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Abstract: We consider the high-frequency Helmholtz equation with a given
source term, and a small absorption parameter α > 0. The high-frequency (or:
semi-classical) parameter is ε > 0. We let ε and α go to zero simultaneously. We
assume that the zero energy is non-trapping for the underlying classical flow.
We also assume that the classical trajectories starting from the origin satisfy a
transversality condition, a generic assumption.

Under these assumptions, we prove that the solution uε radiates in the outgo-
ing direction, uniformly in ε. In particular, the function uε, when conveniently
rescaled at the scale ε close to the origin, is shown to converge towards the out-
going solution of the Helmholtz equation, with coefficients frozen at the origin.
This provides a uniform (in ε) version of the limiting absorption principle.

Writing the resolvent of the Helmholtz equation as the integral in time of
the associated semi-classical Schrödinger propagator, our analysis relies on the
following tools: (i) For very large times, we prove and use a uniform version
of the Egorov Theorem to estimate the time integral; (ii) for moderate times,
we prove a uniform dispersive estimate that relies on a wave-packet approach,
together with the above mentioned transversality condition; (iii) for small times,
we prove that the semi-classical Schrödinger operator with variable coefficients
has the same dispersive properties as in the constant coefficients case, uniformly
in ε.

2000 Mathematics Subject Classification number: Primary 35Q40; Sec-
ondary 35J10, 81Q20.

1 Introduction

We study the asymptotics ε → 0+ in the following scaled Helmholtz equation,
with unknown wε,

iε αε wε(x) +
1
2
∆xwε(x) + n2(εx)wε(x) = S (x) . (1)
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In this scaling, both the absorption parameter αε > 0 is small, i.e.

αε → 0+ as ε → 0,

and the index of refraction n2(εx) is almost constant,

n2(εx) ≈ n2(0).

The competition between these two effects is the key difficulty of the present
work. Note that the limiting case αε = 0+ is actually allowed in our analysis.

In all our analysis, the variable x belongs to Rd, for some d ≥ 3. The index
of refraction n2(x) is assumed to be given, smooth and non-negative1

∀x ∈ Rd, n2(x) ≥ 0, and n2(x) ∈ C∞(Rd). (2)

It is also supposed that n2(x) goes to a constant at infinity,

n2(x) = n2
∞ + O

(
〈x〉−ρ

)
as x →∞, (3)

for some, possibly small, exponant ρ > 02. In the language of Schrödinger
operators, this means that the potential n2

∞ − n2(x) is assumed to be either
short-range or long range. Finally, the source term in (1) uses a function S(x)
that is taken sufficiently smooth and decays fast enough at infinity. We refer
to the sequel for the very assumptions we need on the refraction index n2(x),
together with the source S (see the statement of the main Theorem below).

Upon the L2-unitary rescaling

wε(x) = εd/2uε(εx),

the study of (1) is naturally linked to the analysis of the high-frequency Helm-
holtz equation,

iεαεu
ε(x) +

ε2

2
∆xuε(x) + n2(x)uε(x) =

1
εd/2

S
(x

ε

)
, (4)

where the source term S(x/ε) now plays the role of a concentration profile at the
scale ε. In this picture, the difficulty now comes from the interaction between the
oscillations induced by the source S(x/ε), and the ones due to the semiclassical
operator ε2∆/2 + n2(x). We give below more complete motivations for looking
at the asymptotics in (1) or (4).

The goal of this talk is to prove that the solution wε to (1) converges (in
the distributional sense) to the outgoing solution of the natural constant
coefficient Helmholtz equation, i.e.

lim
ε→0

wε = wout , where wout is defined as the solution to

i0+wout(x) +
1
2
∆xwout(x) + n2(0)wout(x) = S (x) . (5)

1Our analysis could easily extended to the case where the refraction index is a function
that changes sign. The only really important assumption on the sign of n is n2

∞ > 0. We do
not give further details on this point.

2Here and below we use the standard notation 〈x〉 := (1 + x2)1/2.
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In other words,

wout = lim
δ→0+

(
iδ +

1
2
∆x + n2(0)

)−1

S

= i

∫ +∞

0

exp
(

it

(
1
2
∆x + n2(0)

))
S dt. (6)

It is well-known that wout can also be defined as the unique solution to (∆x/2+
n2(0))wout = S that satisfies the Sommerfeld radiation condition at infinity
(stated here in d = 3 dimensions of space)

x√
2|x|

· ∇xwout(x) + in(0)wout(x) = O

(
1
|x|2

)
as |x| → ∞. (7)

The main geometric assumptions we need on the refraction index to ensure
the validity of (5) are twofolds. First, we need that the trajectories of the Hamil-
tonian ξ2/2 − n2(x) at the zero energy are not trapped. This is a standard
assumption in this context. It somehow prevents accumulation of energy in
bounded regions of space. Second, it turns out that the trajectories that really
matter in our analysis, are those that start from the origin x = 0, with zero en-
ergy ξ2/2 = n2(0). In this perspective, we need that these trajectories satisfy a
transversality condition: in essence, each such ray can self-intersect, but the
self-intersection then has to be “tranverse” (see assumption (14)). This second
assumption prevents accumulation of energy at the origin.

We wish to emphasize that the statement (5) is not obvious. In particular,
if the transversality assumption (14) is not fullfilled, our analysis shows that (5)
becomes false in general.

The central difficulty is the following. On the one hand, the vanishing ab-
sorption parameter αε in (1) leads to thinking that wε should satisfy the Som-
merfeld radiation condition at infinity with the variable refraction index
n2(εx) (see (7)). Knowing that lim|x|→∞ n2(εx) = n2

∞, this roughly means
that wε should behave like exp(i2−1/2n∞|x|)/|x| at infinity in x. On the other
hand, the almost constant refraction index n2(εx) in (1) leads to observe that
wε naturally goes to a solution of the Helmholtz equation with constant re-
fraction index n2(0). Hoping that we may follow the absorption coefficient
αε continuously along the limit ε → 0 in n2(εx), the statement (5) becomes
natural, and wε should behave like exp(i2−1/2n(0)|x|)/|x| asymptotically. As
we see, the strong non-local effects induced by the Helmholtz equation make
the key difficulty in following the continuous dependence of wε upon both the
absorption parameter αε → 0+ and on the index n2(εx) → n2(0).

2 Motivation

Let us now give some more detailed account on our motivations for looking at
the asymptotics ε → 0 in (1).

In [BCKP], the high-frequency analysis of the Helmholtz equation with
source term is performed. More precisely, the asymptotic behaviour as ε → 0
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of the following equation is studied3

iεαεu
ε(x) +

ε2

2
∆xuε(x) + n2(x)uε(x) =

1
εd/2

S
(x

ε

)
, (8)

where the variable x belongs to Rd, for some d ≥ 3, and the index of re-
fraction n2(x) together with the concentration profile S(x) are as before (see
[BCKP]). Later, the analysis of [BCKP] was extended in [CPR] to more gen-
eral oscillating/concentrating source terms. The paper [CPR] studies indeed
the high-frequency analysis ε → 0 in

iεαεu
ε(x) +

ε2

2
∆xuε(x) + n2(x)uε(x) =

1
εq

∫
Γ

S

(
x− y

ε

)
A(y) exp

(
i

φ(x)
ε

)
dσ(y). (9)

(See also [CRu] for extensions - see [Fou] for the case where n2 has disconti-
nuities). In (9), the function S again plays the role of a concentration profile
like in (8), but the concentration occurs this time around a smooth submanifold
Γ ⊂ Rd of dimension p instead of a point. On the more, the source term here
includes additional oscillations through the (smooth) amplitude A and phase
φ. In these notations dσ denotes the induced euclidean surface measure on
the manifold Γ, and the rescaling exponant q depends on the dimension of Γ
together with geometric considerations, see [CPR].

Both Helmholtz equations (8) and (9) modelize the propagation of a high-
frequency source wave in a medium with scaled, variable, refraction index
n2(x)/ε2. The scaling of the index imposes that the waves propagating in the
medium naturally have wavelength ε. On the other hand, the source in (8) as
well as (9) is concentrating at the scale ε, close to the origin, or close to the sur-
face Γ. It thus carries oscillations at the typical wavelength ε. One may think of
an antenna concentrated close to a point or to a surface, and emmitting waves
in the whole space. The important phenomenon that these linear equations
include precisely lies in the resonant interaction between the high-frequency
oscillations of the source, and the propagative modes of the medium dictated by
the index n2/ε2. This makes one of the key difficulties of the analysis performed
in [BCKP] and [CPR].

A Wigner approach is used in [BCKP] and [CPR] to treat the high-frequency
asymptotics ε → 0. Up to a harmless rescaling, these papers establish that the
Wigner transform fε(x, ξ) of uε(x) satisfies, in the limit ε → 0, the stationnary
transport equation

0+f(x, ξ) + ξ · ∇xf(x, ξ) +∇xn2(x) · ∇ξf(x, ξ) = Q(x, ξ), (10)

where f(x, ξ) = lim fε(x, ξ) measures the energy carried by rays located at the
point x in space, with frequency ξ ∈ Rd. The limiting source term Q in (10)
describes quantitatively the resonant interactions mentioned above. In the eas-
ier case of (8), one has Q(x, ξ) = δ

(
ξ2/2− n2(0)

)
δ(x) |Ŝ(ξ)|2, meaning that

the asymptotic source of energy is concentrated at the origin in x (this is the
factor δ(x)), and it only carries resonant frequencies ξ above this point (due

3note that we use here a slightly different scaling than the one used in [BCKP]. This a
harmless modification that is due to mere convenience.

4



to δ
(
ξ2/2− n2(0)

)
). A similar but more complicated value of Q is obtained

in the case of (9). In any circumstance, equation (10) tells us that the energy
brought by the source Q is propagated in the whole space through the transport
operator ξ · ∇x +∇xn2(x) · ∇ξ naturally associated with the semi-classical op-
erator −ε2∆x/2 − n2(x). The term 0+f in (10) specifies a radiation condition
at infinity for f , that is the trace, as ε → 0 of the absorption coefficient αε > 0
in (8) and (9). It gives f as the outgoing solution

f(x, ξ) =
∫ +∞

0

Q (X(s, x, ξ),Ξ(s, x, ξ)) ds.

Here (X(s, x, ξ),Ξ(s, x, ξ)) is the value at time s of the characteristic curve of
ξ · ∇x + ∇xn2(x) · ∇ξ starting at point (x, ξ) of phase-space (see (13) below).
Obtaining the radiation condition for f as the limiting effect of the absorp-
tion coefficient αε in (8) is actually the second main difficulty of the analysis
performed in [BCKP] and [CPR].

It turns out that the analysis performed in [BCKP] relies at some point
on the asymptotic behaviour of the scaled wave function wε(x) = εd/2uε(εx)
that measures the oscillation/concentration behaviour of uε close to the origin.
Similarly, in ([CPR]) one needs to rescale uε around any point y ∈ Γ, setting
wε

y(x) := εd/2uε(y + εx) for any such y. We naturally have

iεαεw
ε(x) +

1
2
∆xwε(x) + n2(εx)wε(x) = S (x) ,

in the case of (8), and a similar observation holds true in the case of (9). Hence
the natural rescaling leads to the analysis of the prototype equation (1). Under
appropriate assumptions on n2(x) and S(x), it may be proved that wε, solution
to (1), is bounded in the weighted L2 space L2(〈x〉1+δ dx), for any δ > 0,
uniformly in ε. For a fixed value of ε, such weighted estimates are consequences
of the work by Agmon, Hörmander, [Ag], [AH]. The fact that these bounds are
uniform in ε is a consequence of the recent (and optimal) estimates established
by B. Perthame and L. Vega in [PV1], [PV2] (where the weighted L2 space are
replaced by a more precise homogeneous Besov-like space). The results in [PV1]
and [PV2] actually need a virial condition of the type 2n2(x)+x·∇xn2(x) ≥ c >
0, a condition that implies our transversality assumption (14). We also refer to
the work by N. Burq [Bu], Gérard and Martinez [GM], T. Jecko [J], as well as
Wang and Zhang [WZ], for (not optimal) bounds in a similar spirit. Under the
(weaker) assumptions we make in the present paper, a (weaker) bound may also
be obtained as a consequence of our analysis. In any case, once wε is seen to
be bounded, it naturally possesses a weak limit w = lim wε in the appropriate
space. The limit w clearly satisfies in a weak sense the equation(

1
2
∆x + n2(0)

)
w(x) = S(x). (11)

Unfortunately, equation (11) does not specify w = lim wε in a unique way, and
it has to be supplemented with a radiation condition at infinity. In view of the
equation (1) satisfied by wε, it has been conjectured in [BCKP] and [CPR]
that lim wε actually satisfies

lim wε = wout,
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where wout is the outgoing solution defined before. The present talk answers
the conjecture formulated in these works. It also gives geometric conditions for
the convergence lim wε = wout to hold.

As a final remark, let us mention that our analysis is purely time-dependent.
We wish to indicate that similar results than those in the present talk were re-
cently and independently obtained by Wang and Zhang [WZ] using a stationary
approach.

3 Main result

Our main theorem is the following

Main Theorem
Let wε satisfy iεαεw

ε(x) + 1
2∆xwε(x) + n2(εx)wε(x) = S(x), for some se-

quence αε > 0 such that αε → 0+ as ε → 0. Assume that the source term S
belongs to the Schwartz class S(Rd). Suppose also that the index of refraction
satisfies the following set of assumptions

• (smoothness, decay). There exists an exponent ρ > 0, and a positive
constant n2

∞ > 0 such that for any multi-index α ∈ Nd, there exists a
constant Cα > 0 with∣∣∣∂α

x

(
n2(x)− n2

∞
) ∣∣∣ ≤ Cα 〈x〉−ρ−|α|. (12)

• (non-trapping condition). The trajectories associated with the Hamilto-
nian ξ2/2− n2(x) are not trapped at the zero energy. In other words, any
trajectory (X(t, x, ξ),Ξ(t, x, ξ)) solution to

∂

∂t
X(t, x, ξ) = Ξ(t, x, ξ), X(0, x, ξ) = x,

∂

∂t
Ξ(t, x, ξ) =

(
∇xn2

)
(X(t, x, ξ)) , Ξ(0, x, ξ) = ξ, (13)

with initial datum (x, ξ) such that ξ2/2− n2(x) = 0, is assumed to satisfy

|X(t, x, ξ)| → ∞, as |t| → ∞.

• (tranversality condition). The tranvsersality condition (14) on the tra-
jectories starting from the origin x = 0, with zero energy ξ2/2 = n2(0), is
satisfied.

Then, we do have the following convergence, weakly, when tested against any
function φ ∈ S(Rd),

wε → wout.

Remark
The transversality assumption (14) requires that

the set S := {(η, ξ, t) ∈ R2d×]0,∞[ s.t.

X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η, ξ2/2 = n2(0)} (14)

is a smooth submanifold of R2d+1, having a codimension > d + 2.
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In other words, zero energy trajectories issued from the origin and passing
several times through the origin x = 0 should be “rare”.

It is possible to prove that codim S ≥ d + 2 in any case. Our assumption
thus means that the extreme case codim S = d + 2 should be avoided.

To give a caricatural example, let us simply say that the flow of the harmonic
oscillator (which is, strictly speaking, not included in our analysis), i.e. the case
of a Hamiltonian H(x, ξ) = ξ2/2 + x2/2, gives codimS = d + 2. In the case
of a harmonic oscillator with rationally independent frequencies, i.e. H(x, ξ) =
ξ2/2 + ω1x

2
1/2 + · · · + ωdx

2
d/2 with (ω1, . . . , ωd) being Q-independent, gives

codim S = 0.

The above theorem is not only a local convergence result, valid for test
functions φ ∈ S. Indeed, by density of smooth functions in weighted L2 spaces,
it readily implies the following immediate corollary. It states that, provided wε

is bounded in the natural weighted L2 space, the convergence also holds weakly
in this space. In other words, the convergence also holds globally.

Immediate corollary
With the notations of the main Theorem, assume that the source term S above
satisfies the weaker decay property

‖S‖B :=
∑
j∈Z

2j/2‖S‖L2(Cj) < ∞, (15)

where Cj denotes the annulus {2j ≤ |x| ≤ 2j+1} in Rd. Suppose also that the
index of refraction satisfies the smoothness condition of the main Theorem, with
the non-trapping and transversality assumptions replaced by the stronger

• (virial condition) 2
∑
j∈Z

sup
x∈Cj

(
x · ∇n2(x)

)
−

n2(x)
< 1. (16)

Then, we do have the convergence wε → wout, weakly, when tested against any
function φ such that ‖φ‖B < ∞,

Remark
Here, the decay (15) assumed on the source S is the natural (and optimal) one.
On the more, the above weak convergence holds in the optimal space, as we now
explain.

It is well known that the resolvent of the Helmholtz operator maps the
weighted L2 space L2

(
〈x〉1+δdx

)
to L2

(
〈x〉−1−δdx

)
for any δ > 0 ([Ag], [J],

[GM]). It has been established (in the constant coefficients case) by Agmon and
Hörmander [AH] that this may be improved into the following optimal result:
the resolvent of the Helmholtz operator sends the weighted L2 space B defined
in (15) to the dual weighted space B∗ defined by

‖u‖B∗ := sup
j∈Z

2−j/2‖u‖L2(Cj). (17)

This has been generalized to the non-constant coefficients case (that are non-
compact perturbations of the constant coefficients case) by Perthame and Vega
in [PV1] and [PV2]. Their work uses the assumption (16). In our perspective,
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the assumption (16) is of technical nature, and it may be replaced by any
assumption ensuring that the solution wε to (1) satisfies the uniform bound

‖wε‖B∗ ≤ Cd,n2 ‖S‖B , (18)

for some universal constant Cd,n2 that only depends on the dimension d ≥ 3
and the index n2.

Proof of the immediate Corollary
Under the virial assumption, it has been established in [PV1] that estimate (18)
holds true. Hence, by density of the Schwartz class in the space B, one readily
reduces the problem to the case when the source S and the test function φ
belong to S(Rd). The main Theorem now allows to conclude.

Needless to say, the central assumptions needed for the theorem are the
non-trapping condition together with the transversality condition. To state the
result very briefly, the heart of our proof lies in proving that under the above as-
sumptions, the propagator exp

(
iε−1t

(
−ε2∆x/2− n2(x)

))
, or its rescaled value

exp
(
it
(
−∆x/2− n2(εx)

))
, satisfy “similar” dispersive properties as the free

Schrödinger operator exp
(
it
(
−∆x/2− n2(0)

))
, uniformly in ε. This in turn

is proved upon distinguishing between small times, moderate times, and very
large times, each case leading to the use of different arguments and techniques.

4 Outline of the proof

Let wε be the solution to iεαεw
ε + 1

2∆wε +n2(εx)wε = S (x) , with S ∈ S(Rd).
According to the statement of our main Theorem, we wish to study the asymp-
totic behaviour of wε as ε → 0, in a weak sense. Taking a test function
φ(x) ∈ S(Rd), and defining the duality product

〈wε, φ〉 :=
∫
Rd

wε(x)φ(x) dx,

we want to prove the convergence

〈wε, φ〉 → 〈wout, φ〉 as ε → 0.

where the outgoing solution of the (constant coefficient) Helmholtz equation
wout is defined in (5), (6) before.

4.1 First step: preliminary reduction - the time depen-
dent approach

In order to prove the weak convergence 〈wε, φ〉 → 〈wout, φ〉, we define the
rescaled function

uε(x) =
1

εd/2
wε
(x

ε

)
. (1)

It satisfies iεαεu
ε +ε2/2 ∆uε +n2(x)uε = 1/εd/2S (x/ε) =: Sε(x), where for any

function f(x) we use the short-hand notation

fε(x) =
1

εd/2
f
(x

ε

)
.
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Using now the function uε instead of wε, we observe the equality

〈wε, φ〉 = 〈uε, φε〉. (2)

This transforms the original problem into the question of computing the semi-
classical limit ε → 0 in the equation satisfied by uε. One sees in (2) that this
limit needs to be computed at the semiclassical scale (i.e. when tested upon a
smooth, concentrated function φε).

In order to do so, we compute uε in terms of the semiclassical resolvent(
iεαε + (ε2/2)∆ + n2(x)

)−1. It is the integral over the whole time interval
[0,+∞[ of the propagator of the Schrödinger operator associated with ε2∆/2 +
n2(x). In other words we write

uε =
(

iεαε +
ε2

2
∆ + n2(x)

)−1

Sε

= i

∫ +∞

0

exp
(

it

(
iεαε +

ε2

2
∆ + n2(x)

))
Sε dt. (3)

Now, defining the semi-classical propagator

Uε(t) := exp
(

i
t

ε

(
ε2

2
∆ + n2(x)

))
= exp

(
−i

t

ε
Hε

)
, (4)

associated with the semi-classical Schrödinger operator

Hε := −ε2

2
∆− n2(x), (5)

we arrive at the final formula

〈wε, φ〉 = 〈uε, φε〉 =
i

ε

∫ +∞

0

e−αεt 〈Uε(t)Sε, φε〉 dt. (6)

Our strategy is to pass to the limit in this very integral.

More precisely, we wish to prove that the quantity associated with the non-
constant coefficients propagator (corresponding to the curved trajectory in
the picture below), namely

〈wε, φ〉 =
i

ε

∫ +∞

0

e−αεt
〈

exp
(

i
t

ε

(
ε2

2
∆ + n2(x)

))
Sε, φε

〉
dt, (7)

is asymptotic to the analogous quantity with coefficients frozen at the origin
(corresponding to the straight line in the picture below), namely

〈wout, φ〉 =
i

ε

∫ +∞

0

〈
exp

(
i
t

ε

(
ε2

2
∆ + n2(0)

))
Sε, φε

〉
dt. (8)
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with non−zero speed

T1

ε−κ

ϕε

spreading
increases with time

"gaussian" Uε (t) S ε

trajectory in the constant
coefficients case

trajectory in the case of
variable coefficients

T0 εtime 

point X(t) of the trajectory
at time 

typical spreading 

initial wave packet, shot from x=0

time

support of the test functiontime 

|ξ| =n(0)

ε
t

time θ

4.2 Second step: passing to the limit from (7) to (8)

In order to pass to the limit ε → 0 in (7), we need to analyze the contributions
of various time scales in the corresponding time integral. More precisely, we
choose for the whole subsequent analysis two (large) cutoff parameters in time,
denoted by T0 and T1, and one (small) cutoff parameter θ. We analyze the
contributions to the time integral (7) that are due to the four regions

0 ≤ t ≤ T0ε, T0ε ≤ t ≤ θ, T0ε ≤ t ≤ T1, and t ≥ T1.

We also choose a (small) exponent κ > 0, and we occasionally treat separately
the contributions of very large times

t ≥ ε−κ.

Associated with these truncations, we take once and for all a smooth cutoff
function χ defined on R, such that

χ(z) ≡ 1 when |z| ≤ 1/2, χ(z) ≡ 0 when |z| ≥ 1,

χ(z) ≥ 0 for any z. (9)

To be complete, there remains to finally choose a (small) cutoff parameter in
energy δ > 0. Accordingly we distinguish in the L2 scalar product 〈Uε(t)Sε, φε〉
between energies close to (or far from) the zero energy, which is critical for our
problem. In other words, we set the self-adjoint operator

χδ (Hε) := χ

(
Hε

δ

)
.

This object is perfectly well defined using standard functional calculus for self-
adjoint operators. We decompose

〈Uε(t)Sε, φε〉 =
〈
Uε(t)χδ(HεSε, φε

〉
+
〈
Uε(t) (1− χδ) (Hε)Sε, φε

〉
.

Following the above described decomposition of times and energies, we study
each of the subsequent terms:
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• The contribution of small times is

Aε :=
1
ε

∫ 2T0ε

0

χ

(
t

T0ε

)
e−αεt 〈Uε(t)Sε, φε〉 dt.

We prove that this term actually gives the dominant contribution in (6), pro-
vided the cutoff parameter T0 is taken large enough. This (easy) analysis essen-
tially boils down to manipulations on the time dependent Schrödinger operator
i∂t + ∆x/2 + n2(εx), for finite times t of the order t ∼ T0 at most. Indeed, it is
readily seen, going back to the microscopic scale x → εx and t → εt, that

Aε =
∫ 2T0

0

χ

(
t

T0

)
e−εαεt

〈
exp

(
it

(
1
2
∆x + n2(εx)

))
S, φ

〉
dt

∼
∫ 2T0

0

χ

(
t

T0

) 〈
exp

(
it

(
1
2
∆x + n2(0)

))
S, φ

〉
dt for any finite T0

∼
∫ +∞

0

〈
exp

(
it

(
1
2
∆x + n2(0)

))
S, φ

〉
dt for T0 large enough

= 〈wout, φ〉.

In view of this result, the main Theorem is proved once it is es-
tablished that all other (subsequent) contributions are small. This is
the task we now perform.

• The contribution of moderate and large times, away from the zero
energy, is

Bε :=
1
ε

∫ +∞

T0ε

(1− χ)
(

t

T0ε

)
e−αεt

〈
Uε(t) (1− χδ) (Hε) Sε, φε

〉
dt.

We prove that this term has a vanishing contribution, provided T0 is large
enough. This easy result relies on a non-stationnary phase argument in time,
recalling that Uε(t) = exp(−itHε/ε) and the energy Hε is larger than δ > 0.

• The contribution of very large times, close to the zero energy is

Cε :=
1
ε

∫ +∞

ε−κ

e−αεt
〈
Uε(t)χδ (Hε)Sε, φε

〉
dt.

We prove that this term has a vanishing contribution as ε → 0. To do so, we
use results proved by X.P. Wang [Wa]: these essentially assert that the operator
〈x〉−s Uε(t)χδ(Hε) 〈x〉−s has the natural size 〈t〉−s as time goes to infinity,
provided the critical zero energy is non-trapping. Roughly, the semiclassical
operator Uε(t)χδ(Hε) sends rays initially close to the origin, at a distance of the
order t from the origin, when the energy is non trapping. Quantitatively, this
information allows us to estimate∣∣∣〈Uε(t)χδ (Hε)Sε, φε

〉∣∣∣ ≤ Cs 〈t〉−s
, ∀s ≥ 0,

11



and the contribution of this scalar product to the above integral vanishes (pro-
vided s is large, and κ is small):

Cε = O(ε−1+sκ), for any s ≥ 0.

Note that the need for considering polynomially large times here (t ≥ ε−κ),
stems from the ε−1 in front of the integral in time that defines Cε.

The most difficult terms are the last two that we describe now.

• The contribution of large times, close to the zero energy is

Dε :=
1
ε

∫ ε−κ

T1

e−αεt
〈
Uε(t)χδ (Hε) Sε, φε

〉
dt.

The treatment of this term is similar in spirit, though much harder, to the anal-
ysis performed in the previous term. Using only information on the localization
properties of Uε(t)χδ (Hε) Sε and φε, we prove that this term has a vanishing
contribution, provided T1 is large enough. To do so, we use ideas of Bouzouina
and Robert [BR], to establish a version of the Egorov theorem that holds true
for polynomially large times in ε.

Roughly, the statement is the following. On the one hand, φε is localised
close to x = 0. On the other hand, the term χδ (Hε) Sε is microlocalised close
to x = 0 and ξ2/2 = n2(x). The Egorov Theorem, in the version of [BR]
then asserts that, up to a remainder term Rε(t, x) (that is quite explicitely
estimated), the propagated quantity Uε(t)χδ (Hε)Sε is microlocalised close to
the trajectories, at time t, issued from x = 0 and ξ2/2 = n2(0). Now, the
non-trapping assumption implies that, for large enough times, such trajectories
are away from the origin. As a consequence, up to the remainder Rε(t, x)
again, the scalar product

〈
Uε(t)χδ (Hε)Sε, φε

〉
vanishes for large times, due to

orthogonality of the supports. In other words

Dε ∼
1
ε

∫ ε−κ

T1

〈Rε(t, x), φε〉 dt

provided T1 is large enough. Hence, there only remains to estimate the error
term in Egorov’s Theorem. The article [BR] gives the typical estimate

‖Rε(t, x)‖L2(Rd) ≤ CN,δ εN sup
1≤|α|≤N
|x|≤δ

|ξ2/2−n2(x)|≤δ

∣∣∣ ∂α

∂(x, ξ)
(X(t, x, ξ),Ξ(t, x, ξ))

∣∣∣,

where the trajectory (X(t),Ξ(t) has been defined in (13), and the initial data
(x, ξ) run over a compact neighbourhood, of size δ, of {x = 0, ξ2/2 = n2(x)}.
In other words, the growth in time of Rε(t, x) is controlled by the growth of
the linearized flow. In general, this term grows exponentially with time, wich
is too strong a growth for our purpose. In our very case however, using the
simplecticness of the flow (X(t),Ξ(t), together with the fact that n2(x) goes to

12



a constant at infinity, it turns out that the linearized flow has polynomial growth
in time, i.e.

sup
1≤|α|≤N
|x|≤δ

|ξ2/2−n2(x)|≤δ

∣∣∣ ∂α

∂(x, ξ)
(X(t, x, ξ),Ξ(t, x, ξ))

∣∣∣ ≤ CN,δ tN
2
.

(The exponant N2 here is very probably not optimal). As a consequence, we
deduce the polynomial bound

‖Rε(t, x)‖L2(Rd) ≤ CN εN tN
2
,

from which it follows that

Dε ∼
1
ε

∫ ε−κ

T1

εN tN
2
dt ≤ εN−N2κ → 0,

provided κ is small.

• The contribution of moderate times close to the zero energy is

Eε :=
1
ε

∫ T1

T0ε

(1− χ)
(

t

T0ε

)
e−αεt

〈
Uε(t)χδ (Hε) Sε, φε

〉
dt.

This is the most difficult term: contrary to all preceding terms, it cannot be
analyzed using only geometric informations on the microlocal support of the
relevant functions. Indeed, keeping in mind that the function Uε(t)χδ (Hε) Sε is
localized on a trajectory initially shot from the origin, whereas φε stays at the
origin, it is clear that for times T0ε ≤ t ≤ T1, the support of Uε(t)χδ (Hε)Sε and
φε may intersect, due to trajectories passing several times at the origin. This
might create a dangerous accumulation of energy at this point. For that reason,
we need a precise evaluation of the semi-classical propagator Uε(t), for times up
to the order t ∼ T1. This is done using the elegant wave-packet approach of M.
Combescure and D. Robert [CRo] (see also [Ro], and the nice lecture [Ro2]), as
we describe now.

Let us take a Gaussian wave packet centered at the point (q, p) in phase
space:

ϕε
q,p(x) := (πε)−d/4 exp

(
i

ε
p ·
(
x− q

2

))
exp

(
− (x− q)2

2ε

)
.

It has been proved in [CRo] that, at least for bounded values of time, the
propagator Uε(t) has a quite explicit action on ϕε

q,p(x, ξ), namely,

Uε(t)ϕε
q,p(x) = (πε)−d/4 exp

(
i

ε
pt ·
(
x− qt

2

))
exp

(
−Γ(t, q, p)

(x− qt)2

2ε

)
× exp

(
i

ε
S(t, q, p)

)
PN (t, ε, q, p; (x− qt)/

√
ε)

+ remainder. (10)
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This formula states in essence that an intial wave packet centered at (q, p) in
phase space becomes, after propagation through Uε(t), a gaussian wave packet
centered at (qt, pt) = (X(t, q, p),Ξ(t, q, p)), with a new (complex) “variance”
Γ(t, q, p) (a d × d symmetric matrix, that is explicitely computable in terms of
the classical flow), and an additional phase factor S(t, q, p) (an “action”, which
is again explicitely computable in terms of the classical flow). In formula (10),
the corrective factor PN (t, ε, q, p; (x − qt)/

√
ε) is a polynomial of degree 2N in

its last variables, that depends smoothly upon t, ε, q, p, and the remainder term
is of size εN , N being some large integer. The important point in (10) is that
the (complex) phase

i

ε
pt ·
(
x− qt

2

)
− Γ(t, q, p)

(x− qt)2

2ε
+

i

ε
S(t, q, p),

as well as the amplitude PN , are “explicitely” known in terms of classical quan-
tities.

Hence, projecting Sε over the gaussian wave packets, we may write

Eε ≈
1
ε

∫ T1

T0ε

(1− χ)
(

t

T0ε

)〈
Uε(t)χδ (Hε) Sε, φε

〉
dt

=
1
ε
(2πε)−d

∫
R2d

dqdp

∫ T1

T0ε

〈
χδ (Hε) Sε, Uε(−t)ϕε

q,p

〉 〈
ϕε

q,pφε

〉
dt

and, using (10), we arrive after some computations at a formula of the form
(very roughly)

Eε ≈ ε−(d+2)/2

∫ T1

T0ε

dtdξdη (1− χ)
(

t

T0ε

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)
ε

)
. (11)

This formula involves a rather explicit (complex) phase Φ and amplitude A.
Our goal is to prove with the help of (11) that Eε is negligible.

To do so, we wish to apply the stationary phase formula in (11). Since
integration by parts in time will be needed, this step requires some care. Indeed,
close to the lower bound T0ε, integration by parts in time creates diverging
factors, due to the term (1− χ) (t/T0ε) in (11). This is why we now need to
further distinguish in (11) between times T0ε ≤ t ≤ θ (for which one cannot use
a pure stationary phase approach), and later times θ ≤ t ≤ T1.

Times θ ≤ t ≤ T1

For those times, one may use a stationary phase approach in t, ξ, η, to analyse
the asymptotic behaviour of

E1
ε := ε−(d+2)/2

∫ T1

θ

dt

∫
R2d

dξdη (1− χ)
(

t

θ

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)
ε

)
.

It turns out that the stationary set S := {ImΦ = 0, ∇t,ξ,ηΦ = 0} is exactly

S = {(t, ξ, η) ∈]θ, +∞[×R2d such that

ξ2/2 = n2(0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η}.
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η

ξ

x=0

Assuming S is a smooth submanifold, we arrive at

E1
ε ∼ ε[codim S−d−2]/2

∫
S

dtdξdη (1− χ)
(

t

θ

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)
ε

)
.

Thus, E1
ε vanishes asymptotically provided

codim S > d + 2, i.e. dim S < d− 1.

This is the geometric assumption (14) mentioned previously. Note that, in the
case codim S = d + 2, it is in principle possible to compute the O(1) quantity

lim
ε→0

E1
ε =

∫
S

dtdξdη (1− χ)
(

t

θ

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)
ε

)
,

In the case limε→0 E1
ε 6= 0, this observation gives a counterexample to the

convergence wε → wout.

For times T0ε ≤ t ≤ θ
For those times, the above argument fails, because one cannot use a sta-

tionary phase argument in time. In this case, one exploits at variance the
fact that the classical trajectory associated with constant coefficients Hamil-
tonian ξ2/2 − n2(0), is tangent with the classical trajectory associated with
non-constant coefficients Hamiltonian ξ2/2− n2(x). In other words, one starts
doing Taylor expansions in the phase, in the spirit of [Dsf], as we now explain.

Quantitatively, we write, after some computations

E2
ε := ε−(d+2)/2

∫ θ

T0ε

dt

∫
R2d

dξdη A(t, ξ, η) exp
(

i
Φ(t, ξ, η)

ε

)
= ε−1

∫ θ

T0ε

dt

∫
Rd

dξ Ã(t, ξ) exp

(
i

Φ̃(t, ξ)
ε

)
,

for some new amplitude and phase Ã(t, ξ) and Φ̃, that are computable in terms
of A and Φ. In essence, we have here absorbed ε−d/2 upon making the stationary
phase argument of the previous step in the variable η only. There remains to
absorb the factor ε−1, that corresponds to the stationary phase argument in
time used in the previous step.

Here, we write, upon rescaling time by t → εt,

E2
ε = ε−1

∫ θ

T0ε

dt

∫
Rd

dξ Ã(t, ξ) exp

(
i

Φ̃(t, ξ)
ε

)

=
∫ θ/ε

T0

dt

∫
Rd

dξ Ã(εt, ξ) exp

(
i t

Φ̃(εt, ξ)
εt

)
.
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The difficulty now is to get integrability in the new time variable t, close to infin-
ity. This is obtained upon exploiting the fact that εt ≤ θ is a small parameter,
and writing the Taylor expansion

Φ̃(εt, ξ)
εt

=
(
∂tΦ̃

)
(0, ξ) + O(θ) = ξ2/2 + O(θ),

where the second equatlity stems from an explicit computation. As a conse-
quence, as time t becomes large, while εt remains O(θ), we have the standard
dispersive estimate∫

Rd

dξ Ã(εt, ξ) exp

(
i t

Φ̃(εt, ξ)
εt

)
= O(t−d/2),

from which it follows that

E2
ε =

∫ θ/ε

T0

dt

∫
Rd

dξ Ã(εt, ξ) exp

(
i t

Φ̃(εt, ξ)
εt

)
= O(T−d/2+1

0 ),

is a negligible term as T0 is large enough.
This ends our analysis.

Acknowledgements:
The author wishes to thank R. Carles, F. Nier, B. Perthame, D. Robert, and X.P.
Wang, for numerous discussions on the subject.

This work has been partially supported by the “ACI Jeunes Chercheurs - Méthodes
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