. For instance, in
the reference situation where F (u) = u, equation (1.19) takes the simpler form

i∂tφ
ε
p(t, x) = Hx φ

ε
p +

∑
r,s,q≥0

φεr(t, x)φεq(t, x)φεs(t, x) e−it(Eq−Es+Er−Ep)/ε 〈χq χr , χs χp〉.

As a consequence, the averaged system on the φp’s is the same, up to the fact that the
sum

∑
r,s,q≥0 . . . eventually needs to be replaced by

∑
r,s,q≥0 1[Eq − Es + Er − Ep = 0]. Yet

rigorously proving the associated convergence result requires to have has some lower bound
on

1[Eq − Es + Er − Ep 6= 0]

Eq − Es + Er − Ep
,
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usually Diophantine estimates or like. However, except in the very special case where Hz is
the harmonic oscillator for which the Ep’s are known and have the value Ep = 2p + 1, such
estimates are generally not at hand.

These two difficulties make it necessary to find an alternative route.

A first solution is to choose an initial datum which lies in a definite energy level. More
precisely, one may take an initial datum that lies in the fundamental energy level,

Ψε(0, x, z) = Ψ0(x, z) = ψ0(x)χ0(z).

This is a non-generic situation. In this case, it has been proved in [BMSW] that, for later
times, the solution Ψε(t, x, z) to (1.11) remains of the form

Ψε(t, x, z) = ψε0(t, x)χ0(z) + small remainder.

As a consequence, the sums entering (1.17), (1.19), and (1.22) actually contain one single
term. This is the key point. It allows to circumvent all the above mentioned difficulties, and
the limiting model is, in that case, a single, nonlinear, Schrödinger equation, of the form

i∂tφ0(t, x) = Hxφ0 + F̃av(|φ0|2)φ0.

Here, the new, averaged4 nonlinearity F̃av is given, after the averaging procedure, by

F̃av(u) :=
〈
F
(
u |χ0(z)|2

)
, |χ0(z)|2

〉
.

This gives a rigorous statement that fully justifies the heuristic limit (1.22) in that particular
case.

Another possible route is the one we take in this text. It allows to treat the general case.

Here, we definitely want to place ourselves in a situation where Ψε(t, x, z) contains many
energy levels, a generic situation. As we said, explicitly decomposing Ψε over the χp’s leads to
hard small denominators difficulties, and the convergence of the sums entering the expected
limiting system (1.22) is far from obvious. For this reason, we adopt the following point of
view.

Instead of filtering out the oscillations in (1.11) after the projection over the χp’s, which
leads to (1.19), we rather do it without projecting. For that reason, we define the new
unknown

Φε(t, x, z) := exp(+itHz/ε) Ψε(t, x, z), (1.23)

in analogy with (1.18). It satisfies

i∂tΦ
ε(t, x, z) = HxΦ

ε + e+itHz/ε F

(∣∣∣e+itHz/ε Φε
∣∣∣2) e+itHz/ε Φε. (1.24)

In other words, introducing the function

τ 7→ F (τ, u) := e+iτHz F
(∣∣e−iτHz u∣∣2) e−iτHz u, (1.25)

4the reason for the tilda above F̃av is clear below.

7



equation (1.24) reads

i∂tΦ
ε(t, x, z) = HxΦ

ε + F

(
t

ε
,Φε(t)

)
. (1.26)

This is an infinite dimensional ODE, which is still of the form (1.20).
The key point lies in the observation that for any given function u(x, z) having reasonable

Sobolev-like regularity (namely u ∈ Bm for some m > 3/2, see (1.13)), the to-be-averaged
function F (τ, u) is almost-periodic in time, with values in the Sobolev space Bm.

The proof of this fact is not obvious. The almost-periodicity of F (τ, u) roughly means
that F (τ, u) has countably many frequencies in τ , which in turn translates the fact that the
spectrum of Hz is discrete as well: in view of definition (1.25) indeed, the oscillations of
F (τ, u) are only created by those of the propagator e±iτHz (the latter are discrete), appro-
priately combined with the nonlinearity F (|u|2)u (and almost periodicity usually is stable
upon composition with nonlinearities).

The interesting fact about almost-periodic functions is that they do possess a well defined
long time average, and the formula

Fav(u) := lim
T→∞

1

T

∫ T

0

F (τ, u) dτ (1.27)

makes sense in Bm. Of course, the convergence rate in (1.27) is o(1) only, contrary to true
periodic functions, for which the associated remainder term is O(1/T ): the point is, the long
time average exists, beyond any “small denominator” consideration or like.

In any circumstance, the limiting equation for Φ = lim Φε now naturally reads

i∂tΦ(t, x, z) = HxΦ + Fav(Φ). (1.28)

Equation (1.28) gives a rigorous statement corresponding to the heuristic limit (1.22) dis-
cussed before. Note that the observation according to which we are here dealing with almost-
periodic functions (hence the possibility to average in time), with values in a good Sobolev
space (hence the possibility to do nonlinear analysis), are the two crucial ingredients in the
present study.

To summarize, our main result is the following

Main Theorem
Take m > 3/2. Take a function Ψ0(x, z) having the Sobolev-like regularity,

Ψ0(x, z) ∈ Bm :=
{
u ∈ L2(R3), s.t. Hm/2

x u ∈ L2(R3) andHm/2
z u ∈ L2(R3)

}
.

Define Ψε(t, x, z) as the solution to

i∂tΨ
ε = HxΨ

ε +
1

ε
HzΨ

ε + F
(
|Ψε|2

)
Ψε, Ψε(0, x, z) = Ψ0(x, z).

Equivalently, define the filtered function Φε(t, x, z) = exp(+itHz/ε) Ψε as the solution to

i∂tΦ
ε = F

(
t

ε
,Φε

)
, Φε(0, x, z) = Ψ0(x, z),
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where F (τ, u) = e+iτHz F
(∣∣e−iτHz ∣∣2) e−iτHzu. Last, define Φ(t, x, z) as the solution to the

averaged equation

i∂tΦ = HxΦ + Fav(Φ), Φ(0, x, z) = Ψ0(x, z),

where Fav(u) = lim
T→∞

(1/T )

∫ T

0

F (τ, u)dτ in Bm. Then, the following holds

(i) There is a T0 > 0, depending only on ‖Ψ0‖Bm and on the nonlinear function F , such that
Ψε(t), Φε(t), and Φ(t) exist and possess the smoothness C0([0, T0];Bm), independently of ε.
Incidentally, Bm is a Hilbert space and an algebra, when endowed with either of the norms
(1.14) or (1.15).

(ii) The following convergence holds

‖Φε(t)− Φ(t)‖C0([0,T0];Bm)−→ε→0
0.

(iii) The solution Φ(t) to the averaged system has the following conserved quantities

‖Φ(t)‖L2(R3) = const, 〈Φ(t), HzΦ(t)〉L2(R3) = const,〈
H1/2
x Φ(t) , H1/2

x Φ(t)
〉2

L2(R3)
+

∫
R3

Gav(Φ(t)) dx dz = const,

where Gav(Ψ) is defined, for any Ψ ∈ Bm, as

Gav(Ψ) := lim
T→∞

1

T

∫ T

0

G
(∣∣e−iτHz Ψ

∣∣2) dτ, and, G(u) :=

∫ u

0

F (v) dv.

Remarks on the Main Theorem:
• Obviously, upon projecting Φ on the χp’s, system (1.26) may be seen as an infinite system
of coupled nonlinear Schrödinger equations, involving the quantities φp(t, x) := 〈Φ, χp〉. The
underlying system coincides with the formally expected system (1.22).
• Needless to say, our main Theorem gives, as a particular case, the results obtained in
[BMSW] when Ψ0 is parallel with χ0. Yet the (not to be improved) o(1) convergence rate of
our Theorem does not allow to recover the better convergence rates obtained in [BMSW] in
this special situation.
• Note also that the above Theorem completely describes the asymptotic behavior of Ψε,
namely Ψε(t, x, z) ∼ exp(−itHz/ε) Φ(t, x, z) as ε→ 0.
• The reader’s attention is drawn to the fact that the averaged system i∂tΦ = HxΦ +Fav(Φ)
still is posed in the three dimensional space R3. It however entails a trivial dynamics in the
vertical, z direction, which only plays the role of a parameter. Technically, factorizing out
this z dependence is done upon projecting the averaged system over the basis of the χp’s.
• Point (iii) of the Theorem gives conservation of mass, and conservation of the energy Hz

in z, a natural conservation since the dynamics of Φ eventually occurs along the x direction
only. It also gives the conservation of total energy in x. The latter may be used when
the nonlinearity F has definite sign properties, so as to transform the above local-in-time
convergence results, into global-in-time ones.
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2 Sketch of proofs

2.1 Sobolev scale adapted to Hx and Hz

A first key ingredient of the present study lies in identifying the Sobolev scale adapted to
Hx and Hz. Specifically, given any real number ` ≥ 0, we need to completely identify the
norm

‖u‖2
B`

:= ‖u‖2
L2(R3) + ‖H`/2

x u‖2
L2(R3) + ‖H`/2

z u‖2
L2(R3),

:= ‖u‖2
L2(R3) +

∥∥∥(−∆x + V (x))`/2 u
∥∥∥2

L2(R3)
+
∥∥∥(−∆z + Vc(z))`/2 u

∥∥∥2

L2(R3)
,

whenever u is smooth enough.

Our main result in this section is the following

Proposition 1 Let ` ≥ 0 be a real number. Recall Hx = −∆x+V (x) and Hz = −∆z+Vc(z).
Then, the following equivalence holds,

‖u‖2
B`
∼ ‖u‖2

L2(R3) + ‖ (−∆x)
`/2 u‖2

L2(R3) + ‖ (−∆z)
`/2 u‖2

L2(R3)

+ ‖V (x)`/2 u‖2
L2(R3) + ‖Vc(z)`/2 u‖2

L2(R3), (2.1)

where, the symbol ∼ means that there are constants c0 > 0 and c1 > 0 such that c0 ×
(r.h.s. of (2.1)) ≤ (l.h.s. of (2.1)) ≤ c1 × (r.h.s. of (2.1)), independently of u.

Remarks on Proposition 1:
• The identification of ‖u‖B` is a technically delicate, yet absolutely crucial step in the
present paper. Indeed, the only uniform bound at hand on Ψε, solution to (1.11), reads

‖Ψε(t, x, z)‖L2(R3) + ‖Hm/2
x Ψε(t, x, z)‖L2(R3) + ‖Hm/2

z Ψε(t, x, z)‖L2(R3) = O(1),

on some non-trivial time interval t ∈ [0, T0], whenever the initial datum Ψ0 belongs to Bm

(m > 3/2). All other energy estimates give rise to commutators, hence diverging factors of
the order O(1/ε), due to the fast factor Hz/ε in (1.11): they only give access to bounds of
the size O(1/ε) as well, a useless information.
• The proof of Proposition 1 is not direct. Our proof uses Weyl-Hörmander’s calculus, i.e.
an appropriate pseudo-differential calculus adapted to the symbol ξ2 + ζ2 + V (x) + Vc(z),
see Bony and Chemin’s work [BC]. This is also the route chosen by B. Helffer in the earlier
work [He]: in this paper, B. Helffer completely identifies the Sobolev scale associated with
the harmonic oscillator −∆z + z2, and the analogous of Proposition 1 is proved there in
this case. We stress that even the identification of the norm ‖(1 −∆z + z2)` u‖L2 with the

obvious ‖u‖L2 +
∥∥∥(−∆z)

` u
∥∥∥
L2

+‖z2` u‖L2 is not an easy result: it readily requires developping

a pseudo-differential calculus that is adapted to the symbol 1 + ζ2 + z2.
• A pedestrian proof of Proposition 1, directly using commutators of both operators −∆z

and Vc(z), and similarly in the x variable, probably is out of reach, even for integer values
of `. Indeed, such an analysis anyhow fails when dealing with factors of the form∥∥∥(−∆z)

(`−k)/2 Vc(z)k/2 u
∥∥∥
L2(R3)

or
∥∥∥Vc(z)k/2 (−∆z)

(`−k)/2 u
∥∥∥
L2(R3)

,
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whenever 0 ≤ k ≤ `, and when it comes to trying to control such terms with the help of the
mere term

‖u‖L2(R3) +
∥∥Vc(z)`/2

∥∥
L2(R3)

+
∥∥∥(−∆z)

`/2 u
∥∥∥
L2(R3)

.

• Note in passing that our identification of ‖u‖B` uses the fact that Vc(z) is confining,
see (1.2). Even more, a crucial role is played by the reinforced assumptions (1.4) through
(1.6), according to which Vc(z) behaves like a symbol at infinity in z, whose growth is at
most polynomial. The similar assumptions (1.7) as well as (1.8) through (1.10) are used in
the x direction. Note however that, would Vc be uniformly bounded together with all its
derivatives instead of being confining, the results below would hold just the same, the proofs
being actually simpler.

Sketch of proof of Proposition 1.

First step: Preliminary reduction and Weyl-Hörmander calculus
The key tool we use to prove the equivalence (2.1) is the Weyl-Hörmander calculus, see

e.g. [BC]. Let us comment on that point, keeping the discussion at a rather informal level
for the time being.

In terms of symbols (in the sense of pseudo-differential calculus, for some pseudo-diffe-
rential calculus to be precised below), assertion (2.1) is fairly natural. Indeed, the principal
symbol of 1 +H`

x +H`
z is

σ
(
1 +H`

x +H`
z

)
(x, z, ξ, ζ) ≡ 1 +

[
ξ2 + V (x)

]`
+
[
ζ2 + Vc(z)

]`
,

where ξ and ζ are the Fourier variables associated with x resp. z, while the principal symbol
of 1 + (−∆x)

` + (−∆z)
` + V (x)` + Vc(z)` is

σ
(
1 +D2`

x +D2`
z + V (x)` + Vc(z)`

)
(x, z, ξ, ζ) ≡ 1 + ξ2` + ζ2` + V (x)` + Vc(z)`.

Formally exploiting the identification of the operators with their associated principal sym-
bols, the whole equivalence (2.1) eventually (and informally) reduces to the existence of
positive, universal constants c0 and c1 such that

c0 ≤
1 + [ξ2 + V (x)]

`
+ [ζ2 + Vc(z)]

`

1 + ξ2` + ζ2` + V (x)` + Vc(z)`
≤ c1, (2.2)

independently of (x, z, ξ, ζ) ∈ R3 × R3. The point is, passing from the equivalence between
symbols (2.2) to the equivalence between norms (2.1), one needs to have a proper quanti-
zation of symbols, hence a proper pseudodifferential calculus. In other words, one needs
appropriate weights together with appropriate metrics to deduce (2.1) from (2.2) using a
pseudo-differential machinery.

Now, the whole difficulty lies in the fact that the standard pseudodifferential calculus,
based on the standard metrics

dx2 + dz2 +
dξ2 + dζ2

1 + ξ2 + ζ2

can only give access to usual Sobolev-like norms, where only powers of −∆x, −∆z are kept
track of, or equivalently, one only takes into account powers of ξ2 and ζ2 as |ξ| and/or |ζ|

11



go to infinity: however, going from (2.2) to (2.1) requires not only counting powers of −∆x,
−∆z (i.e. powers of ξ2 and ζ2), but also powers of V (x) and Vc(z) as |x| and |z| go to
infinity; recall indeed that Vc and V are assumed confining, a key difficulty in the present
perspective.

This is the reason why we need to consider an appropriate metric that keeps track of
both aspects, and eventually develop the associated pseudo-differential machinery, based on
the Weyl-Hörmander calculus.

Our proof of the equivalence (2.1 actually follows ideas developed by Bony and Chemin
in [BC], and more recently ideas by Helffer and Nier [HN]. The whole point lies in defining
the weight

M(x, z, ξ, ζ) :=
√

1 + ξ2 + ζ2 + V (x) + Vc(z), (2.3)

and the associated metric

g(x, z, ξ, ζ) := dx2 + dz2 +
dξ2 + dζ2

M2(x, z, ξ, ζ)
, (2.4)

meaning that for any (x′, z′, ξ′, ζ ′) ∈ R3×R3, we set g(x, z, ξ, ζ)(x′, z′, ξ′, ζ ′) = (x′)2 + (z′)2 +
[(ξ′)2+(ζ ′)2]/M2(x, z, ξ, ζ). Choosing to work within the metric g equivalently means that for
any given ` ∈ R, we shall deal with the class S(M `, g) of symbols a(x, z, ξ, ζ) ∈ C∞(R3×R3)
such that

∀α, β ∈ N3, ∃Cα,β > 0, ∀(x, z, ξ, ζ) ∈ R3 × R3,∣∣∣∂αx,z ∂βξ,ζa(x, z, ξ, ζ)
∣∣∣ ≤ Cα,βM(x, z, ξ, ζ)`−|β|. (2.5)

The idea of using this class of symbols, i.e. this weight function and this metric, is actually
borrowed from [HN].

It turns out that assumptions (1.4) through (1.6), as well as (1.8) through (1.10), ensure
the metric g is slow, temperate, and it satisfies the uncertainty principle. These assumptions
also ensure that for any ` ∈ R, the weight M ` is admissible for the metric g. Lastly, we stress
that the value of the gain in the present calculus is, following Hörmander [Ho], M(x, z, ξ, ζ)

Now, given the metric g and the weight M `, to any symbol a in the class S(M `, g),
Weyl-Hörmander calculus associates the operator

u ∈ S(R3) 7→ aw u ∈ S(R3) defined as

(aw u) (x) =

∫
R6

ei(x−x
′)·ξ+i(z−z′)·ζ a

(
x+ x′

2
,
z + z′

2
, ξ, ζ

)
u(x′, z′) dx′ dz′. (2.6)

and we write aw ∈ Op(S(M `, g)). In this language, we have

1−∆x −∆z + V (x) + Vc(z) =
(
1 + ξ2 + ζ2 + V (x) + Vc(z)

)w ∈ OpS(M2, g).

Proving (2.1) now roughly reduces to proving the equivalence, whenever ` ∈ R,∥∥∥(Mw)` u
∥∥∥
L2(R3)

∼
∥∥(M `

)w
u
∥∥
L2(R3)

(2.7)
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Second step: functional calculus and Sobolev spaces based on the metric g

Now, the proof of (2.7) basically reformulates as: given the function f(u) ≡ u`, and
given the operator Mw, can one identify the operator f(Mw) and even more specifically its
symbol?

The answer to this question essentially requires two tools.
Firstly, we need to identify the operator Mw as a self-adjoint operator on reasonably well

defined functional spaces. At this level of the analysis, we need to use spaces introduced by
Bony and Chemin in [BC]. Let det(g(X)) denotes the determinant of the quadratic form
g(X) = g(x, z, ξ, ζ). Whenever ` ≥ 0, the work by Bony and Chemin allows to define the
Sobolev space associated with the weight M `(X), and denoted by H(M `, g), as the set of
functions u = u(x, z) such that

‖u‖2
H(M`,g) ≡

∫
R6

M2`(X) ‖φw
X u‖

2
L2(R3) |det(g(X))|1/2 dX <∞, (2.8)

where the operator φw
X conveniently microlocalizes u around the point X of phase-space,

while the collection of functions φX provide a partition of unity. The set H(M `, g) clearly
extends the usual definition of the standard Sobolev spaces Hs(R3) (s ∈ R). The natural
orthogonality property ensures that definition (2.8) does not depend on the chosen partition
of unity φX . With the above notation, we have

∀` ≤ `′, S(R3) ⊂ H(M `, g) ⊂ H(M `′ , g) ⊂ S ′(R3),

and the key point is the following result:

The operator
(
M `
)w

with domain H(M `, g) is self-adjoint on L2. (2.9)

Secondly, one needs to identify the operator f(Mw) = (Mw)`. Once the above self-
adjointess is at hand, the idea lies in using the Helffer-Sjöstrand formula, according to which

f(Mw) =
1

2π

∫
C

∂f̃

∂λ
(λ) [Mw − λ]−1 dλ ∧ dλ,

where λ ∈ C, the measure dλ ∧ dλ is the standard 2-dimensional volume in C, and f̃(λ)
denotes an almost-analytic extension of f over C. Therefore, studying f(Mw) reduces to
studying the resolvent of Mw (the similar argument is used in the functional calculus by
Helffer and Robert [HR] in the context of the standard metrics dx2 +dξ2/(1 + ξ2)). Now the
key point in that direction is the folowing result, borrowed from [HN]:

For any λ ≥ 0 the operator
[(
M2
)w

+ λ
]−1

belongs to OpS(M−2, g). (2.10)

This information, in conjunction with (a variant of) the Helffer-Sjöstrand formula, eventu-
ally allows to completely identify f(Mw), and to complete the proof of Proposition 1.
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2.2 Uniform bounds for Ψε

The following Proposition now comes as an immediate consequence of Proposition 1.

Proposition 2 Take a real number ` > 3/2. Define the Sobolev space B` as the completion
of the set of smooth functions u(x, z) under the norm

‖u‖2
B`

:= ‖u‖2
H`(R3) + ‖V (x)`/2 u‖2

L2(R3) + ‖Vc(z)`/2 u‖2
L2(R3).

Then, B` is a Hilbert space and B` ⊂ L∞(R3) continuously. Moreover, the following property
holds true. Take any C∞ nonlinear function f satisfying f(0) = 0. Then, the mapping
u ∈ B` 7→ f(u) ∈ B` is well-defined and locally Lipschitz.

As an immediate corollary, we also have the following non-trivial uniform existence result.

Corollary 3 Take a real number m > 3/2. Take an initial datum Ψ0(x, z) in (1.12) such
that Ψ0(x, z) ∈ Bm. Then, there is a T0 > 0, independent of ε and only depending on
‖Ψ0‖Bm and the nonlinear function F , such that the nonlinear Schrödinger equation (1.11)
with initial datum Ψ0 possesses a unique solution Ψε(t, x, z) with the smoothness Ψε(t, x, z) ∈
C0([0, T0], Bm).

2.3 Almost periodic functions with values in Bm

The key fact about almost-periodic functions Θ(t) (with values in R, say), is the existence

of their long time average Θav := lim
T→∞

1

T

∫ T

0

Θ(τ) dτ, and the point is that no small-divisors

estimate (or like) is needed to define such averages. In some sense, the small divisor estimates
are encoded in the very definition of almost-periodic functions. This is the very reason for our
introduction of the following (standard) definition of almost periodic functions with values
in Bm.

Definition and Proposition 4 Let ` ≥ 0. A function Θ(τ) : R 7→ B`, Θ(τ) ∈ C0(R;B`),
is called almost-periodic, and we note Θ(τ) ∈ AP(R, B`), whenever the set of translates

{t 7→ Θ(τ + h), h ∈ R}

has compact closure in the norm L∞(R, B`). Equivalently, Θ(τ) ∈ AP(R, B`) if and only
if Θ(τ) is the strong limit of trigonometric polynomials, i.e. for any δ > 0, there exists a
trigonometric polynomial

Θδ(τ) =

Nδ∑
n=1

θn,δ exp(iλn,δτ), such that sup
τ∈R
‖Θ(τ)−Θδ(τ)‖B` ≤ δ,

where the θn,δ’s belong to B`, the λn,δ’s belong to R, and Nδ is some finite integer.
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Remark. The above definition, namely the precompactness criterion, is usually called
Bochner’s criterion for almost-periodicity. The equivalence with being the uniform limit of
trigonometric polynomials is a standard (and crucial) fact about almost-periodic functions.
It is proved, e.g., in [LZ], and in any textbook about almost-periodic functions.

With this definition, it turns out that one may do Fourier analysis on almost periodic
functions. In particular, the long-time average of Θ(τ) (which plays the role of the mean
mode in standard Fourier analysis), is well defined, as shown by the

Proposition 5 Let ` ≥ 0 and take Θ(τ) ∈ AP(R, B`). Then, the following strong limit
exists in B`,

Θav := lim
T→∞

1

T

∫ T

0

Θ(τ) dτ.

More generally, for any λ ∈ R, the Fourier-like coefficient

Θ̂(λ) := lim
T→∞

1

T

∫ T

0

Θ(τ) exp(−iλτ) dτ,

is well-defined in B`, and Θ̂(λ) is non-zero for at most countably many values of λ.

We now turn to drawing the consequences of Proposition 5 that are of interest in our
context. Our first result in that direction is the

Proposition 6 Take ` > 3/2 and take Θ(x, z) ∈ B`. Under these circumstances, the func-
tion

F (τ,Θ) : τ 7→ e+iτHz F
(∣∣e−iτHz Θ

∣∣2) e−iτHz Θ

belongs to AP(R;B`). Hence, one may define the long time average as the limit in B`,

Fav(Θ) := lim
T→∞

1

T

∫ T

0

F (τ,Θ) dτ.

Besides the function Θ 7→ Fav(Θ) is locally Lipschitz in B`.

Next, we have all the necessary tools that allow to perform the natural nonlinear analysis
of the averaged model i∂tΦ = HxΦ +Fav(Φ). Recall that the latter is to be derived from the
oscillatory equation i∂tΨ

ε = HxΨ
ε + ε−1HzΨ

ε + F (|Ψε|2) Ψε in the present paper.

Proposition 7 Take m > 3/2 and Ψ0 ∈ Bm. Then, there is a T0 > 0, only depending on
‖Ψ0‖Bm and the nonlinear function F , such that the solution Φ to the averaged equation

i∂tΦ = HxΦ + Fav(Φ), Φ(0, x, z) = Ψ0(x, z),

exists and is unique in C0([0, T0];Bm). Even more, it satisfies the conservation laws an-
nounced in the statement of the Main Theorem.
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2.4 Sketch of proof of the Main Theorem

The key point is to perform the averaging procedure in time, i.e. to prove point (ii) of the
main Theorem. As a very preliminary step, we mention that an easy regularising procedure
allows to only prove a reduced version of the result, for initial data Ψ0 that possess the
improved regularity Ψ0 ∈ Bm+2 (instead of Bm as in our main Theorem).

First step: reduction of the proof
We follow the strategy developed in [SV] for finite-dimensional ODE’s (see [BCD] for an
adaptation in the infinite-dimensional situation). The filtered function Φε satisfies

i∂tΦ
ε = Hx Φε + F (t/ε,Φε), Φε(0) = Ψ0,

where F (t,Ψ) := e+i tHz F (|e−i tHz Ψ|2) e−i tHz Ψ is almost periodic. (2.11)

We wish to estimate the difference with the averaged system

i∂tΦ = Hx Φ + Fav(Φ), Φ(0) = Ψ0,

where F0(Ψ) := lim
T→∞

1

T

∫ T

0

F (τ,Ψ) dτ. (2.12)

In order to do so, we choose a (large) time T (ε) such that T (ε) = o(1/ε) as ε → 0. The
“good” choice for T (ε) is made precise below - see (2.21). Associated with T (ε), we introduce

the auxiliary solution Φ̃ε to

i∂tΦ̃
ε = Hx Φ̃ε + F̃ε(t/ε, Φ̃

ε), Φ̃ε(0) = Ψ0,

where F̃ε(t,Ψ) :=
1

T (ε)

∫ t+T (ε)

t

F (s,Ψ) ds. (2.13)

Our strategy is to successively prove that the two terms Φε − Φ̃ε and Φ̃ε − Φ go to zero in
C0([0, T0];Bm). As we shall see, each term requires specific arguments.

In any circumstance, it is easily proved that there exists a T0, independent of ε, such that
the solution Φ̃ε to (2.13) exists, is unique, and has the regularity C0([0, T0], Bm+2). Even
more, there exists a common upper-bound M > 0 such that

sup
0<ε<1

[∥∥Φε
∥∥
C0([0,T0];Bm+2)

+
∥∥Φ̃ε

∥∥
C0([0,T0];Bm+2)

+
∥∥Φ
∥∥
C0([0,T0];Bm+2)

]
≤M. (2.14)

Second step: estimating Φ̃ε − Φ
For any u ∈ Bm+2, we introduce the convergence rate

δ(ε, u) := sup
0≤t≤2T0/ε

∥∥∥ ε

2T0

∫ t

0

[
F (s, u)− Fav(u)

]
ds
∥∥∥
Bm
. (2.15)

Note that δ measures a convergence rate with loss of smoothness (loss of “two derivatives”).
On top of that, take M is as in (2.14), and introduce the uniform convergence rate

δM(ε) := sup
‖u‖Bm+2

≤M
δ(ε, v). (2.16)
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Then, we can easily prove δM(ε) →
ε→0

0. Besides, for any 0 ≤ t ≤ T0, we may establish

sup
‖u‖Bm+2

≤M

∥∥∥F̃ε(t/ε, u)− Fav(u)
∥∥∥
Bm
≤ 2 T0

δM(ε)

ε T (ε)
. (2.17)

Now, the following estimate is easily deduced for t ∈ [0, T0], where C > 0 only depends on
T0, M , F .

∀0 ≤ t ≤ T0, ‖Φ̃ε(t)− Φ(t)‖Bm ≤ C
δM(ε)

ε T (ε)
. (2.18)

Third step: estimating Φε − Φ̃ε

This estimate is more delicate than the previous one. Introducing the difference ∆ε(t) :=

Φε(t)− Φ̃ε(t), we readily have for 0 ≤ t ≤ T0,

‖∆ε(t)‖Bm ≤
∥∥∥ ∫ t

0

ei(t−s)Hx
[
F (s/ε,Φε(s))− F̃ε(s/ε, Φ̃ε(s))

]
ds
∥∥∥
Bm

≤ C(F,M)

∫ t

0

‖∆ε(s)‖Bm ds

+
∥∥∥ ∫ t

0

ei(t−s)Hx
[
F (s/ε,Φε(s))− F̃ε(s/ε,Φε(s))

]
ds
∥∥∥
Bm
. (2.19)

We are thus led to estimating the second term on the right-hand-side of (2.19). To do so,
we write, whenever 0 ≤ t ≤ T0,∫ t

0

ei(t−s)Hx
[
F (s/ε,Φε(s))− F̃ε(s/ε,Φε(s))

]
ds

=

∫ t

0

ei(t−s)Hx F
(s
ε
,Φε(s)

)
ds−

∫ 1

0

∫ t

0

ei(t−s)Hx F

(
s+ ε T (ε)u

ε
,Φε(s)

)
ds du

=

∫ t

0

ei(t−s)Hx F
(s
ε
,Φε(s)

)
ds

−
∫ 1

0

∫ t

0

ei(t−s)Hx F

(
s+ ε T (ε)u

ε
,Φε(s+ ε T (ε)u)

)
ds du +Rε

1

=

∫ t

0

ei(t−s)Hx F
(s
ε
,Φε(s)

)
ds−

∫ 1

0

∫ t+ε T (ε)u

ε T (ε)u

ei(t−s)Hx F
(s
ε
,Φε(s)

)
ds du

+Rε
1 +Rε

2

=

∫ t

0

ei(t−s)Hx F
(s
ε
,Φε(s)

)
ds−

∫ 1

0

∫ t

0

ei(t−s)Hx F
(s
ε
,Φε(s)

)
ds du

+Rε
1 +Rε

2 +Rε
3.

Eventually, we have established∫ t

0

ei(t−s)Hx
[
F (s/ε,Φε(s))− F̃ε(s/ε,Φε(s))

]
ds = Rε

1 +Rε
2 +Rε

3,
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and we have postponed the task of estimating the remainders Rε
1, Rε

2, and Rε
3, for the

moment. The third remainder Rε
3 is easily estimated by

‖Rε
3‖Bm ≤

∫ ε T (ε)

0

∥∥∥F (s
ε
,Φε(s)

)∥∥∥
Bm

ds+

∫ t+ε T (ε)

t

∥∥∥F (s
ε
,Φε(s)

)∥∥∥
Bm

ds

≤ C(F,M) ε T (ε).

Concerning Rε
1, we write

‖Rε
1‖Bm ≤ C(F,M) ε T (ε) ‖∂tΦε(s)‖C0([0,T0+ε T (ε)];Bm).

Yet, the equation i∂tΦ
ε = HxΦ

ε + F (s/ε,Φε), together with the bounds at hand for Φε

clearly imply ‖∂tΦε(s)‖C0([0,T0+ε T (ε)];Bm) ≤ C, for some C > 0 independent of ε. Eventually,
we have established

‖Rε
1‖Bm ≤ C εT (ε),

for some C > 0 independent of ε. Concerning Rε
2, we write in the similar spirit

‖Rε
2‖Bm ≤ (T + ε T (ε))

∥∥∥[eiεT (ε)u − 1
]
F
(s
ε
,Φε(s)

)∥∥∥
C0([0,1]×[0,T0+ε T (ε)];Bm)

≤ C(F,M) εT (ε).

We eventually deduce that for some C > 0 independent of ε.

∀0 ≤ t ≤ T0, ‖Φε(t)− Φ̃ε(t)‖Bm ≤ C εT (ε), (2.20)

Fourth step: conclusion
Gathering the above results, we recover

∀0 ≤ t ≤ T0, ‖Φε(t)− Φ(t)‖Bm−2 ≤ C

(
ε T (ε) +

δM(ε)

ε T (ε)

)
≤ C

√
δM(ε)→ 0,

provided we make the optimal choice

T (ε) =
√
δM(ε)/ε. (2.21)

3 Application: the cubic Schrödinger equation, with

harmonic confinement

We apply our Main Theorem to the following simplest model of Bose condensation

i∂tΨ
ε(t) =

(
−∆x + x2

)
Ψε(t) +

1

ε

(
−∆z + z2

)
Ψε(t) + |Ψε(t)|2 Ψε(t). (3.1)
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In other words, we specify our discussion to the case

Hx = −∆x + x2, Hz = −∆z + z2, F (u) = +u.

We know from the Main Theorem that this model is asymptotically described by

i∂tΦ(t) =
(
−∆x + x2

)
Φ(t)

+ lim
T→∞

1

T

∫ T

0

e+iτ [−∆z+z2]
∣∣∣e−iτ [−∆z+z2] Φ(t)

∣∣∣2 e−iτ [−∆z+z2] Φ(t) dτ. (3.2)

Let us now give a more explicit form to (3.2). We know that the eigenelements of the
harmonic oscillator −∆z + z2 are

Ep = (2p+ 1), and χp(z) = Hp(z) exp(−x2/2),

where Hp is the p-th Hermite polynomial. Hence, introducing the quantities

φp(t, x) = 〈Φ(t, x, z) , χp(z)〉 , (p ∈ N),

equation (3.2) readily becomes

i∂tφp =
(
−∆x + x2

)
φp

+ lim
T→∞

1

T

∫ T

0

∑
r,s,q∈N

φr(t)φq(t)φs(t) e−iτ [Eq−Es+Er−Ep] 〈χq χr , χs χp〉 dτ,

Now, since the Ep’s are integers, the lim
T→∞

1

T

∫ T

0

. . . simply becomes averaging over one

period, namely
1

2π

∫ 2π

0

. . ., and the latter integral transforms the sum
∑
q,r,s

. . . into a sum

over those integers such that Eq +Er = Ep +Es, or, in other words, q + r = p+ s. We thus
recover the averaged model

i∂tφp(t, x) =
(
−∆x + x2

)
φp +

∑
r,s,q/q+r=p+s

Ap,q,r,s φr φq φs (3.3)

where Ap,q,r,s := 〈χq χr , χs χp〉 .

This is an infinite system of cubic Schrödinger equations along the x plane. Note that we do
not have any simple information about the behavior of the given coefficients Ap,q,r,s entering
the system, despite the fact that the eigenfunctions χp are explicitly known. This makes it
definitely easier to deal directly with the equation on Φ (without projecting).

As a special case, equation (3.3) allows to recover the one mode situation treated in
[BMSW]. Indeed, when the initial datum satisfies

Φ(0, x, z) = φ0(0, x)χ0(z),
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i.e. when Φ(0) lies entirely in the eigenspace associated with the lowest energy E0 = 1, it is
easily seen that the function

Φ(t, x, z) = φ0(t, x)χ0(z)

solves the averaged system (3.2), provided φ0(t, x) solves the one-mode problem

i∂tφ0(t, x) =
(
−∆x + x2

)
φ0 + A0,0,0,0 |φ0(t)|2 φ0(t). (3.4)

One can even go a bit further, namely, when the initial datum is any one-mode function

Φ(0, x, z) = φp(0, x)χp(z),

for some given index p, i.e. when Φ(0) lies entirely in the eigenspace associated with the
energy Ep, it is easily seen that the function

Φ(t, x, z) = φp(t, x)χp(z)

solves the averaged system (3.2), provided φp(t, x) solves the one-mode problem

i∂tφp(t, x) =
(
−∆x + x2

)
φp + Ap,p,p,p |φp(t)|2 φp(t). (3.5)

Again, starting from the mode p, equation (3.3) can only feed the same mode p and no
new mode is switched on. This observation extends the results of [BMSW] to any one-mode
solution.

In the case where the initial datum contains at least two distinct modes, say p0 and p1,
it is clear that equation (3.3) immediately allows to switch on the modes 2p0 − p1, 2p1 − p0,
hence the modes 4p0 − 3p1 and so on, so that eventually an infinite number of modes is
switched on, and the need for a clean functional analytic framework to treat equation (3.3),
namely the formulation (3.2), becomes transparent.

We wish to end this text with a last, bibliographical comment.
In [BaMSW], the above problem (3.3) has been formally derived. In that text, the authors

study the existence and uniqueness for a simplified problem by proceeding to a truncation
of the modes. Namely they considered the problem

i∂tΦp = Hxφp +
∑

r,s,q/q+r=p+s and p,q,r,s≤L

Ap,q,r,sφr φq φs. (3.6)

Needless to say, the truncated problem (3.6) is considerably simpler than (3.3), in that all the
convergence issues of the series expansion are then removed. Unfortunately, the approach of
[BaMSW] seemingly does not allow the construction of solutions to the whole limit problem
when L → ∞. It turns out that our approach actually allows to onstruct the solution of
all truncated problems at once, and to show that it is indeed a good approximation of the
untruncated one in Bm (m > 3/2), as L→∞.
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Astérisque, Vol. 112, Soc. Math. de France (1984).

[HN] B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker-
Planck operators and Witten Lalacians, Springer, to appear (2005).

21



[HR] B. Helffer, D. Robert, Caclcul fonctionnel par la transformation de Mellin et opérateurs
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